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POINTS AT RATIONAL DISTANCE FROM THE
VERTICES OF A UNIT POLYGON

R. BARBARA

Communicated by Michel Waldschmidt

Abstract. We investigate the existence of a point in the plane of
a unit polygon that is at rational distance from each vertex of the
polygon. A negative answer is obtained in almost all cases.

1. Introduction

If T is a unit equilateral triangle, then there are points in the plane
of T , that are at rational distance from the vertices of T (any vertex
will do). Further, as proved in [1] and [2], the set of such points is dense
in the plane of T . Concerning the unit square S, it is not (yet) known
whether there is a point in the plane of S that is at rational distance
from the corners of S. Results as in [2] suggest a negative answer, but
the problem remains open.

What about the unit pentagon P5 (regular pentagon with unit side)?
Is there a point in the plane of P5 that is at rational distance from the
vertices of P5?

More generally, for n ≥ 3, let Pn denote the unit n−gon (regular
n−gon with unit side). Consider the following question:

(P1) Is there a point in the plane of Pn that is at rational distance
from the vertices of Pn?
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As noted, the answer to (P1) is positive if n = 3, and it turns out
that, for n ≥ 4, the most difficult case is indeed the case n = 4. In this
note, we focus on the cases n ≥ 5 and we prove the result.

Theorem 1.1.
• For n = 5, the answer to (P1) is NEGATIVE.
• For n = 6, the answer to (P1) is POSITIVE.
• For all n ≥ 7, the answer to (P1) is NEGATIVE, except perhaps
when n ∈ {8, 12, 24}.

The key-tool lies in the following observation: When the answer to
(P1) is positive for a given n ≥ 3, then, an identity as

n

4
cot

π

n
=
√

r1 ±
√

r2 ± · · · ±
√

rn

must occur, where the ri are nonnegative rational numbers. But, such
identity is impossible for n = 5 as well as for all n ≥ 7, provided that
n 6= 8, 12, 24.

2. Preliminaries

We start with a simple property.

Proposition 2.1. Let d, m, n be positive integers with d > 1 and n =
dm. Then, Q(cot π

d ) and Q(cos 2π
d ) are subfields of Q(cot π

n).

Proof. • Set x = π
n and y = π

d . Then, y = mx. To see why Q(cot y) ⊂
Q(cot x), or equivalently, cot y ∈ Q(cot x), use induction on m ≥ 1 and
the identity cot(m + 1)x = cot mx·cot x−1

cot mx+cot x . • Next, set t = cot π
d . From

cos 2π
d = t2−1

t2+1
and t ∈ Q(cot π

n), we get, cos 2π
d ∈ Q(cot π

n). Hence,
Q(cos 2π

d ) ⊂ Q(cot π
n). �

Let us call a 2-group, a group in which every element has order 1 or
2. For convenience, we give the following definition.

Definition 2.2. We say that a real field F is “flat” if every subfield E
of F satisfies:

The Galois group G(E : Q) is a 2-group.
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Remark 2.3. Obviously, a subfield of a flat field is flat.

Proposition 2.4. Let r1, r2, . . . , rn be nonnegative rational numbers.
Then,

Q(
√

r1 ±
√

r2 ± · · · ±
√

rn) is a flat field.

Proof. Due to Remark 2.3, it suffices to show that F = Q(
√

r1,√
r2, . . . ,

√
rn) is a flat field. As quickly seen, F : Q is a Galois extension

(of degree 2ν). We first show that G = G(F : Q) is a 2-group. Let σ ∈ G.
Then, σ(

√
ri) ∈ {±√ri}, and so σ ◦ σ(

√
ri) =

√
ri. As an element, x in

F has the form f(
√

r1,
√

r2, . . . ,
√

rn), where f ∈ Q[X1, X2, . . . , Xn]. It
follows easily that σ ◦ σ(x) = x.

Since every 2-group is abelian, then, F : Q is an abelian extension.
Now, let E be any subfield of F . Since F : Q is abelian, then, E : Q is
a Galois extension and the group G(E : Q) is isomorphic to a quotient
of G(F : Q). Since a quotient of a 2-group is a 2-group, we see that
G(E : Q) is a 2-group. �

Lemma 2.5. Let p be a prime number. Suppose that the relation a2 =
p(b2 + c2) holds for some positive rational numbers a, bandc. Then,
Q(

√
a + b

√
p) : Q is a cyclic extension of degree 4.

