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THE TWO PARAMETER QUANTUM GROUPS U, 4(g)
ASSOCIATED TO GENERALIZED KAC-MOODY
ALGEBRA AND THEIR EQUITABLE PRESENTATION

Q. SUN AND H. LI*

Communicated by Omid Ali S. Karamzadeh

ABSTRACT. We construct a family of two parameter quantum grou-
ps Urs(g) associated with a generalized Kac-Moody algebra corre-
sponding to symmetrizable admissible Borcherds Cartan matrix.
We also construct the A-form Ua and the classical limit of U, s(g).
Furthermore, we display the equitable presentation for a subalgebra
U?% (g) of Uy,s(g) and show that this presentation has the attractive
feature that all of its generators act semisimply on finite dimen-
sional irreducible U s(g)-modules associated with the Kac-Moody
algebra.

1. Introduction

Since early 1990s, the two parameter quantum groups and multipa-
rameter quantum groups have drawn much attention both in mathemat-
ics and mathematical physics. Since then, a rich mathematical theory
was developed for these objects and their representations with connec-
tions to many areas of both mathematics and physics. Much work has
been done in this field; for example, see [1, 6, 14, 17]. Recently, Hu and
Pei [8] gave a simpler definition for a class of two parameter quantum
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groups U, s(g) associated with semisimple Lie algebras in terms of the
Euler form (or Ringel form). Asin [1] and [9], these quantum groups also
possess Drinfel’d double structures and the triangular decompositions.
We shall restrict our attention to this kind of two parameter quantum
groups.

In [10], Ito et al. introduced the equitable presentation for the one
parameter quantum group Uy (sl,). Terwilliger in [19] displayed an anal-
ogous equitable presentation for one parameter quantum group Uy(g),
where g is a symmetrizable Kac-Moody algebra. In the usual Chevellay
presentation for U,(g), the various generators play different roles, while
in the equitable presentation, the generators are on a more equal foot-
ing. For g = sly, the equitable presentation has generators X*! Y, Z
with relations XX ' = X 1X =1,

XY —q¢ 'YX
q—q!

QYZ—qtzy
q—q!

aZX —q X7

1.
q—q 1

L, L,

More importantly, they are related to Koornwinder’s twisted primi-
tive elements [16, 15]. And this presentation has the attractive feature
that all of its generators act semisimply on finite dimensional irreducible
U,(g)-modules associated with an affine Kac-Moody algebra g, as proved
in [2]. In 1988, Borcherds gave the concept of generalized Kac-Moody
algebra [4]. For such an algebra g, one parameter quantum deformation
U,(g) was constructed in [13]. Here, we give the definition of two param-
eter quantum groups U, (g) associated with a generalized Kac-Moody
algebra and prove that U, s(g) also has a triangular decomposition. We
also present the A-form Up and the classical limit of U, s(g), and char-
acterize the properties of Up. Furthermore, we give an equitable pre-
sentation for a subalgebra Uf?; (g) of Uy s(g) and show that the equitable
generators of U/ (g) act semisimply on finite dimensional irreducible
Uf,’; (g)-modules when g is a Kac-Moody algebra.

The remainder of our work is organized as follows. In section 2, we
modify the definition of two parameter quantum groups associated with
semisimple Lie algebras so as to give the definition of two parameter
quantum groups U, s(g) associated with generalized Kac-Moody alge-
bra g. We also give the A-form Ua and the classical limit of U, s(g).
Moreover, some properties are stated. The equitable presentation for a
subalgebra UY7 (g) of Uy s(g) appears in the final section.
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2. The two parameter quantum groups U, ;(g) and its A-forms
Ua

In this section, we will modify the Definition 2.1 in [8] to a class of two
parameter quantum groups U, s(g) associated with a generalized Kac-
Moody algebra g. We also introduce the A-form Ua and the classical
limit of two parameter groups U, (g).

Let us begin with some preliminaries on the generalized Kac-Moody
algebra. Put I = {1, 2,..., n} or I = N, the natural number set. A
real square matrix A = (a;;); jer is called a Borcherds-Cartan matrix if
it satisfies:

(a) aj; =2 or a; <0, forall i € I;

(b) ai; <0,if i # j;

(¢) aij € Z, if a;; = 2;

(d) ai; = 0 if and only if a;; = 0.

A Borcherds-Cartan matrix A = (a;j); jer is called admissible if it sat-
isfies:

(a') ajj € Z, for all 4,5 € I;

(b') ai; € 2Z \ {0}, for all i € I;

(c’) there exists a diagonal matrix D = diag(t; € Nsg|i € I) such
that DA is symmetric and t;a;; € Z \ {0}, for all ¢ € I.

Here, we assume that A is a symmetrizable admissible Borcherds Car-
tan matrix. Then, we explain some result associated with the generalized
Kac-Moody algebra g. Suppose P' = (®;c1Zh;) @ (BicrZd;), and let
H = C ®z PY be the complex vector space with basis {h;, d;};c;. For
i € I, define o; € H* by setting c;(h;) = aj; and a;(d;) = d;5;, where H*
is the dual space of H. Furthermore, the weight lattice is defined to be

P={\eH | \NP") C Z}.

