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QUASIRECOGNITION BY THE PRIME GRAPH OF

L3(q) WHERE 3 < q < 100

S. S. SALEHI AMIRI, A. R. KHALILI ASBOEI, A. IRANMANESH∗

AND A. TEHRANIAN

Communicated by Ali Reza Ashrafi

Abstract. Let G be a finite group. We construct the prime graph
of G, which is denoted by Γ(G) as follows: the vertex set of this
graph is the prime divisors of |G| and two distinct vertices p and
q are joined by an edge if and only if G contains an element of
order pq. In this paper, we determine finite groups G with Γ(G) =
Γ(L3(q)), 2 ≤ q < 100 and prove that if q 6= 2, 3, then L3(q) is
quasirecognizable by the prime graph, i.e., if G is a finite group
with the same prime graph as the finite simple group L3(q), then G
has a unique non-Abelian composition factor isomorphic to L3(q).
As a consequence of our results we prove that the simple group
L3(4) is recognizable and the simple groups L3(7) and L3(9) are
2−recognizable by the prime graph.

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divi-
sors of n. If G is a finite group, then π(|G|) is denoted by π(G). We
construct the prime graph of G, which is denoted by Γ(G), as follows:
the vertex set is π(G) and two distinct vertices p and p′ are joined by
an edge if and only if G has an element of order pp′ ( we write p ∼ p′).
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Let s(G) be the number of connected components of Γ(G) and let π1,
π2, . . . , πs(G) be the connected components of Γ(G). If 2 ∈ π(G), then
we always suppose 2 ∈ π1.
The spectrum of a finite group G, which is denoted by πe(G) is the set of
its element orders. It is clear that the set πe(G) is closed and partially
ordered by divisibility, and hence it is uniquely determined by µ(G), the
subset of its maximal elements.
A subset X of the vertices of a graph is called an independent set if
the induced subgraph on X has no edge. Let G be a finite group and
r ∈ π(G). We denote by ρ(G), some independent set of vertices in Γ(G)
with the maximal number of elements. Also some independent set of
vertices in Γ(G) containing r with the maximal number of elements is
denoted by ρ(r,G). Also let t(G) = |ρ(G)| and t(r,G) = |ρ(r,G)|.
Let G be a non-Abelian finite simple group. The numbers t(G) and
t(r,G) have been determined in [34] and [36]. Also for every finite non-
Abelian simple group, we use these references for adjacency of vertices
in a prime graph of the group.
A finite group G is called recognizable by spectrum, if every finite group
H with πe(G) = πe(H) is isomorphic to G. A finite simple non-Abelian
group P is called quasirecognizable by spectrum, if each finite group H
with πe(P ) = πe(H) has a unique non-Abelian composition factor iso-
morphic to P [2].
A finite group G is called recognizable by prime graph, if every finite
group H with Γ(G) = Γ(H) is isomorphic to G. A finite simple non-
Abelian group P is called quasirecognizable by prime graph, if each finite
group H with Γ(P ) = Γ(H) has a unique nonabelian composition factor
isomorphic to P [13].
We denote by k(Γ(G)) the number of isomorphism classes of the fi-
nite groups H satisfying Γ(G) = Γ(H). A finite group G is called
n−recognizable by prime graph if k(Γ(G)) = n [16].
We note that quasirecognition by prime graph implies quasirecognition
by spectrum, but the converse is not true in general. Also quasirecogni-
tion by prime graph is in general harder to establish than quasirecogni-
tion by spectrum, since some methods fail in the former case.

The structure of finite groups G such that Γ(G) is not connected has
been determined by Gruenberg and Kegel (1975). Moreover it has been
proved that s(G) ≤ 6 and all the simple groups G such that Γ(G) is not
connected have been described in [9, 24, 37].
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We denote by (a, b) the greatest common divisor of positive integers a
and b. If G is a finite group, then we denote by Pq a Sylow q−subgroup
of G.
Let π be a set of prime numbers and let G be a finite π−group. Then
G has unique largest normal π−subgroup, which is denoted by Oπ(G)
and is called the π−radical of G. In fact, Oπ(G) contains every normal
π−subgroup of G. All further unexplained notations are standard and
is referred to [4].