Proof. • a + b
√

p is NOT a square in Q(
√

p): Otherwise, for some
x, y ∈ Q, a + b

√
p = (x + y

√
p)2. Hence, x2 + py2 = a and 2xy = b.

So, x2 + p
(

b
2x

)2
= a and x2 is a zero of X2 − aX + 1

4pb2 = 0. Since√
a2 − pb2 =

√
pc2 = c

√
p, it follows that x2, and hence x, is irrational,

giving a contradiction.
• Set θ =

√
a + b

√
p. We just proved that θ /∈ Q(

√
p). Moreover

θ2 ∈ Q(
√

p). It follows that θ has (algebraic) degree 2 over Q(
√

p) and
hence θ has degree 4 over Q.

The irreducible polynomial of θ over Q is now clearly

f0 = X4 − 2aX2 + (a− pb2).

The conjugates of θ (over Q) are: ±θ and ±µ, where µ =
√

a− b
√

p.
Note that

√
p = 1

b (θ
2−a) ∈ Q(θ). Now, θµ =

√
a2 − pb2 = c

√
p ∈ Q(θ).

Hence, µ = c
√

p
θ ∈ Q(θ). Therefore, Q(θ) : Q is a Galois extension of

degree 4, and hence its Galois group G = G(Q(θ) : Q) has order 4. Since
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f0 is irreducible over Q, G acting on the roots of f0 is a transitive group.
In particular, for some σ ∈ G, we have,

σ(θ) = µ.

Claim: σ(
√

p) = −√p. Otherwise, we must have σ(
√

p) =
√

p. So,
σ(θ2) = σ(a + b

√
p) = a + b

√
p = θ2 and σ(θ) = ±θ, giving a contradic-

tion. Now, σ(µ) = σ( c
√

p
θ ) = cσ(

√
p)

σ(θ) = −c
√

p
µ = −θ. Finally, σ(−θ) = −µ

and σ(−µ) = θ. Hence, the action of σ on the roots of f0 is the 4-cycle,

(θ, µ,−θ,−µ).

As G has order 4, we conclude that G is cyclic generated by σ. �

Proposition 2.6. Each of Q(cot π
5 ) : Q and Q(cot π

16) : Q is a cyclic
extension of degree 4.

Proof. • We have 5 cot π
5 =

√
25 + 10

√
5. Apply Lemma 2.5 with

p = 5 and (a, b, c) = (25, 10, 5).
• We have cot π

16 = 1 +
√

2 +
√

4 + 2
√

2. It is an exercise to check
that Q(cot π

16) = Q(
√

4 + 2
√

2). Apply Lemma 2.5 with p = 2 and
(a, b, c) = (4, 2, 2). �

Proposition 2.7. Let p ≥ 7 be a prime number. Then, Q(cos 2π
p ) : Q is

a cyclic extension of degree ≥ 3. Furthermore, Q(cos 2π
9 ) : Q is a cyclic

extension of degree 3.

Proof. • Set Ω = Q(ei 2π
p ). It is well-known that Ω : Q is a cyclic

extension of degree p − 1. Now, Q(cos 2π
p ) : Q as a sub-extension of

Ω : Q is a cyclic extension, and it has degree p−1
2 ≥ 3.

• Set Q(ei 2π
9 ). It is well-known that Ω : Q is an abelian extension of

degree ϕ(9) = 6. Now, Q(cos 2π
9 ) : Q as a sub-extension of an abelian

extension is a Galois extension, and so the order of its group must be
equal to its degree, that is, to 1

2ϕ(9) = 3. Since any group of order 3 is
cyclic, the proof is complete. �
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3. The relation
n

4
cot

π

n
=
√

r1 ±
√

r2 ± · · · ± √
rn

Proposition 3.1. Let n ≥ 5, n 6= 6. Set Ω = Q(cot π
n). Suppose that Ω

is a flat field. Then, n ∈ {8, 12, 24}.