Let Il = {a; | @ € I} be the set of simple roots, Q@ = @;c; Za; root
lattice, QT = @®;c;/Na; be the positive root lattice, A be the weight
lattice, and AT be the the set of dominant weights. Let ® be the set of
roots and ®* be the set of positive roots.

Suppose Q(r, s) is the rational functions field in two variables r and
s over Q. Set r; = rti| s; = sl for i € I. Now, let K D Q(r,s) be a
field and (rs_l)i € K, for some m € Z,, such that mA C @, for the
possibly smallest positive integer m. We always assume that rs~! is not
a root of unity. Let (-,-) and (-, ->, be two bilinear forms defined on the
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root lattice @@ by

/

(i,5) = (o, o) = tid

and
tiaij7 Z<,77
<i7j>:<ai>aj>: Ly, ZZ]?
0, i>j

For A € A, we linearly extend the bilinear forms (-,-) and <',~>/ to
A x A such that (/\,z'>/ = %Z] aj<j,z')/ and (A7) = %Zjelaj(j,i),
for A =1 >_jaja; with aj € Z.

Definition 2.1. The two parameter quantum groups Uy s(g) associated
with a generalized Kac-Moody algebra g is a unital associative K-algebra

Urs(g) with generators e;, f;, w;tl, w;ﬂ, v;tl, U;il (1 € I) and the
following relations:
(2.1) wiilej;l _ w;tlw;tl’ w;:tlw;:tl _ w;ﬂ:lw;:tl’
(2.2) wiﬂw;-il = w;-ilwzil, wiﬂwfl = w;ilwﬁl =1,
viilvjil _ vjilviily Uiilv;il _ v;ﬂviﬂ,
v;ilv;ﬂ _ U;':I:IU;:H? UEHUZ‘ZFI _ ,U;:i:lv;q:l — 1,

!/ ! 7 / / / /
CL)Z"UJ’ = 'Uj(.(.)i, wﬂ)j = ijia (.UZ"Uj = iji, wl"l}j == /iji,

(2.3) wiejw;  =1rs ej, wiejw, =T sWe;,

L ) g o gl = ptind) gl
Loy T = J,t —{&J . . — 8] I, .
vieju; =1 s €j, V€5V r sV e,

(2.4) Wifjwi_l _ ,rf(j,i)s(i,ﬁfj’ w;fjw;_l — 7,<i,j>87<j,z’>fj7

’ ! ’ /
1 _ (i) (ig T =1 (ig) o~
vifivrt =7 (3:4) g(ird) Fiy vifjo; b =1 7 g—{3:) s

/

Wi — W,
eifj — fiei = 51']'7; —,
i i
1—ay;
1—a;; n(n—1) .. ..
S (1) et
n=0 TiS;

170,”'771 n . . .
xe; eje; =0, if a; =2, i # j,
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1—a;;
1 — Ugq n(n— .. ..
(25) Z (—1)” < na J > ) (rigi_l)%r”Ovz)S—N(l,ﬁ

n=0 Tis;

<fIfif T =0, ifan =2, i # .
eiej — 7'<j’i>s_<i’j>ejei =0, ifa;; =0,
fifj =rs7 U0 fifi = 0, if aij = 0.

According to the definition of U, s(g), we can verify that U, s(g) is a
Hopf algebra with the comultiplication, the counit and the antipode as
follows:

M) =t o ut, AEE) = & o,

41 1 o 4] 41 41 4l
Aw, ) =w Quw,, Aly,7)=v" ®v,

Ale)=e;@1+wi®e;, A(fi)=1® fi+ fiow,

ele)) =e(fi) =0, e(w) =e(w™) =) = e(v;™) =1,

(2
S(ei) = —w; les, S(fi) = —fiw;
i) =Tl S =w™

Let Ut (respectively U, ) be the subalgebra of U, s(g) generated by
the elements e; (respectively f;), for all ¢ € I, Ur07 s the subalgebra of
Uys(g) with generators wi™, w;:Fl, vi ! and v;jFl, for all 7 € I, and Uf?’:
(respectively Uf;) be the subalgebra of U, s(g) generated by the ele-
L EL EL L

/ ’ .
ments e;, Wi, w7t vf! and v T (respectively fi, wit, W vFt v,
for alli € I.

Remark 2.2. (i) Let r = q, s = q '. Then, Uq’qq(g)/(w; —wih v, —

i
Ui_1> is isomorphic to the one parameter quantum group U,(g) defined
in [13].
(ii) Let r = ¢*, s = 1. Then Ung’l is isomorphic to the Ringel-Hall
algebra of a quiver described in [18].

Similar to the case of one parameter quantum group Uq(g) in [12] and
[13], we have the following results.
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Proposition 2.3. UY, ~ UY, ® Ut,, UY, ~ U, ® U, Uss(g) ~
U, U, @ UL,

Foriel, ce Z, ne Z>g, r,s € Q, define

/ n nc—k+1 ! c—k+1
{ Wi, Wy, € } _ H Wil — WS
- k_ .k ’
n i TP — S

k=1 L
’ no o c—k+1 _ / _c—k+1
{ Vi, U;, C } _ H Uil U;S;
- k k )
n i Ty TS

_n
{n}i = -

L ()it = {ndifn — i (2041

B e e Ey ALt

With {0};! = 1.

