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LOGARITHMIC AND IDENTRIC MEANS
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Abstract. We find the greatest values α1 and α2, and the least
values β1 and β2 such that the inequalities α1C(a, b)+(1−α1)H(a, b)
< L(a, b) < β1C(a, b)+(1−β1)H(a, b) and α2C(a, b)+(1−α2)H(a, b)
< I(a, b) < β2C(a, b) + (1 − β2)H(a, b) hold for all a, b > 0 with
a 6= b. Here, C(a, b), H(a, b), L(a, b), and I(a, b) are the centroidal,
harmonic, logarithmic, and identric means of two positive numbers
a and b, respectively.

1. Introduction

The logarithmic mean L(a, b)and identric mean I(a, b) of two positive
real numbers a and b with a 6= b are defined by

L(a, b) =
a− b

log a− log b
and I(a, b) =

1

e

(
aa

bb

)1/(a−b)
,

respectively. In the recent past, both mean values have been the subject
of intensively research. In particular, many remarkable inequalities for
L(a, b) and I(a, b) can be found in the literature [1, 3, 4, 6, 8, 14, 15, 17,
19–24, 26–28, 30–34]. In [22, 24, 34] inequalities between the logarithmic
mean, identric mean, and classical arithmetic-geometric mean of Gauss
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are proved. The ratio of identric means leads to the weighted geometric
mean

I(a2, b2)

I(a, b)
= (aabb)1/(a+b)

which has been investigated in [20, 21, 27]. It might be surprising that
the logarithmic mean has applications in physics, economics, and even
in meteorology [10,16,18]. In [10] the authors study a variant of Jensen’s
functional equation involving the logarithmic mean, which appears in a
heat conduction problem. A reprsentation of L(a, b) as an infinite prod-
uct and an iterative algorithm for computing the logarithmic mean as
the common limit of two sequences of special geometric and arithmetic
means are given in [8]. In [7,9] it is shown that L(a, b) can be expressed
in terms of Gauss’ hypergeometric function 2F1. And, in [9] the authors
prove that the reciprocal of the logarithmic mean is strictly totally pos-
itive, that is, every n× n determinant with elements 1/L(ai, bi), where
0 < a1 < a2 < . . . < an and 0 < b1 < b2 < . . . < bn, is positive for all
n ≥ 1.

The one-parameter mean value family

Lr(a, b) =

(
ar − br

r(a− b)

)1/(r−1)
(r 6= 0, 1; a, b > 0, a 6= b)

is known as Stolarsky’s generalized logarithmic mean [11–13,29,32]. The
limit relations

lim
r→0

Lr(a, b) = L(a, b) and lim
r→1

Lr(a, b) = I(a, b)

reveal that Lr(a, b) can be defined for all real parameters r, such that
the logarithmic and identric means become members of this family. His-
torical remarks on these and related mean values can be found in [12].

The integral formula

Lr(a, b) = exp

(
1

r − 1

∫ r

1

1

t
log I(at, bt)dt

)
(see [32]), shows that the identric mean plays a “central role” [12, p. 209]
in Lr(a, b). The arithmetic and geometric means of a and b, A(a, b) =

(a + b)/2 and G(a, b) =
√
ab also belong to Lr(a, b). Indeed, we have

L−1(a, b) = G(a, b) and L2(a, b) = A(a, b). Since r → Lr(a, b)(a 6= b) is
strictly increasing on R (see [32]), we obtain

(1.1) G(a, b) < L(a, b) < I(a, b) < A(a, b) (a, b > 0, a 6= b).



Bounds of centroidal and harmonic means 261

It is shown that these inequalities can be applied to get some inter-
esting results on Euler’s number e. In [8,12,19] the authors present the
bounds for logarithmic and identric means in terms of geometric and
arithmetic means as follows:

3
√
G2(a, b)A(a, b) < L(a, b) <

2G(a, b) +A(a, b)

3
and

I(a, b) >
G(a, b) + 2A(a, b)

3
for all a, b > 0 with a 6= b.

The following companion of (1.1) provides inequalities for the geo-
metric and arithmetic means of L and I. A proof can be found in [4].√
G(a, b)A(a, b) <

√
L(a, b)I(a, b) <

1

2
(L(a, b)+I(a, b)) <

1

2
(G(a, b)+A(a, b))

for all a, b > 0 with a 6= b.
The power mean of order r of the positive real numbers a and b is

defined by

Mr(a, b) =

(
ar + br

2

)1/r

(r 6= 0) and M0(a, b) =
√
ab.