Finite groups G satisfying Γ(G) = Γ(H) have been determined, in cases
where H is one of the following groups: a sporadic simple group [7]; a
CIT simple group [12]; PSL(2, q), where q = pα < 100 [11]; PSL(2, p),
where p > 3 is a prime [14]; G2(7), 2G2(q), where q = 32n+1 > 3, (n > 0)
[13, 38]; PSL(2, q) [16, 17]; L16(2) [18]., Bp(3), where p is an odd prime
[30].

Also, the quasirecognizability of the following simple non-Abelian groups
by their prime graphs have been obtained: Alternating group Ap where
p and p − 2 are primes [15]., L9(2) [19]., L10(2) [20]., 2F4(q) where
q = 22m+1 for some m ≥ 1 [1]., 2Dp(3) where p = 2n + 1 ≥ 5 is a prime
[3]., Cn(2), where n 6= 3 is odd [5], Ln(2) and Un(2), where n ≥ 17 [21].

In this paper we determine finite groups G such that Γ(G) = Γ(L3(q)),
where q is a prime power and 2 ≤ q < 100 and conclude that if
3 < q < 100, then L3(q) is quasirecognizable by prime graph. As a
consequence of our results we prove that the simple group L3(4) is rec-
ognizable by prime graph and the simple groups L3(7) and L3(9) are
2−recognizable by prime graph. In fact the main theorem of our paper
is as follow:

Main Theorem. Let q = pα be a prime power, L = L3(q), where
2 ≤ q < 100 and G be a finite group satisfying Γ(G) = Γ(L). Then G is
one of the groups appeared in the second column of Table 1.
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2. Preliminaries

We first quote some remarks and lemmas that are used in deducing
the main theorem of this paper.

Remark 2.1. Let G be a finite group and K be a normal subgroup of
G. If p ∼ q in Γ(G/K), then p ∼ q in Γ(G). In fact if xK ∈ G/K has
order pq, then there is a power of x which has order pq.

Remark 2.2. We know that µ(L2(q))={p, (q − 1)/d, (q + 1)/d}, where
q = pα and d = (2, q−1), [8] (page. 213). By [28], Γ(L3(q)) has two con-
nected components: π1(G) = π(p(q2 − 1)) and π2(G) = π((q3 − 1)/(q −
1)(3, q − 1)). Also the set of element orders L3(q), can be found in [26];
we have:

µ(L3(q)) =

{
{q − 1, 13p(q − 1), 13(q2 − 1), 13(q2 + q + 1)} if d = 3,

{p(q − 1), (q2 − 1), (q2 + q + 1)} if d = 1,
where q = pα is odd number and d = (3, q − 1), and
µ(L3(2

n)) ={
{4, 2n − 1, 23(2n − 1), 13(22n − 1), 13(22n + 2n + 1)} if d = 3,
{4, 2(2n − 1), 22n − 1, 22n + 2n + 1} if d = 1,

where d = (3, 2n − 1).

Remark 2.3. Let p be a prime number and (a, p) = 1. Let k ≥ 1 be
the smallest positive integer such that ak ≡ 1(mod p). Then k is called
the order of a with respect to p and we denote k by ordp(a). Obviously
by the Fermat little theorem ordp(a) | (p− 1). Also, if an ≡ 1 (mod p),
then ordp(a) | n.

Lemma 2.4. [31] Let G be a nonsolvable complement of a Frobenius
group. Then G has a normal subgroup G0=SL(2, 5) × Z, such that
|G : G0| ≤ 2, π(Z)∩{2, 3, 5}=1 and the Sylow subgroups of Z are cyclic.

Lemma 2.5. [33] Let G be a finite Frobenius group with kernel K and
complement C. Then

(1) K is nilpotent,
(2) The Sylow p−subgroups of C are cyclic if p > 2 and cyclic or

generalized quaternion if p = 2.

Using [37, Theorem A], we can conclude the following lemma.

Lemma 2.6. A finite group G with disconnected prime graph Γ(G) sat-
isfies one of the following conditions:

(1) s(G) = 2, G = KC is a Frobenius group with kernel K and
complement C, and connected components of Γ(G) are π(K) and
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π(C). Moreover, K is nilpotent, hence π(K) is a complete graph.
If C is solvable, then Γ(C) is complete; otherwise, 2, 3, 5 ∈ π(G)
and π(C) can be obtained from the complete graph with vertex
set π(C) by removing the edge 3 ∼ 5.