Lemma 2.4. {n+m}; = r"{n}; + s'{m}; = r{m}; + s"{n}:.
Proof. 1t is a straight forward computation. O

By routine calculations, we have

! n ’
{ Wi, Wy, € } — H 1 (T‘f_k—"_l { Wiy C‘lui’ 0 }
" i i ki i

twfe—k+ 1}i),

% ’U;a (& _ . 1 c—k+1 %% v;’v 0
{ n }7, - kl;[l {k}i (Ti { 1 i

to{e—k+ 1}i).

LetA:Q[r, s, r71, 3*1,{1 1€l n>0]

TL}Z'7

Definition 2.5. The A-subalgebras Uy of the two parameter groups
Ur.s(g) with 1 generated by e;, fi, wiﬂ, w;il, viﬂ, v;ﬂ, { Yis 1{“ 0 }
i

and { wis Wi, 0 } (i € 1), is called the A-form of Uy, s(g).
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We denote by U4 (respectively Uy ), the A-subalgebra of U, s(g) with
1 generated by e; (respectively f;), for all i € I, and by U3, the A-

subalgebra of U, s(g) with 1 generated by w;"™!, w;il, vl U;i17 {vi,lvi, 0}
i
and { i 0 } (iel).
i

Lemma 2.6. For ¢, j € I, c € Z, and n € Z>(, we have

! /
. Wi, CL),L-, C _ G55 Q45 WZ', W,L'7 C — ai]’ . .
(2.6) ¢ { n i =r;"s; n . €, <7,

’ ’
W;, W;, C Wi, W;, C— Qg5
27 e (2 19 — (2 1) 1] e 7/> .
( ) J n ; n ; 7 I

n—1 ’
_ Wi, w;, —2t
eiff = flei+ 7Y { v } :
t=0 (
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Proof. We only check the identities (2.6), (2.7) and (2.8), since the other
identities can be shown analogously or directly.

S owi, wy, e
(2.9) €;j { n }@

- 1 c— Wi, w/'a 0 !
= ejH e <7“l- k1 { 1’ } +wi{c—k+1}i)
k=1 4

ol
- Hl {k}:

k

/
c—k+1 Wi — W o )
(7}' ej— +ejwi{c—k+ 1}Z>
T S;

3l

1 c—k+1 Wz‘rf<j’i>s<i’j> — w;r”vﬁs*@vi)
- H {k} (ri r; — S; ej
k=1 v i i

+T<i7j)s—<j7i){c —k+ 1}M;€j>'

By the definition of (7, j), we obtain

o Si 1<
/,"_<]7Z>S<7/7]> e r; Si, Z:],
—Qj . .
7 ) 1> ]7
and
Q;j . .
N Lo U<
r<7’7]>8_<j72> — 7“@'5; , Z = j7
—Qjq . .
s; 7, 1> 7.

Therefore, if i < j, then the right part of (2.9) is equal to

LI Wi — W, st
— ;i 3 . _ . . ’
(2.10) | | (rf k 131» kB + 7 ktlZd Ti w;
el {,IC}Z Ty — 84 r, — S84

+{c—k+ 1}i7“?ijw;)ej

n ’
1 W — W /
_ c—k+1 _Qij *1 ) c—k+1y5 .
= | | (7"1' Sy Ty {aij biw;
el i — 5%

(ki r
+He—k+ 1}irf”w;)ej.
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By Lemma 2.4, the right hand side of (2.10) is equal to

n ’
55 <CkH?“”<+&—aw—k+rh%ﬂﬁw0€j
- i

Ty — S

a"L az c— k*(llJrlw - / /
= J J H {k}Z < J TZ ., + {C — Qj5 — k+ 1}1&11) &

!
a;j Qg Wi, W;, C— Q45
— 'I"«”S~” { (3 79 () } 6]‘-
7 (2 n .
(2

If 4 > j, then the right hand side of (2.9) is equal to

- Wi — w, r Mg
_ — . . — S. /
N =
L (kY T — 8 T — S
+{c—k+1}s; )ej
n 1 /
o c—k—a;;+1Wi — W; c—k+1 !
- H {k} (Ti r— s - {_aij}iwz
k=1 1 1 K3

+{c—k+ 1}isi_aijw;>ej.

Using Lemma 2.4, the right hand side of (2.11) is equal to

1 c—k—a;;+1W; —
[] S A S PR Y
k=1 {k}i <Tl Ti =8 +{C " e ) K

!
_ Wi, wi, c—aij e
n ; J

If i = j, then the right part of (2.9) is equal to

n

n / -1 -1

1 . g _po7l

(2.12) IIH&( B e A
2

T, — S Ty — 84
+{c—k+ l}insi_lw;)ei

n ’
1 Wi — W,
_ c—k_, * i c—k_—1 . 1
- H {k}s (7"1- Si s — % ri Vs {2t +ris;
k=1

X{C —k+ 1}2‘(,0;)61‘.
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In view of Lemma 2.4, the right hand side of (2.12) is equal to

n /
1 —k— w; — W; ’
TiS;i | I i (rf 17?; - sZ +{c—k— l}iwi) e
k=1

L e—2
w;, W:, C
7'1‘81’{ v 171 } €;.
i

Thus, we have shown that the identities (2.6), (2.7) and (2.8) hold. O

As an immediate consequence of Lemma 2.6, we get the triangular
decomposition of the algebra U, .