The main properties of these means are given in [5]. In particular,
the function r → Mr(a, b) (a 6= b) is continuous and strictly increasing
on R. Many authors discussed the relationship of certain means to Mr.
The following sharp bounds for L, I, (LI)1/2, and (L+ I)/2 in terms of
power means are proved in [3, 4, 6, 14,15,17,33]:

M0(a, b) < L(a, b) < M1/3(a, b), M2/3(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) <
√
L(a, b)I(a, b) < M1/2(a, b) and

1

2
(L(a, b)+I(a, b)) < M1/2(a, b)

for all a, b > 0 with a 6= b.
Alzer and Qiu [2] prove that inequalities

αA(a, b) + (1− α)G(a, b) < I(a, b) < βA(a, b) + (1− β)G(a, b)

and

Mc(a, b) <
1

2
(L(a, b) + I(a, b))

hold for all a, b > 0 with a 6= b if and only if α ≤ 2/3, β ≥ 2/e =
0.73575 · · · and c ≤ log 2/(1 + log 2) = 0.40938 · · · .
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Let H(a, b) = 2ab/(a+ b), and C(a, b) = 2(a2 + ab+ b2)/[3(a+ b)] be
the harmonic, and centroidal means of two positive real numbers a and
b. Then it is well-known that

(1.2) H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b) < C(a, b)

for a 6= b.
It is the aim of this paper to answer the questions: what are the

greatest values α1 and α2, and the least values β1 and β2 such that the
inequalities

α1C(a, b) + (1− α1)H(a, b) < L(a, b) < β1C(a, b) + (1− β1)H(a, b)

and

α2C(a, b) + (1− α2)H(a, b) < I(a, b) < β2C(a, b) + (1− β2)H(a, b)

hold for all a, b > 0 with a 6= b.

2. Lemmas

In order to establish our main results we need three lemmas, which
we present them in this section.

Lemma 2.1. Let f(t) = (t2 + 4t+ 1) log t− 3t2 + 3. Then f(t) > 0 for
t > 1.

Proof. Simple computation leads to

f(1) = 0,(2.1)

f ′(t) = 2(t+ 2) log t− 5t+
1

t
+ 4,

f ′(1) = 0,(2.2)

f ′′(t) = 2 log t+
4

t
− 1

t2
− 3,

f ′′(1) = 0,(2.3)

f ′′′(t) =
2(t− 1)2

t3
> 0(2.4)

for t > 1
Therefore, Lemma 2.1 follows from inequality (2.4) and equations

(2.1)-(2.3). �

Lemma 2.2. Let g(t) = −[t3 + (2e− 1)t2 + (2e− 1)t+ 1] log t+ 2(e−
1)t3 + 2(3− e)t2−2(3− e)t−2(e−1). Then there exists λ > 1 such that
g(t) > 0 for t ∈ (1, λ) and g(t) < 0 for t ∈ (λ,+∞).
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Proof. Simple computation leads to

(2.5) g(1) = 0,

(2.6) lim
t→+∞

g(t) = −∞,

g′(t) = −[3t2 +2(2e−1)t+(2e−1)] log t+(6e−7)t2− (6e−13)t− 1

t
−5,

(2.7) g′(1) = 0,

(2.8) lim
t→+∞

g′(t) = −∞,

g′′(t) = −2[3t+ (2e− 1)] log t+ (12e− 17)t− 2e− 1

t
+

1

t2
− 5(2e− 3),

(2.9) g′′(1) = 0,

(2.10) lim
t→+∞

g′′(t) = −∞,

g′′′(t) = −6 log t− 2(2e− 1)

t
+

2e− 1

t2
− 2

t3
+ 12e− 23,

(2.11) g′′′(1) = 2(5e− 12) > 0,

(2.12) lim
t→+∞

g′′′(t) = −∞

and

(2.13) g(4)(t) = − 6

t4
(t− 1)

[
t2
(

1− 2(e− 2)

3t

)
+ 1

]
< 0

for t > 1.
From inequality (2.13) we know that g′′′(t) is strictly decreasing in

[1,+∞), then inequality (2.11) and equation (2.12) lead to the conclu-
sion that there exists λ1 > 1 such that g′′′(t) > 0 for t ∈ [1, λ1) and
g′′′(t) < 0 for t ∈ (λ1,+∞). Therefore, g′′(t) is strictly increasing in
[1, λ1] and strictly decreasing in [λ1,+∞).

