POINTS AT RATIONAL DISTANCE FROM THE VERTICES OF A UNIT POLYGON

R. BARBARA
Communicated by Michel Waldschmidt

Abstract

We investigate the existence of a point in the plane of a unit polygon that is at rational distance from each vertex of the polygon. A negative answer is obtained in almost all cases.

1. Introduction

If T is a unit equilateral triangle, then there are points in the plane of T, that are at rational distance from the vertices of T (any vertex will do). Further, as proved in [1] and [2], the set of such points is dense in the plane of T. Concerning the unit square S, it is not (yet) known whether there is a point in the plane of S that is at rational distance from the corners of S. Results as in [2] suggest a negative answer, but the problem remains open.

What about the unit pentagon P_{5} (regular pentagon with unit side)? Is there a point in the plane of P_{5} that is at rational distance from the vertices of P_{5} ?

More generally, for $n \geq 3$, let P_{n} denote the unit n-gon (regular n-gon with unit side). Consider the following question:
(P1) Is there a point in the plane of P_{n} that is at rational distance from the vertices of P_{n} ?

[^0]As noted, the answer to (P 1) is positive if $n=3$, and it turns out that, for $n \geq 4$, the most difficult case is indeed the case $n=4$. In this note, we focus on the cases $n \geq 5$ and we prove the result.

Theorem 1.1.

- For $n=5$, the answer to (P1) is NEGATIVE.
- For $n=6$, the answer to (P1) is POSITIVE.
- For all $n \geq 7$, the answer to (P1) is NEGATIVE, except perhaps when $n \in\{8,12,24\}$.

The key-tool lies in the following observation: When the answer to (P1) is positive for a given $n \geq 3$, then, an identity as

$$
\frac{n}{4} \cot \frac{\pi}{n}=\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}
$$

must occur, where the r_{i} are nonnegative rational numbers. But, such identity is impossible for $n=5$ as well as for all $n \geq 7$, provided that $n \neq 8,12,24$.

2. Preliminaries

We start with a simple property.
Proposition 2.1. Let d, m, n be positive integers with $d>1$ and $n=$ $d m$. Then, $\mathbb{Q}\left(\cot \frac{\pi}{d}\right)$ and $\mathbb{Q}\left(\cos \frac{2 \pi}{d}\right)$ are subfields of $\mathbb{Q}\left(\cot \frac{\pi}{n}\right)$.

Proof. - Set $x=\frac{\pi}{n}$ and $y=\frac{\pi}{d}$. Then, $y=m x$. To see why $\mathbb{Q}(\cot y) \subset$ $\mathbb{Q}(\cot x)$, or equivalently, $\cot y \in \mathbb{Q}(\cot x)$, use induction on $m \geq 1$ and the identity $\cot (m+1) x=\frac{\cot m x \cdot \cot x-1}{\cot m x+\cot x}$. - Next, set $t=\cot \frac{\pi}{d}$. From $\cos \frac{2 \pi}{d}=\frac{t^{2}-1}{t^{2}+1}$ and $t \in \mathbb{Q}\left(\cot \frac{\pi}{n}\right)$, we get, $\cos \frac{2 \pi}{d} \in \mathbb{Q}\left(\cot \frac{\pi}{n}\right)$. Hence, $\mathbb{Q}\left(\cos \frac{2 \pi}{d}\right) \subset \mathbb{Q}\left(\cot \frac{\pi}{n}\right)$.

Let us call a 2-group, a group in which every element has order 1 or 2. For convenience, we give the following definition.

Definition 2.2. We say that a real field F is "flat" if every subfield E of F satisfies:

The Galois group $G(E: \mathbb{Q})$ is a 2 -group.

Remark 2.3. Obviously, a subfield of a flat field is flat.
Proposition 2.4. Let $r_{1}, r_{2}, \ldots, r_{n}$ be nonnegative rational numbers. Then,

$$
\mathbb{Q}\left(\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}\right) \text { is a flat field. }
$$

Proof. Due to Remark 2.3, it suffices to show that $F=\mathbb{Q}\left(\sqrt{r_{1}}\right.$, $\left.\sqrt{r_{2}}, \ldots, \sqrt{r_{n}}\right)$ is a flat field. As quickly seen, $F: \mathbb{Q}$ is a Galois extension (of degree 2^{ν}). We first show that $G=G(F: \mathbb{Q})$ is a 2 -group. Let $\sigma \in G$. Then, $\sigma\left(\sqrt{r_{i}}\right) \in\left\{ \pm \sqrt{r_{i}}\right\}$, and so $\sigma \circ \sigma\left(\sqrt{r_{i}}\right)=\sqrt{r_{i}}$. As an element, x in F has the form $f\left(\sqrt{r_{1}}, \sqrt{r_{2}}, \ldots, \sqrt{r_{n}}\right)$, where $f \in \mathbb{Q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$. It follows easily that $\sigma \circ \sigma(x)=x$.