Theorem 2.7. Uy ~ U, ® Ug ® Uj.

A U, s(g)-module V" is said to be diagonalizable, if it admits a weight
space decomposition V" = @y pV;\" * where

V;’S = {veV"|wv= i) g={ai Ay, w;v = p{@id) glhai)y,
!/ / / /
A} g—(ai,A "oy — (@i, A) (N ;
v = rhei) (@A) g gy = plasd) ghea) o, g e T,

A diagonalizable U, s(g)-module V"* is a highest weight module with
highest weight A € P, if there is a nonzero vector vy € V"™ satisfy-
ing (i) ejuy = 0, for all @ € I, and (ii) wjv = rM@ds=(@Ny iy =
(@) ghai) gy gy = pha) g=lanh)y, v = ptend) s0en)y (i € 1,
and (iii) V™® = U, s(g)vx. The vector vy is called a highest weight vec-
tor. Note that by Theorem 2.7, condition (iii) can be replaced by (iv)
Vs = UES(Q)UA.

Assume A € P and let V" be a highest weight module over U, 4(g)
with highest weight A and highest weight vector vy. Define the A-form
VA of V™ to be the Ua-submodule of V™%, generated by vy, that is,
VA = UAU)\.

Proposition 2.8. V4 = Ujvy.

Proof. According to Theorem 2.7, every element pu of Up can be ex-
pressed as a sum of monomials of the form p~plut, where i € UQ, put €
Ujf. By definition, ytvy =0, unless ut € A. Fori € I, ¢ € Z, n € Z>,

we have
! mwr W8
Wi, W;, € il %oy
vy = | | )
{ n S F_ gk A
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ﬁ ricik+1fr<Avo‘i>S_<O‘i7>‘> — Sfik+15<>‘vai>7ﬂ_<ai7>‘>
PR sk
7
—k+1+a+b

C
= (risi)™® H z 2 Uy,
(2

where a = M b= %, which implies that { Wi, :)"’ ¢ } vy €
i

’

Av). Similarly, { Yis Z’” ¢ } vy € Avy. Thus, p~pOutvy € Ap~ vy C
i
Upvy. It follows that VA = Upva. [l

Let J be the ideal of A = Q [7@ s, r7t s ﬁ, 1el, n> O], gen-
erated by r —1, s —1. Then there is an isomorphism of fields A /J = Q,
given by f+ J — f(1,1), for f € A. Define U = Q ®a Ua. Then,
U=Up/JUA.

Consider the natural maps Ux — Ua/JUA = U. We note that
r — 1, s = 1. The passage from Ua to U under these maps is re-
ferred to as taking the classical limit. We denote by @ the images of
the elements u € Ux. We also denote by ﬁ, and ciz for the images of

{ Wi, iui’o } and { Yir fi’o } , Tespectively.
i i

Lemma 2.9. For the algebra U, we have w; = u;;, U; = 1;;, foralli e 1.

Proof. For Up, we have w; — w; = (r; — ) { Wi, iui’o } . Letting
~ o Ji

r—1, s > 1, we get W; = w;- in U. Analogously, v; = v; in U. g

Let R be the ideal of U, generated by the elements J;—1, 0;,—1 (i € I),
and set Uy = U/R. We call that U; is the classical limit of U, 4(g).
By abuse of notation, we will also use 4 € U; for the image of the

element u € Up in Uy, HZ and JZ for the images of { Wi, ;)i’ 0 } and
i

1

by Lemma 2.9. Hence, U; is generated by the elements é;, fi, h;, d;.
Let U(g) be the universal enveloping algebra of the Kac-Moody alge-
bra g with the generators e;, fi, h; and d; (i € I) (see [13]).

/
v, v;,0 . . ~ " ~ ~r .
{ b } in Uy, respectively. Then, w; = w, = w; = w, = 1 in Uy
i
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Theorem 2.10. U; = U(g) as Hopf algebras.

P'roof, Since [ﬂ ﬂ} = O, for i, j € I, we have [Hl,h}] = 0.

ri—8i ) T;—S;j

Similarly, [h;, d;] = [di,d;] = 0. Due to (2.3),

€j — ej
T, — S5 ry — 8;
—{J 2, o — 2, —\J? .
_ (1 —r— gl J>)wlej (1 — i) =0 ))wie]
Ty — 84
1+4+a;; 1+4+a;; 14a;; /
o oS Y (risi —r; ) (wi — w;)
= —FV——we; + €.
(’I"l' — si)risi ('fi - Si)risi