It follows from equations (2.9) and (2.10) together with the piecewise
monotonicity of g′′(t) that there exists λ2 > λ1 > 1 such that g′(t) is
strictly increasing in [1, λ2] and strictly decreasing in [λ2,+∞).

From equations (2.7) and (2.8) together with the piecewise mono-
tonicity of g′(t) we clearly see that there exists λ3 > λ2 > 1 such that
g(t) is strictly increasing in [1, λ3] and strictly decreasing in [λ3,+∞).

Therefore, Lemma 2.2 follows from equations (2.5) and (2.6) together
with the piecewise monotonicity of g(t). �
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Lemma 2.3. Let h(t) = (5t3 +19t2 +19t+5) log t−14t3−6t2 +6t+14.
Then h(t) > 0 for t > 1.

Proof. Simple computation leads to

(2.14) h(1) = 0,

h′(t) = (15t2 + 38t+ 19) log t− 37t2 + 7t+
5

t
+ 25,

(2.15) h′(1) = 0,

h′′(t) = 2(15t+ 19) log t− 59t+
19

t
− 5

t2
+ 45,

(2.16) h′′(1) = 0,

h′′′(t) = 30 log t+
38

t
− 19

t2
+

10

t3
− 29,

(2.17) h′′′(1) = 0

and

(2.18) h(4)(t) =
2

t4
(t− 1)(15t2 − 4t+ 15) > 0

for t > 1.
Therefore, Lemma 2.3 follows from equations (2.14)-(2.17) and in-

equality (2.18). �

3. Main results

Theorem 3.1. The double inequality

(3.1) α1C(a, b)+(1−α1)H(a, b) < L(a, b) < β1C(a, b)+(1−β1)H(a, b)

holds for all a, b > 0 with a 6= b if and only if α1 ≤ 0 and β1 ≥ 1/2.

Proof. We first prove that inequality

(3.2) L(a, b) <
1

2
C(a, b) +

1

2
H(a, b)

hold for all a, b > 0 with a 6= b.
Without loss of generality, we assume that a > b. Let t = a/b > 1,

then

(3.3)
1

2
C(a, b) +

1

2
H(a, b)− L(a, b) =

bf(t)

3(t+ 1) log t
,

where f(t) is defined as in Lemma 2.1.
Therefore, inequality (3.2) follows from Lemma 2.1 and equation (3.3).
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From inequalities (1.2) and (3.2) we clearly see that inequality (3.1)
holds for all a, b > 0 with a 6= b if α1 ≤ 0 and β1 ≥ 1/2.

Next, we prove that α1 = 0 and β1 = 1/2 are the best possible
parameters such that inequality (3.1) holds for all a, b > 0 with a 6= b.

For any α1 > 0, β1 < 1/2 and x > 0 one has

(3.4) lim
x→+∞

α1C(1, x) + (1− α1)H(1, x)

L(1, x)
= +∞

and

(3.5) L(1, 1 + x)− β1C(1, 1 + x)− (1− β1)H(1, 1 + x)

=
x

log(x+ 1)
− β1(1 + x+ x2/3)

1 + x/2
− (1− β1)

1 + x

1 + x/2
.

Letting x→ 0 and making use of Taylor expansion we get

x

log(x+ 1)
− β1(1 + x+ x2/3)

1 + x/2
− (1− β1)

1 + x

1 + x/2
(3.6)

= [1 + x/2− x2/12 + o(x2)]− β1[1 + x/2 + x2/12 + o(x2)]

− (1− β1)[1 + x/2− x2/4 + o(x2)]

=
1

3

(
1

2
− β1

)
x2 + o(x2).

Equations (3.4)-(3.6) imply that for any α1 > 0 and β1 < 1/2 there
exist X1 = X1(α1) > 1 and δ1 = δ1(β1) > 0, such that α1C(1, x) + (1−
α1)H(1, x) > L(1, x) for x ∈ (X1,+∞) and L(1, 1 + x) > β1C(1, 1 +
x) + (1− β1)H(1, 1 + x) for x ∈ (0, δ1). �

Theorem 3.2. The double inequality

(3.7) α2C(a, b)+(1−α2)H(a, b) < I(a, b) < β2C(a, b)+(1−β2)H(a, b)

holds for all a, b > 0 with a 6= b if and only if α2 ≤ 3/(2e) = 0.551819 · · ·
and β2 ≥ 5/8.