(2) s(G) = 2 and G is a 2-Frobenius group, i.e., G = ABC, where
A and AB are normal subgroups of G, B is a normal subgroup
of BC, and AB and BC are Frobenius groups. The connected
components of Γ(G) are complete graphs Γ(AC) and Γ(B).

(3) There exists a finite non-Abelian simple group S such that S ≤
G = G/K ≤ Aut(S), where K is a nilpotent normal subgroup
of G; furthermore K and G/S are trivial or π1−groups, s(S) ≥
s(G), and for every 2 ≤ i ≤ s(G), there exists 2 ≤ j ≤ s(S) such
that πi(G) = πj(S).

Remark 2.7. A 2-Frobenius group is solvable and the above lemma
implies that t(G) = 1 or 2 for a solvable group.

Lemma 2.8. [35] Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2.
Then the followings hold:

(1) There exists a finite non-Abelian simple group S such that S ≤
G = G/K ≤ Aut(S) for a maximal normal soluble subgroup K
of G.

(2) For every independent subset ρ of π(G) with |ρ| ≥ 3 at most
one prime in ρ divides the product |K|.|G/S|. In particular,
t(S) ≥ t(G)− 1.

(3) One of the followings holds:
(a) every prime r ∈ π(G) nonadjacent to 2 in Γ(G) does not di-

vide the product |K|.|G/S|; in particular, t(2, S) ≥ t(2, G);
(b) there exists a prime r ∈ π(K) nonadjacent to 2 in Γ(G); in

which case t(G) = 3, t(2, G) = 2, and S ∼= A7 or A1(q) for
some odd q.

Remark 2.9. Note that the condition of Lemma 2.8, implies an insol-
ubility of G, and so by the Feit-Thompson Theorem, it is not necessary
to assume in the main theorem, that G is of even order.

Lemma 2.10. [30] Let G be a finite group such that s(G) ≥ 2 and
K be a normal π1-subgroup of G. Let S be a finite simple group such
that S ≤ G/K and S is not a π1-group. If K 6= 1, and S contains a
Frobenius subgroup with kernel F and a cyclic complement C such that
(|F |, |K|) = 1, then r|C| ∈ πe(G), for every prime divisor r of |K|.
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Lemma 2.11. [22] Let G be a group with disconnected prime graph,
such that t(G) ≥ 3. Also let K be the maximal normal solvable subgroup
of G. Then K is a nilpotent π1−group.

Lemma 2.12. [39] There are a total of 1972 isomorphism types of finite
non-Abelian simple groups G such that all prime divisors of |G| do not
exceed 1000.

The groups obtained by Lemma 2.12, are listed in Tables 1−4 of [39].
Let t > 1 and n be natural numbers and let ε ∈ {+,−}. If there
exists a prime that divides tn − (ε1)n and does not divide ti − (ε1)i for
1 ≤ i < n, then we denote this prime by t[εn] and call it a primitive
divisor of tn − (ε1)n. A primitive divisor need not be exist, nor be
unique. The following lemma generalizes Zsigmondy’s theorem:

Lemma 2.13. [29] Let t, n > 1 be natural numbers. Then, for all
ε ∈ {+,−}, there exists a primitive divisor t[εn] of tn − (ε1)n except
in the following cases:

(1) ε = +, n = 6, t = 2;
(2) ε = +, n = 2 and t = 2l − 1 for some l ≥ 2;
(3) ε = −, n = 3, t = 2;
(4) ε = −, n = 2 and t = 2l + 1 for some l ≥ 0.

In the next lemma we write Lεn(q), where ε ∈ {+,−}, L+
n (q) = Ln(q)

and L−n (q) = Un(q).

Lemma 2.14. [29] Suppose that Lεn(q) is a simple group for some nat-
ural numbers n and q and that the primitive prime divisor r = q[εn] of
qn− (ε1)n exists. Then Lεn(q) contains a Frobenius subgroup whose ker-
nel is of order r and cyclic complement is of order n. Moreover, if n is
odd or q is even, then such a Frobenius subgroup exists in SLεn(q).