Letting r — 1, s — 1, we have ﬁzéj — e}h} = a;;¢; in Uy. Analogously,
in Uy we have
hifi = Fihi = —aij fy, di€; — é;d; = 63565, dif5 — fidi = —bi; fj.
Hence, we have
A . o
Z (-1)"—€;— =0, if a;; =2 and @ # 7,
m! 7 n!
m+n=1-a;;

for all 4, j € I. That is, the generators of Uy satisfy the defining relations
of U(g). Put v : Uy — U(g), where (&) = ei, p(fi) = fi, v(di) = d;
and ¢(h;) = h;, for all ¢ € I. Tt is easy to check that ¢ is an isomorphism

of algebras. According to the comultiplication, counit and antipode of
Ur.s(g), we have in Uy,

wi, w;,O .
st o= {
Vi, v;,O . Vi, U;,O ‘ / V4, v;,O
A({ 1 }Z) { 1 }Z QUi+ v; ® { 1 }i,
0 !
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Hence, by tensoring these mappings with the identity map on A/J, we
get mapping on U, which we denote by A, &, S, giving U a Hopf algebra
structure. In particular, in the algebra U;, we have

A(h}) :]’;i®1+1®]{i, A(Ji):Ji®1+l®Ji7
A@)=éaol+log Af)=fiol+laf;,
and §(X) = 0, §(X) = —X, for any X = ¢, f;, ﬁz‘,fz@' (i € I).
Therefore, the algebra U; has a Hopf algebra structure (A, £, S). It
follows that ¢ : Uy — U(g) is an isomorphism of Hopf algebras. O

3. The equitable presentation for the subalgebra of two
parameter quantum groups U, ;(g) associated with the
Kac-Moody algebra g

We now concentrate on the subalgebra U,I,’; of U, s(g) generated by

o F o and v;il, for all ¢ € I. From the

i 0 R
+1 "il +1

Definition 2.1, we can see that the generators f;, w; ", w,™, v;

the elements f;, w
v; and
v;il of Uﬁ’; play very different roles. In the following, we will introduce
a presentation for U’ whose generators are on a more equal footing.
The presentation has the attractive feature that all of its generators
act semisimply on finite dimensional irreducible U’ -modules associated
with a Kac-Moody algebras g. This result for the case of one parameter
quantum group has been proved in [2].

Theorem 3.1. The K-algebra Uf,; is isomorphic to the unital associa-
tive K-algebra U with generators Xiil, X;il, Yiil, Yi/j[l7 Zi (i el
and the following relations:

Xiil, X;-il, YljEl and Y,;il are commutative with each other ,
XZ':thfl — X;:EIXZ/$1 — 1’ }/7::‘:1}/;¥1 _ }/i/:l:l)/;/¥1 — 17

(3.1) X, Z;— s Uz, x) = (1 — r0 s 00 X[ X,
YiZy — 90 W0 Ziy, = (1 — ¢ G 5li) )Yiyj'7

Yi/Zj — pld) =) iji’ = (1 — (9

i

87<]77’> )}/7;/)/;7
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1—a;;
1 —ay k l—a;;—k
(3.2) (—1)* < L > M7k 7,2,
k=0 p
—ai;
"— ” ’ .. e i i .
= XZ a]X]’ H (1 _pl/,a<j7z>8 <1/7]>> , Zf 72 #]7
1=0

k(k—1) .. .. B . _
where cgf) = (risfl) 7 kU =kGd) for § £ j, and p = TiS; L

An isomorphism ¢ : U"” — U,l,’; is defined as follows:
XZ-il — wiﬂ,
X;:I:l N w;:tl’
YA ol
Yi’il N U;:I:l,
Zi — w; + firi — si).
The inverse of @ is 1 : Uf?; — U
w;tl — Xl-il,
w;:ﬁ:l N X;:H’
il YL
U;:I:l N Yi’:tl’
;
fi — (ZZ — Xl)(T‘Z — Si)_l.

Before we give the proof of Theorem 3.1, we first give some useful
identities.

Lemma 3.2 (11). For integer m >k > 1,

m — m ok m+1 .
[k:L_ i [k—lL, = [ k L. (<i<n).
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Lemma 3.3 (7). For integer m > 0, and indeterminate A,

i(_l)k [7;; Li A= kio(_l)k (7]? >q%qf(k_m) Ak

k=0
m—1
= TLa-ra ),
s=0

By induction and relation (2.4), we have
’ "N n k gk, 'n—k
(3.3) (wi + (s — Si)fi) => | & L, (= s) " fiw T
=0 ;8]

Now, we give the proof of Theorem 3.1.

Proof. We only prove that ¢ keeps the equality (3.2) (it is easy to check
that ¢ preserves the other identities). We denote p = msi_l, h =
rUi) s=() and g = 9 s=0) . By the definition of (i, j), we obtain

(3.4) gh =p"9 (i # j).
Applying ¢ to the left hand side of (3.2), we obtain

l-a;;

1— aj; i
o[ S (1) diggziet
k=0 P

to be equal to

1_aij i 4 k(k—1 ’
(3.5) > (-1 ( 1 —k%ﬂ ) P B filrs — si)F
p

k=0
X (wj + fi(rj — 7)) (w; + fi(ri — 50)) % F.