Proof. We first prove that inequalities

(3.8) I(a, b) >
3

2e
C(a, b) + (1− 3

2e
)H(a, b)

and

(3.9) I(a, b) <
5

8
C(a, b) +

3

8
H(a, b)

hold for all a, b > 0 with a 6= b.
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Without loss of generality, we assume that a > b. Let t = a/b > 1,
then
(3.10)

I(a, b)−
[

3

2e
C(a, b) + (1− 3

2e
)H(a, b)

]
=
b

e

[
t

t
t−1 − t2 + 2(e− 1)t+ 1

t+ 1

]
and

(3.11)
5

8
C(a, b) +

3

8
H(a, b)− I(a, b) = b

[
5t2 + 14t+ 5

12(t+ 1)
− 1

e
t

t
t−1

]
.

Let

(3.12) G(t) =
t log t

t− 1
− log[t2 + 2(e− 1)t+ 1] + log(t+ 1)

and

(3.13) H(t) = log(5t2 + 14t+ 5)− log(t+ 1)− t

t− 1
log t+ 1− log 12.

Then simple computations lead to

(3.14) lim
t→1

G(t) = lim
t→+∞

G(t) = 0,

(3.15) G′(t) =
g(t)

(t+ 1)(t− 1)2[t2 + 2(e− 1)t+ 1])
,

(3.16) lim
t→1

H(t) = 0

and

(3.17) H ′(t) =
h(t)

(t+ 1)(t− 1)2[5t2 + 14t+ 5]
,

where g(t) and h(t) are defined as in Lemmas 2.2 and 2.3, respectively.
From Lemma 2.2 and equation (3.15) we know that there exists λ > 1

such that G(t) is strictly increasing in (1, λ] and strictly decreasing in
[λ,+∞). Then equation (3.14) leads to the conclusion that

(3.18) G(t) > 0

for t > 1.
Therefore, inequality (3.8) follows from equations (3.10) and (3.12)

together with inequality (3.18).
It follows from equations (3.16) and (3.17) together with Lemma 2.3

that

(3.19) H(t) > 0
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for t > 1.
Therefore, inequality (3.9) follows from equations (3.11) and (3.13)

together with inequality (3.19).
Next, we prove that α2 = 3/(2e) and β2 = 5/8 are the best possible

parameters such that inequality (3.7) holds for all a, b > 0 with a 6= b.
For any α2 > 3/(2e), β2 < 5/8 and x > 0 one has

(3.20) lim
x→+∞

α2C(1, x) + (1− α2)H(1, x)

I(1, x)
=

2e

3
α2 > 1

and

(3.21) I(1, 1 + x)− [β2C(1, 1 + x) + (1− β2)H(1, 1 + x)]

=
1

e
(1 + x) (1+x)/x − β2(1 + x+ x2/3)

1 + x/2
− (1− β2)

1 + x

1 + x/2
.

Letting x→ 0 and making use of Taylor expansion we get

1

e
(1 + x) (1+x)/x − β2(1 + x+ x2/3)

1 + x/2
− (1− β2)

1 + x

1 + x/2
(3.22)

= [1 + x/2− x2/24 + o(x2)]− β2[1 + x/2 + x2/12 + o(x2)]

− (1− β2)[1 + x/2− x2/4 + o(x2)]

=
1

3
(5/8− β2)x2 + o(x2).

Inequality (3.20) and equations (3.21) and (3.22) imply that for any
α2 > 3/(2e) and β2 < 5/8 there exists X2 = X2(α2) > 1 and δ2 =
δ2(β2) > 0, such that α2C(1, x) + (1 − α2)H(1, x) > I(1, x) for x ∈
(X2,+∞) and I(1, 1 + x) > β2C(1, 1 + x) + (1 − β2)H(1, 1 + x) for
x ∈ (0, δ2). �
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[20] J. Sándor and I. Raşa, Inequalities for certain means in two arguments, Nieuw

Arch. Wisk. (4) 15 (1997), no. 1-2, 51–55.
[21] J. Sándor, On certain identities for means, Studia Univ. Babeş-Bolyai Math. 38
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