Since every 2-group is abelian, then, $F: \mathbb{Q}$ is an abelian extension. Now, let E be any subfield of F. Since $F: \mathbb{Q}$ is abelian, then, $E: \mathbb{Q}$ is a Galois extension and the group $G(E: \mathbb{Q})$ is isomorphic to a quotient of $G(F: \mathbb{Q})$. Since a quotient of a 2 -group is a 2-group, we see that $G(E: \mathbb{Q})$ is a 2-group.

Lemma 2.5. Let p be a prime number. Suppose that the relation $a^{2}=$ $p\left(b^{2}+c^{2}\right)$ holds for some positive rational numbers a, bandc. Then, $\mathbb{Q}(\sqrt{a+b \sqrt{p}}): \mathbb{Q}$ is a cyclic extension of degree 4.

Proof. - $a+b \sqrt{p}$ is NOT a square in $\mathbb{Q}(\sqrt{p})$: Otherwise, for some $x, y \in \mathbb{Q}, a+b \sqrt{p}=(x+y \sqrt{p})^{2}$. Hence, $x^{2}+p y^{2}=a$ and $2 x y=b$. So, $x^{2}+p\left(\frac{b}{2 x}\right)^{2}=a$ and x^{2} is a zero of $X^{2}-a X+\frac{1}{4} p b^{2}=0$. Since $\sqrt{a^{2}-p b^{2}}=\sqrt{p c^{2}}=c \sqrt{p}$, it follows that x^{2}, and hence x, is irrational, giving a contradiction.

- Set $\theta=\sqrt{a+b \sqrt{p}}$. We just proved that $\theta \notin \mathbb{Q}(\sqrt{p})$. Moreover $\theta^{2} \in \mathbb{Q}(\sqrt{p})$. It follows that θ has (algebraic) degree 2 over $\mathbb{Q}(\sqrt{p})$ and hence θ has degree 4 over \mathbb{Q}.

The irreducible polynomial of θ over \mathbb{Q} is now clearly

$$
f_{0}=X^{4}-2 a X^{2}+\left(a-p b^{2}\right) .
$$

The conjugates of θ (over \mathbb{Q}) are: $\pm \theta$ and $\pm \mu$, where $\mu=\sqrt{a-b \sqrt{p}}$. Note that $\sqrt{p}=\frac{1}{b}\left(\theta^{2}-a\right) \in \mathbb{Q}(\theta)$. Now, $\theta \mu=\sqrt{a^{2}-p b^{2}}=c \sqrt{p} \in \mathbb{Q}(\theta)$. Hence, $\mu=\frac{c \sqrt{p}}{\theta} \in \mathbb{Q}(\theta)$. Therefore, $\mathbb{Q}(\theta): \mathbb{Q}$ is a Galois extension of degree 4 , and hence its Galois group $G=G(\mathbb{Q}(\theta): \mathbb{Q})$ has order 4. Since
f_{0} is irreducible over \mathbb{Q}, G acting on the roots of f_{0} is a transitive group. In particular, for some $\sigma \in G$, we have,

$$
\sigma(\theta)=\mu
$$

Claim: $\sigma(\sqrt{p})=-\sqrt{p}$. Otherwise, we must have $\sigma(\sqrt{p})=\sqrt{p}$. So, $\sigma\left(\theta^{2}\right)=\sigma(a+b \sqrt{p})=a+b \sqrt{p}=\theta^{2}$ and $\sigma(\theta)= \pm \theta$, giving a contradiction. Now, $\sigma(\mu)=\sigma\left(\frac{c \sqrt{p}}{\theta}\right)=\frac{c \sigma(\sqrt{p})}{\sigma(\theta)}=\frac{-c \sqrt{p}}{\mu}=-\theta$. Finally, $\sigma(-\theta)=-\mu$ and $\sigma(-\mu)=\theta$. Hence, the action of σ on the roots of f_{0} is the 4-cycle,

$$
(\theta, \mu,-\theta,-\mu)
$$

As G has order 4, we conclude that G is cyclic generated by σ.
Proposition 2.6. Each of $\mathbb{Q}\left(\cot \frac{\pi}{5}\right): \mathbb{Q}$ and $\mathbb{Q}\left(\cot \frac{\pi}{16}\right): \mathbb{Q}$ is a cyclic extension of degree 4.