Observe that (3.5) is equal to

1—ay;
1-— Q; i k(k—1) ’ ’
CED S ) N S %
k=0 p

x(w; + fz(n — Si))lfaijfk
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plus 7; — s; times

1_aij — Q; 5 kk 1
(3.7) > (=t (1 k) TR )+ filri — i)
p

k=0
X fi(w; + filr — ;) 2k,

Applying ¢ to the right hand side of (3.2), we get

—a;;

(3.8) o | X x0T (1 _ plr<j,i>5—<z',j>)
=0

—aij

=0

For i # j, we prove that the expressions (3.6), (3.8) are equal and (3.7)
is equal to 0. Explicitly, by identity (3.3), (3.6) is equal to
(3.9)

lijilaik ( kaij )p <S>p <1—a2j—k>p

k=0 n=0 t=0

77+t "l—a;;—k—t

hk Flw, "k=n ' ft
Taking the account of relation (2.4), (3.8) is equal to
(3.10)

1552131% ( k%.)p <I;>p <1—a,;j—k>p

k=0 n=0 t=0

X (i — 8;)

k(k 1) "N—a;; —t— /
Xp ht—l-k t(k— 77)( Si)n+tfl?7+twi Qi ij'

In the above equality, let v = k + ¢ and v =n+t. We find that for

’L]vl

0 <v <1 — ayj, the coefficient of fw, w; in (3.10) is equal to

(3.11) ( b >p (ri — 52)"

times

(3.12) S () b

t=0
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times
o9 1—-a
— Q45 wZou —u
(3.13) > (=1 < " > n,
U=v P

For v = 0, the expression (3.12) is equal to 1; for v # 0, by Lemma 3.3,
the expression (3.12) is equal to

v—1
H(l _pl—v+l) —0.
=0
When v =0, (3.11) is equal to 1 and (3.13) is equal to
1—a;;
y 1-— i u2—u
(3.14) 3 (-1 < L > TR
u=0 p
According to Lemma 3.3, (3.14) is equal to
—aij
[Ta-»n).
1=0

Hence, (3.8) is equal to (3.9). Subsequently, we show that (3.7) is equal
to zero. By identity (3.3), (3.7) is equal to
(3. 15)

EEE () () (5,

k=0 n=0 t=0

X (1 — )77“
Using (2.4), (3.15) is equal to
(3.16)

EET (7). () (),

k=0 n=0 t=0

hkfn e~ "f fhw -aij—h—t

k(k—1) _ 1 ij—t—
p 2 hkgk p t(k— 77)( sl)”*'tf”f] agj—t=n

Then, by identity (3.4), (3.16) is equal to
(3.17)

1§J2k:1azuz ( aij> (k) <1—aij—k>
k=0 7=0 =0 k P "y t P

ka(k 1) hnp(t+a”)(k ) (7" s )n+tf77f] 1 aij— tfn.
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In the expression (3.17), let n +t =v,k —n =wu. Then, 0 <v <1 — ay

and the coefficient of fffjff_”wgl_a”_v in (3.17) is equal to

(3.18)  (=1)" ( o )p ( , >p (ri — s;)'p A7

times
1_aij —-v .. 2uv+2a; i utu—u
(319) Z (_1)u ( 1 a;] v > p]f-
u=0 p

For v = 1 — a;j, the expression (3.19) is equal to 1 and for v # 1 — a;j,
by Lemma 3.3, the expression (3.19) is equal to

—UV—a4;

[T @-pwteth=o.

1=0
When v = 1 — a;j5, (3.18) is equal to

772*77

1—a;; o
(=1)" < na] ) (ri — ;) ""ip = W
p

Therefore, (3.17) is equal to

l—aij
P 1—a; n(n=1) l1—a;;—
(320) (T‘i—Si)l @ij E (—1)77 < n ZJ) po2 h"7f;7f]fZ @i =1
p

n=0
By identity (2.5), (3.3) is equal to zero, that is, (3.7) is equal to zero.
Hence, we have proved that ¢ preserves the equality (3.2). The proof of
1) being a homomorphism from U® (g) to U® is similar to the proof of
. One routinely verifies that these maps are inverses. O

Definition 3.4. The presentation given in the above theorem is called
the equitable presentation for Uf; We call Xiﬂ, Xl-il, Yiil, Y, 1 and
Z; (i € I) the equitable generators.

For notational convenience, we identify the copy of Uf?; given in Def-

inition 2.1 with the copy of U®" given in Theorem 3.1, via the isomor-
phism given in Theorem 3.1.

The Hopf algebra structure of Uff’; looks as follows in terms of the
equitable generators.
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Theorem 3.5. The comultiplication A satisfies
AX:) = X; ® X, A(X]) = X; © X,
AY) =YY, A(Y,) =Y, ®Y],
AZ)=(Zi—1) X, +1® Z.

The counit € satisfies

e(X;)=1,eX;)=1, eYs) =1, e(Y;) =1, e(Z;) = 1.
The antipode S satisfies

S(Xi) =X, S(X;) =X,7Y, (V) =Y,

(2
/

SY)H)=Y,"Y, S(Z)=1+X,7' - Z:X;7 L.

(2 1 3

Proof. One readily checks that the theorem holds. O
Corollary 3.6. The following holds in Uf?;, for all 4 #£ j:

129 1—a

— Q; ; 1 k(k—1 . .
> ( ke ) | ) sy
k=0 TS
xZkf 717"~ 0.