Lemma 2.15. Let q be a prime power and L = L3(q), where 2 < q <
100. If S is a non-Abelian simple group such that Γ(S) is a subgraph of
Γ(L) and there exists i ≥ 2 such that π2(L) = πi(S), then L ∼= S.

Proof. For every finite non-Abelian simple group, we use [34] and [36] for
adjacency of vertices in a prime graph of the group. If q 6= 41, 59, 71, 73, 89
and 97, then π(L3(q)) ⊆ {2, 3, ..., 997}. So the result follows from
Lemma 2.12. Now suppose that q = 89 and S is a non-Abelian sim-
ple group such that {2, 8011} ⊆ π(S) ⊆ {2, 3, 5, 11, 89, 8011}. According
to the classification of finite simple groups we consider the following
cases:
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case 1. S is isomorphic to an alternating group. Since 8011 | |S| and
7 - |S|, we get a contradiction.
case 2. S is isomorphic to a sporadic simple group. Since 8011 - |S|,
we get a contradiction.
case 3. S is isomorphic to a simple group of Lie type. We use the list
of orders of these groups given in [4]. If S is defined over the field Fq,
where q = pm, then since p | |S| we must have p = 2, 3, 5, 11, 89 or 8011.
We note that π(S) contains all prime divisors of q2 − 1, except 2B2(q),
where q = 22m+1.

If p = 8011, then 2003 ∈ π(80112 − 1) ⊆ π(q2 − 1), which is a contra-
diction. So p 6= 8011.

If p = 2, then ord3(2) = 2, ord5(2) = 4, ord11(2) = 10, ord89(2) = 11
and ord8011(2) = 2670. Thus max {ordr(2) | r ∈ {3, 5, 11, 89, 8011}} =
2670 and we have 2m ≤ 2670, for otherwise 22m − 1 = q2 − 1 would
be divisible by a prime not in π(S) by Lemma 2.13. Hence m ≤ 1335.
Since 23 − 1 = 7, then 3 - m. The relations 24 + 1 = 17, 25 − 1 = 31,
27−1 = 127, 17 | 28−1, 73 | 29−1, 31 | 210−1, 23 | 211−1 and Lemma
2.13 imply that m ∈ {1, 2, 1335}. By using the GAP-Program 22670 − 1
is not prime and there exists a prime k 6∈ {2, 3, 5, 11, 89, 8011} such that
k | 22670− 1. So m = 1 or 2. It is easy to check there is no possibility in
this case.

If p = 3, then ord2(3) = 1, ord5(3) = 4, ord11(3) = 5, ord89(3) = 88
and ord8011(3) = 2670. Thus max {ordr(3) | r ∈ {2, 5, 11, 89, 8011}} =
2670. As above, m does not exceed 1335. Furthermore, 3 - m, since
otherwise 13 ∈ π(33 − 1) ⊆ π(3m − 1). The relations 34 + 1 = 2 × 41,
61 | 35 +1, 23 | 388−1 and Lemma 2.13 imply that m ∈ {1, 2, 1335}. By
using the GAP-Program 32670 − 1 is not prime and there exists a prime
k 6∈ {2, 3, 5, 11, 89, 8011} such that k | 32670 − 1. So m = 1 or 2. It is
easy to check that there is no possibility in this case as well.

If p = 5, then max {ordr(5) | r ∈ {2, 3, 11, 89, 8011}} = 445. So
similar to the previous case there is no possibility in this case as well.

If p = 11, then max {ordr(11) | r ∈ {2, 3, 5, 89, 8011}} = 890. So
m ≤ 445. It is easy to check that there is no possibility in this case, too.

If p = 89, then max {ordr(89) | r ∈ {2, 3, 5, 11, 8011}} = 3. So m = 1
and the only possibility is S ∼= L3(89).

Similarly, we get our results for q = 41, 59, 71, 73 and 97. �

Corollary 2.16. Let L = L3(q), where 2 < q < 100 and let S be a finite
simple group such that Γ(S) = Γ(L). Then S is isomorphic to L.
Proof. Straightforward from Lemma 2.15.
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Remark 2.17. If S is a finite simple group such that Γ(S) = Γ(L3(2)),
then S isomorphic to L3(2) or L2(8), by Lemma 2.12.

In the following we give the structure of the group of outer automor-
phisms of the group Ln(q).