Proof. - We have $5 \cot \frac{\pi}{5}=\sqrt{25+10 \sqrt{5}}$. Apply Lemma 2.5 with $p=5$ and $(a, b, c)=(25,10,5)$.

- We have $\cot \frac{\pi}{16}=1+\sqrt{2}+\sqrt{4+2 \sqrt{2}}$. It is an exercise to check that $\mathbb{Q}\left(\cot \frac{\pi}{16}\right)=\mathbb{Q}(\sqrt{4+2 \sqrt{2}})$. Apply Lemma 2.5 with $p=2$ and $(a, b, c)=(4,2,2)$.

Proposition 2.7. Let $p \geq 7$ be a prime number. Then, $\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right): \mathbb{Q}$ is a cyclic extension of degree ≥ 3. Furthermore, $\mathbb{Q}\left(\cos \frac{2 \pi}{9}\right): \mathbb{Q}$ is a cyclic extension of degree 3.

Proof. - Set $\Omega=\mathbb{Q}\left(e^{i \frac{2 \pi}{p}}\right)$. It is well-known that $\Omega: \mathbb{Q}$ is a cyclic extension of degree $p-1$. Now, $\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right): \mathbb{Q}$ as a sub-extension of $\Omega: \mathbb{Q}$ is a cyclic extension, and it has degree $\frac{p-1}{2} \geq 3$.

- Set $\mathbb{Q}\left(e^{i \frac{2 \pi}{9}}\right)$. It is well-known that $\Omega: \mathbb{Q}$ is an abelian extension of degree $\varphi(9)=6$. Now, $\mathbb{Q}\left(\cos \frac{2 \pi}{9}\right): \mathbb{Q}$ as a sub-extension of an abelian extension is a Galois extension, and so the order of its group must be equal to its degree, that is, to $\frac{1}{2} \varphi(9)=3$. Since any group of order 3 is cyclic, the proof is complete.

3. The relation $\frac{n}{4} \cot \frac{\pi}{n}=\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}$

Proposition 3.1. Let $n \geq 5, n \neq 6$. Set $\Omega=\mathbb{Q}\left(\cot \frac{\pi}{n}\right)$. Suppose that Ω is a flat field. Then, $n \in\{8,12,24\}$.

Proof. - Suppose first that n is divisible by 5. By Proposition 2.1, $\mathbb{Q}\left(\cot \frac{\pi}{5}\right)$ is a subfield of Ω, and, by Proposition 2.6 , the Galois group of $\mathbb{Q}\left(\cot \frac{\pi}{5}\right): \mathbb{Q}$ is a cyclic group of order 4 (and hence is not a 2 -group). Therefore, Ω is NOT flat.

- Suppose next that n is divisible by a prime $p \geq 7$. By Proposition 2.1, $\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right)$ is a subfield of Ω, and, by Proposition 2.7 , the Galois group of $\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right): \mathbb{Q}$ is a cyclic group of order ≥ 3 (and hence is not a 2 -group). Therefore, Ω is NOT flat.
- Suppose now that n is divisible by 16 . By Proposition $2.1, \mathbb{Q}\left(\cot \frac{\pi}{16}\right)$ is a subfield of Ω, and, by Proposition 2.6 , the Galois group of $\mathbb{Q}\left(\cot \frac{\pi}{16}\right)$: \mathbb{Q} is a cyclic group of order 4 (and hence is not a 2-group). Therefore, Ω is NOT flat.
- Suppose finally that n is divisible by 9 . By Proposition $2.1, \mathbb{Q}\left(\cos \frac{2 \pi}{9}\right)$ is a subfield of Ω, and, by Proposition 2.7 , the Galois group of $\mathbb{Q}\left(\cos \frac{2 \pi}{9}\right)$: \mathbb{Q} is a cyclic group of order 3 (and hence is not a 2-group). Therefore, Ω is NOT flat.

In conclusion, as long as we assume Ω to be flat, n cannot have a prime factor ≥ 5 and n cannot be divisible neither by 2^{4} nor by 3^{2}. Hence, n must have the form $n=2^{\alpha} 3^{\beta}$, with $\alpha \in\{0,1,2,3\}$ and $\beta \in\{0,1\}$. Furthermore, $n \geq 5$ and $n \neq 6$, and it remains that $n \in\{8,12,24\}$.

Corollary 3.2. Let $n=5$ or $n \geq 7$, with $n \neq 8,12,24$. Then, the identity,

$$
\frac{n}{4} \cot \frac{\pi}{n}=\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}
$$

where the r_{i} are nonnegative rational numbers, is impossible.