Proof. This is proved in Theorem 3.1 for identity (3.7). O

When g is a Kac-Moody algebra, the corresponding generators of
two parameter quantum groups U, s(g) are only e;, fi, wiﬂ, w;il (i =
1, 2,..., n) and the equitable generators of Uf; are only Xiil, X;il, Z;.
In what follows, we assume that g is a Kac-Moody algebra. We will show
that the equitable generators X!, X;il and Z; (1 =1, 2,..., n)of Uf};
act semisimply on finite dimensional irreducible U?,-module V when g
is a Kac-Moody algebra. In fact, this also holds, when g is a generalized
Kac-Moody algebra. For convenience, we only consider the case when g
is a Kac-Moody algebra. In the following, we set Iy = {i =1, 2,..., n}.

Definition 3.7. Let V be a finite dimensional irreducible Uff; -module.
We say v € V is a weight vector, if v is a common eigenvector, for
Wil wE (i€ Io).

[ 7

Lemma 3.8. Let V be a finite dimensional irreducible UTZ’; -module.
Then, V has a basis consisting of weight vectors.
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Proof. Since wj, w; (1 € Ip) commuting with each other on V, there
exists v € V such that v is a common eigenvector for w;, w; (1 € Ip).
Observing identity (2.4), we know that fju (1 < j < n) are weight
vectors. Clearly, UTb;U is a nonzero Uf’;—submodule of V' with a basis
consisting of weight vectors. Since V is an irreducible Uﬁ;—module, we

obtain UTb;U =V, which implies that V has a basis consisting of weight
vectors. ]

Lemma 3.9. Let V be a finite dimensional irreducible UTI’; -module.
Then, the action of w;, w; (i € Ip) on V is semisimple. Moreover, the
eigenvalues of w; on 'V are contained in the set {byr{®)s~ 4 |a € Q},

a € Q}, for some

while eigenvalues ofw; are contained in {b;r_<i70‘>s<°"i)
bi, b, € K*.

Proof. Using Lemma 3.8 and (2.4), the results follow easily. O

Let V be a finite dimensional irreducible Uf;; -module. Choose b;, b; €

K* such that the eigenvalues of w;(respectively w;) are contained in the
set {bir{®9 s~ (0| € Q} (respectively {b;r— (45| € Q}). Since V
is finite dimensional, there exist integers m; M; (i = 1,2), with m; <
M;, (i =1, 2), such that the set of distinct eigenvalues of w; on V is
contained in

1 ,—Mm2 mi+1_—ma—1 My ,—Ma>
{bir]" s, ™2, b} s; I T i Pl S

and the set of distinct eigenvalues of w; on V is contained in

! —mo m1 ! —mo—1 _mi+1 ! —Ms My
{byry s, b S; o by s

Choose m;, M;, (i =1,2), so that M; —m; and Ma — mgo are minimal.
Let

My —mq My —my
ei: y Vi = 2 ;

2

Mi+mq _ Motmg , _ Mo+mg  Mj+my
] 2 2 ) 2 2
a; = b;r; s; , a; =b;r; s;

Then, the eigenvalues of w; are contained in the set

—0; i 9,41
{air; s}, ar; %ths

vi—1 0; —i
i i » 5 }7

© 55Ty

while the eigenvalues of w; are contained in the set

! . ! .
Yi . —0; vi—1
{ar)is; 7, a;r]™ s, )

0,41 i 6
D gy s
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Let a = (a1, az2,--- ,ay), a = (a/l,a;,~~ ,a;l), 0 = (01,09,---,0,) and
v = (71,72, " ). Then, the sequence a,a € K" are called the

types of V, and 6,y € (%Z)" are called the shapes of V. We can

change the variables and choose ¢ = (e1,€9,--- ,&,) € {—1,1}", € =
(1,65, ,e,) € {—1,1}" such that the types of V are e € {—1,1}", &’ €
{=1,1}".

In what follows, we fix a finite dimensional irreducible Uf?; -module V'
of types ¢ € {—1,1}", ¢ € {~1,1}" and shapes of 6,7 € (3Z)". By a
decomposition of V' we mean a sequence of subspaces of V' whose direct
sum is V.

Lemma 3.10. For 1 < i < n, there exists a decomposition {U;(l,n)}
(0<1<20;, 0<n<2y)of V satisfying:

(1) Ui(l,n) ={v eV |wv= eirﬁ_e"szﬁnv, wiv = 5;7“;”7”52_9%}, for
0<1<20;, 0<n< 2y,

(ZZ) UZ'(O,O) 75 0 and UZ'(QGZ', 2%‘) 75 0.
Moreover, X;, X; are semisimple on V.

Proof. Clearly, X;, X; act semisimple on V. According to the definition
of type and shape in the above, the eigenvalues of X; are contained in
the set

—0; v —0;+1

vi—1 0; .—i
{ear; 0s]", ar; 5" 's; '),

) ET
while the eigenvalues of X; are contained in the set

0; —0;+1 L =i i
, - ceegr st

vi—1
3 S 119

Iy — ’
{Eiri S5 &1 i ’

For any 0 <1 < 26; and 0 < n < 2v;, if 5ir§_9i8?ifn is an eigenvalue of
X;, and E;ri%_"sé*ei is an eigenvalue of X;, let U;(l,n) be the eigenspace
associated with these eigenvalues. For other cases, let U;(l,n) = 0.
Then, (7) holds. Since 6;,; are choosen to be minimal, both r;” i s]" and
rfi s; /" are eigenvalues of X;, while r;“si_ei and r; " sfi are eigenvalues
of X;. Therefore, we get (ii). O

For convenience, we define U;(l,n) # 0, for 0 <1 < 26;, 0 <n < 2,
and otherwise, U;(l,n) = 0.