Lemma 2.18. [23] Let n ≥ 3, and q = pf . Then Out(Ln(q)) ∼=
Z(n, q−1) : Zf : Z2.

By the above Lemma, we conclude that Out(L3(q)) ∼= Z(3, q−1) : Zf :
Z2.

Lemma 2.19. [25] Let L3(q) < G ≤ Aut(L3(q)), then Γ(G) is not
connected if and only if G/L3(q) ∼= 〈γ〉 × 〈β〉, where γ and β are field
and graph automorphism, respectively.

By the above lemma, if (3, q − 1) = 3, then L3(q).3 has a connected
prime graph. So Γ(L3(q).3) is not subgraph of Γ(L3(q)).

Lemma 2.20. [32] Let G be a finite group and let K a nontrivial normal
p-subgroup, for some prime p, and set L = G/K. Suppose that L con-
tains an element x of order m coprime to p such that 〈ϕ|〈x〉, 1|〈x〉〉 > 0
for every Brauer character ϕ of (an absolutely irreducible representation
of) L in characteristic p. Then G contains elements of order pm.

3. Proof of the Main Theorem

LetG be a finite group such that Γ(G) = Γ(L3(q)), where 2 < q < 100.
By [34], we have 3 ≤ t(G) ≤ 4 and t(2, G) ≥ 2, except for q = 3. First,
we consider this case separately.

The Case L = L3(3)
By assumption Γ(G) = Γ(L3(3)). So s(G) = 2 and we can apply Lemma
2.6. Suppose that G is a Frobenius or 2-Frobenius group. If G is nonsolv-
able, then G is a Frobenius group by Remark 2.7. Hence the Frobenius
complement of G has a normal subgroup SL2(5)×Z with index at most
2 by Lemma 2.4. Since 5 /∈ π(G), we get a contradiction. Therefore G
is solvable Frobenius or 2-Frobenius group. We note that there exists
a finite Frobenius group G with Γ(G) = Γ(L3(3)). Indeed, let H be an
extension of the group of order 2 by S4 such that the Sylow 2−subgroup
in H is a generalized quaternion group. Then µ(H) = {6, 8}. By Lemma
8 in [27], there is a Frobenius group G which is an extension of an ele-
mentary Abelian 13−group by H. Then µ(G) = {6, 8, 13} = µ(L3(3)).
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Therefore we conclude that Γ(G) = Γ(L3(3)). Also, we note that there
exists a finite 2−Frobenius group G of order 36.13.2 such that Γ(G) =
Γ(L3(3)). Now suppose that there exists a finite non-Abelian simple
group S such that S ≤ G = G/K ≤ Aut(S), where K is a π1−group
and nilpotent normal subgroup of G. It follows from Lemma 2.15, that
S ∼= L3(3). Since Out(L3(3)) ∼= Z2 by Lemma 2.18, then G/L3(3) ≤ Z2.
Therefore G/Oπ(G) ∼= L3(3) or L3(3).2, where π ⊆ {2, 3}.
If q 6= 3, then t(G) ≥ 3 and t(2, G) ≥ 2. By Lemmas 2.8 and 2.11, there
exists a finite non-Abelian simple group S such that S ≤ G = G/K ≤
Aut(S) for the maximal normal solvable subgroup K of G, and K is
nilpotent π1−group.
Case L = L3(2)
It follows from Remark 2.17, that S ∼= L3(2) or L2(8). At first, sup-
pose that S ∼= L3(2). We know that Out(L3(2)) ∼= Z2, by Lemma 2.18.
Then G/L3(2) ≤ Z2. By [4], L3(2).2 has an element of order 6, so
Γ(L3(2).2) is not subgraph of Γ(G). So we have G = G/K ∼= L3(2),
where K is a nilpotent 2−group. By [4], we know that L3(2) contains
a Frobenius subgroup with Frobenius kernel of order 7 and Frobenius
complement of order 3. If 2 ∈ π(K), then by Lemma 2.10, 2 ∼ 3
in Γ(G), which is a contradiction. Therefore K = 1 and in this case
we have G ∼= L3(2). Now suppose that S ∼= L2(8). We note that
Out(L2(8)) ∼= Z3. Then G/L2(8) ≤ Z3. Since L2(8).3 has an ele-
ment of order 6, then Γ(L2(8).3) is not subgraph of Γ(G). So we have
G/K ∼= L2(8). Therefore, G/O2(G) ∼= L2(8).
Case L = L3(4)
It follows from Lemma 2.15, that S ∼= L3(4). We know thatOut(L3(4)) ∼=
Z3 : Z2 : Z2