Proof. Otherwise, we would get $\mathbb{Q}\left(\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}\right)=\mathbb{Q}\left(\frac{n}{4} \cot \frac{\pi}{n}\right)=$ $\mathbb{Q}\left(\cot \frac{\pi}{n}\right)$. But, by Proposition 2.4, $\mathbb{Q}\left(\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}\right)$ is a flat field, whereas by Proposition 3.1, $\mathbb{Q}\left(\cot \frac{\pi}{n}\right)$ is $N O T$ a flat field. We have a contradiction.

4. Proof of Theorem 1.1

- For $n=6$, the answer to (P 1) is POSITIVE: The centroid of the unit hexagon P_{6} is at distance one from each vertex.
- Let $n=5$ or ≥ 7, with $n \neq 8,12,24$. We show that the answer to (P1) is NEGATIVE. For the purpose of gaining a contradiction, assume the existence of a point P in the plane of P_{n} that is at rational distance from the vertices $A_{1}, A_{2}, \ldots, A_{n}$ of P_{n}, written in cyclic order. Set $A_{n+1}=A_{1}$. Introduce the n triangles $T_{i}=P A_{i} A_{i+1}, i=1, \ldots, n$ (note that, up to two triangles, T_{i} might be degenerated). Call "positive" a triangle T_{i} that intersects the interior of P_{n}, or equivalently, such that the intersection of T_{i} with P_{n} has a positive area (such triangle is non-degenerated). Otherwise, call T_{i} "negative". Note that there are always positive triangles T_{i} (if P is interior to P_{n}, then all the T_{i} are positive). Without loss of generality, we may assume that T_{1} is positive. Now, observe the decisive properties:
(i) If we add the areas of all positive triangles T_{i} and then subtract the areas of all negative triangles T_{i} (if any), then we get precisely the area of P_{n}. In other words, we have the following relation:

$$
\operatorname{area}\left(P_{n}\right)=\operatorname{area} T_{1} \pm \operatorname{area} T_{2} \pm \cdots \pm \operatorname{area} T_{n}
$$

(ii) Since every triangle T_{i} has rational sides, Heron's formula $\Delta=$ $\sqrt{s(s-a)(s-b)(s-c)}$ for the area of a triangle shows that the area of every triangle T_{i} has the form $\sqrt{r_{i}}$, for some nonnegative rational number r_{i} (note that $\sqrt{r_{i}}$, which is at most an irrational number of degree 2 , might be rational, even zero, if T_{i} is degenerated).

Combining (i) and (ii), we get that area $\left(P_{n}\right)=\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \sqrt{r_{n}}$.
We leave it as an exercise to check that area $\left(P_{n}\right)=\frac{n}{4} \cot \frac{\pi}{n}$. Finally, we obtain:

$$
\frac{n}{4} \cot \frac{\pi}{n}=\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm \cdots \pm \sqrt{r_{n}}
$$

in contradiction with Corollary 3.2.
Remark 4.1. If P_{n} is not constructible by ruler and compasses $(\varphi(n)$ not a power of 2), then it can be shown that the (algebraic) degree of $\frac{n}{4} \cot \frac{\pi}{n}$ over \mathbb{Q} contains an odd factor, while the degree of $\sqrt{r_{1}} \pm \sqrt{r_{2}} \pm$ $\cdots \pm \sqrt{r_{n}}$ over \mathbb{Q} is a power of 2 . Thus, for such n, the answer to (P1) is negative. However, this will not shorten our general proof: No decisive
information is obtained for the pentagon P_{5}, neither for P_{16} nor for P_{17}, etc. We even do not know if the constructible P_{n} are finite or infinite.

Open Problems.

(1) Solve Problem (P1) in the case $n=8$ (respectively for $n=12$ or $n=24$).
(2) Are there points other than the centroid of the unit hexagon P_{6} that are at rational distance from the vertices of P_{6} ?

Acknowledgments

The author is grateful to the referee and to Professor Michel Waldschmidt for help and support.

References

[1] J. H. J. Almering, Rational quadrilaterals, Indag. Mat. 25 (1963) 192-199.
[2] T. G. Berry, Points at rational distance from the corners of a unit square, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990) 505-529.

Roy Barbara

Lebanese University, Faculty of Science II, Fanar Campus, P.O. Box 90656, Jdeidet El Metn, Lebanon.
Email: roy.math@cyberia.net.lb

[^0]: MSC(2000): Primary: 11R32.
 Received: 10 December 2008, Accepted: 15 December 2008.
 *Corresponding author
 (c) 2009 Iranian Mathematical Society.