Lemma 3.11. For 1 < i <n, let the decomposition {U;(l,n)} (0 <1<
20;, 0 <n < 2v;) be as in Lemma 3.10. Then, for 1 <j <n, 0 <1 <26,
and 0 < n < 2v;, we have
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(Z) wJUZ(l777) = Ul(l777)7 W;Ul(l7n) = Ul(l7n)

Proof. According to the identies (2.1) and (2.2), we have w;U;(l,n) =
Ui(l,m), w;-Ui(l,n) = U;(l,n). For each v € U;(l,n), by (2.4), we have

=g 2isy tiaij*tiszi<j tiaij+tz‘,r.7l;_0i szﬁnfjv

1=0;—(3 ;s tiaij+1) vi—n+(32, < tiai+1)

=r, s; fiv,

and
! (4.3) o= t) £, (4,3) o= (3:8) o i (l—b5
w; fjv =\ sTVY fagw = Bl sT e s T i

_ E;TZK]. tiaijtti o= 3 ;s tiai *tz‘r;ﬁ*nsi—& fjv

o it (i tiai 1) 1=0i— (3 tiaz‘jﬂ)f'

=&r; 55 JU-
Therefore, f]UZ(l, T}) - Uz(l - Zi>j Qi5 — 1, n—- Zi<j Qj5 — 1) ]

Lemma 3.12. For 1 < i < n, let the decomposition {U;(I,n)} (0 <[ <
20;, 0 < n < 2v;) be as in Lemma 3.10. Then, for 1 < j <n, 0 <1 <26,
and 0 < n < 2+;, we have

(Zi — el s DU, ) C U1 — 1,9 - 1).
Proof. Using Z; = w; + fi(ri — s;), for any v € U(l,7),
(wi + filri — si) — s;rzr"sé_gil)v =(ri—s)fiveU(l—1,n—1).
Thus, (Z; — el s D U(1,n) C U;(1 — 1,1 — 1). O

Theorem 3.13. For 1 < i < n, there exists a decomposition {V;(I,n)}
(0<1<260;, 0<n<2y)of V such that

(321)  (Zi—ex? s DVi(l,n) =0 (0 <1< 26;, 0<n < 2v).
Moreover, Z; acts semisimple on V.

Proof. By Lemma 3.12, we have

v 1—0;
Mo<i<20,, 0<n<2y, (Zi —&r ™ "s; "'1I) =0
. / . 0. .. .
on V. Since ¢, ”sé % are mutually distinct, we obtain that Z; acts

semisimple on V' with eigenvalues contained in the set {5;7“;”7775&_01' |0 <
1 <20, 0 <n <2y} SetVi(l,n) = {v e V|Zv = er) s},
Hence, the result follows. O
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For convenience, we define V;(l,n) # 0, for 0 <1< 26;, 0 <n < 2~;,
and otherwise, V;(l,n) = 0.

Proposition 3.14. For 1 < i < n, let the decomposition {V;({,n)} (0 <
1 <26;, 0 <n<2v) beasin Theorem 3.13. Then, for 0 <[ < 26;, 0 <
n < 2v;, we have

() (X" = e s Vi) C Vil = 1, = 1),

(17) f;Vi(l,m) C ®_a’]V(l —m+1+3, saij, n—m+14+3, . ai;).
Proof. (i) Using (3.1), we obtain

(3.22) (Z:X; 7 = eirisy X, 20 — T+ sy T Vi(l,m) = 0.
According to (3.21),

(3.23) ZVi(l,n) = el 01 ).

Combining (3.22) and (3.23), the following holds:

0 = (ZZ-X' 67’7#1 gl 9_1le_1 Elr" vighi=lg, + 18, TN Vi(l,m)

= (Zi—ep)it s 9—11)()(’ L gyl Qz DVi(l,n).

3 i ’L

Therefore,

1 i bi—
(X7 — el
(i7) Choosing any v € V;(l,7),

by Corollary 3.6, we obtain

1—ai; .

S -1t < L ) | (s )T (0 sty
k=0 "%

XZkfj 1 alj—k

1—ai; e "

= Z (—1)k < h i,J ) (risi_l)%(ru’”f(i’ﬁ)k
k=0 T'LSZ-_I
><szfj(E;Tgi_nséfei)lfairkv

— (—1)17%(r(j,i>87(i,j>)1faij(Tisi_l)%

—aij
o H / 'yz n+m—1— ona”sl 0; m+1+zl<jaw)fjv

%

= 0.
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Then, the result follows by using (3.21). O

Remark 3.15. Let Uf,’; be the subalgebra of U, s(g) generated by the

/
+1 w':I:l F

1 41 . ,
elements e;, w; ", w,”, v,/ andv,~, for alli € Iy. We can also give

v
an equitable presentation for Uf;.
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