Proof. • Suppose first that n is divisible by 5. By Proposition 2.1,
Q(cot π

5 ) is a subfield of Ω, and, by Proposition 2.6, the Galois group of
Q(cot π

5 ) : Q is a cyclic group of order 4 (and hence is not a 2-group).
Therefore, Ω is NOT flat.
• Suppose next that n is divisible by a prime p ≥ 7. By Proposition

2.1, Q(cos 2π
p ) is a subfield of Ω, and, by Proposition 2.7, the Galois

group of Q(cos 2π
p ) : Q is a cyclic group of order ≥ 3 (and hence is not

a 2-group). Therefore, Ω is NOT flat.
• Suppose now that n is divisible by 16. By Proposition 2.1, Q(cot π

16)
is a subfield of Ω, and, by Proposition 2.6, the Galois group of Q(cot π

16) :
Q is a cyclic group of order 4 (and hence is not a 2-group). Therefore,
Ω is NOT flat.
• Suppose finally that n is divisible by 9. By Proposition 2.1, Q(cos 2π

9 )
is a subfield of Ω, and, by Proposition 2.7, the Galois group of Q(cos 2π

9 ) :
Q is a cyclic group of order 3 (and hence is not a 2-group). Therefore,
Ω is NOT flat.

In conclusion, as long as we assume Ω to be flat, n cannot have a prime
factor ≥ 5 and n cannot be divisible neither by 24 nor by 32. Hence,
n must have the form n = 2α3β , with α ∈ {0, 1, 2, 3} and β ∈ {0, 1}.
Furthermore, n ≥ 5 and n 6= 6, and it remains that n ∈ {8, 12, 24}. �

Corollary 3.2. Let n = 5 or n ≥ 7, with n 6= 8, 12, 24. Then, the
identity,

n

4
cot

π

n
=
√

r1 ±
√

r2 ± · · · ±
√

rn,

where the ri are nonnegative rational numbers, is impossible.

Proof. Otherwise, we would get Q(
√

r1±
√

r2±· · ·±
√

rn) = Q(n
4 cot π

n) =
Q(cot π

n). But, by Proposition 2.4, Q(
√

r1 ±
√

r2 ± · · · ± √
rn) is a flat

field, whereas by Proposition 3.1, Q(cot π
n) is NOT a flat field. We have

a contradiction. �
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4. Proof of Theorem 1.1

• For n = 6, the answer to (P1) is POSITIVE: The centroid of the
unit hexagon P6 is at distance one from each vertex.
• Let n = 5 or ≥ 7, with n 6= 8, 12, 24. We show that the answer

to (P1) is NEGATIVE. For the purpose of gaining a contradiction, as-
sume the existence of a point P in the plane of Pn that is at rational
distance from the vertices A1, A2, . . . , An of Pn, written in cyclic order.
Set An+1 = A1. Introduce the n triangles Ti = PAiAi+1, i = 1, . . . , n
(note that, up to two triangles, Ti might be degenerated). Call “posi-
tive” a triangle Ti that intersects the interior of Pn, or equivalently, such
that the intersection of Ti with Pn has a positive area (such triangle is
non-degenerated). Otherwise, call Ti “negative”. Note that there are
always positive triangles Ti (if P is interior to Pn, then all the Ti are
positive). Without loss of generality, we may assume that T1 is positive.
Now, observe the decisive properties:

(i) If we add the areas of all positive triangles Ti and then subtract
the areas of all negative triangles Ti (if any), then we get precisely the
area of Pn. In other words, we have the following relation:

area(Pn) = areaT1 ± areaT2 ± · · · ± areaTn.

(ii) Since every triangle Ti has rational sides, Heron’s formula ∆ =√
s(s− a)(s− b)(s− c) for the area of a triangle shows that the area

of every triangle Ti has the form
√

ri, for some nonnegative rational
number ri (note that

√
ri, which is at most an irrational number of

degree 2, might be rational, even zero, if Ti is degenerated).

Combining (i) and (ii), we get that area(Pn) =
√

r1 ±
√

r2 ± · · ·√rn.
We leave it as an exercise to check that area(Pn) = n

4 cot π
n . Finally,

we obtain:
n

4
cot

π

n
=
√

r1 ±
√

r2 ± · · · ±
√

rn,

in contradiction with Corollary 3.2. �

Remark 4.1. If Pn is not constructible by ruler and compasses (ϕ(n)
not a power of 2), then it can be shown that the (algebraic) degree of
n
4 cot π

n over Q contains an odd factor, while the degree of
√

r1 ±
√

r2 ±
· · ·±√rn over Q is a power of 2. Thus, for such n, the answer to (P1) is
negative. However, this will not shorten our general proof: No decisive
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information is obtained for the pentagon P5, neither for P16 nor for P17,
etc. We even do not know if the constructible Pn are finite or infinite.

Open Problems.
(1) Solve Problem (P1) in the case n = 8 (respectively for n = 12 or
n = 24).
(2) Are there points other than the centroid of the unit hexagon P6 that
are at rational distance from the vertices of P6?
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