∼= Z2×S3, and so G/L3(4) ≤ Out(L3(4)) ∼= Z2×S3. By the
notations of [4], the finite groups L3(4).21, L3(4).3, L3(4).6 L3(4).22 ∼=
L3(4).2′2

∼= L3(4).2′′2 and L3(4).23 ∼= L3(4).2′3
∼= L3(4).2′′3 have elements

of order 6. Then the prime graphs of these groups are not subgraphs
of Γ(G). So G/K ∼= L3(4), where K is a nilpotent 2−group. We note
that L3(2) is a maximal subgroup of L3(4) and contains a Frobenius
subgroup with Frobenius kernel of order 7 and Frobenius complement
of order 3, by [4]. If 2 ∈ π(K), then by Lemma 2.10, 2 ∼ 3 in Γ(G),
which is a contradiction. Hence K = 1 and G ∼= L3(4). Therefore L3(4)
is recognizable by its prime graph.
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Table 1.

L G or G = G/Oπ(G)

L3(2) G ∼= L3(2) G ∼= L2(8), where π ⊆ {2}
L3(3) G is solvable Frobenius or 2-Frobenius group or

G ∼= L3(3), where π ⊆ {2, 3}
L3(4) G ∼= L3(4)

L3(5) G ∼= L3(5) or L3(5).2, where π ⊆ {2}
L3(7) G ∼= L3(7) or L3(7).2

L3(8) G ∼= L3(8), where π ⊆ {7}
L3(9) G ∼= L3(9) or L3(9).21
L3(11) G ∼= L3(11) or L3(11).2, where π ⊆ {2, 5}
L3(13) G ∼= L3(13) or L3(13).2, where π ⊆ {2}
L3(16) G ≤ L3(16).(Z4 × Z2), where π ⊆ {5}
L3(17) G ∼= L3(17) or L3(17).2, where π ⊆ {2}
L3(19) G ∼= L3(19) or L3(19).2, where π ⊆ {2, 3, 19}
L3(23) G ∼= L3(23) or L3(23).2, where π ⊆ {2, 11}
L3(25) G ≤ L3(25).(Z2 × Z2), where π ⊆ {2}
L3(27) G ≤ L3(27).Z6, where π ⊆ {2, 13}
L3(29) G ∼= L3(29) or L3(29).2, where π ⊆ {2, 7}
L3(31) G ∼= L3(31) or L3(31).2, where π ⊆ {2, 5}
L3(32) G ≤ L3(32).Z10, where π ⊆ {31}
L3(37) G ∼= L3(37) or L3(37).2, where π ⊆ {2, 3, 37}
L3(41) G ∼= L3(41) or L3(41).2, where π ⊆ {2, 5}
L3(43) G ∼= L3(43) or L3(43).2, where π ⊆ {2, 7}
L3(47) G ∼= L3(47) or L3(47).2, where π ⊆ {2, 23}
L3(49) G ≤ L3(49).(Z2 × Z2), where π ⊆ {2}
L3(53) G ∼= L3(53) or L3(53).2, where π ⊆ {2, 13}
L3(59) G ∼= L3(59) or L3(59).2, where π ⊆ {2, 29}
L3(61) G ∼= L3(61) or L3(61).2, where π ⊆ {2, 5}
U3(64) G ≤ L3(64).(Z6 × Z2), where π ⊆ {2, 3, 7}
L3(67) G ∼= L3(67) or L3(67).2, where π ⊆ {2, 11}
L3(71) G ∼= L3(71) or L3(71).2, where π ⊆ {2, 5, 7}
L3(73) G ∼= L3(73) or L3(73).2, where π ⊆ {2, 3}
L3(79) G ∼= L3(79) or L3(79).2, where π ⊆ {2, 13}
L3(81) G ≤ L3(81).(Z4 × Z2), where π ⊆ {2, 3, 5}
L3(83) G ∼= L3(83) or L3(83).2, where π ⊆ {2, 41}
L3(89) G ∼= L3(89) or L3(89).2, where π ⊆ {2, 11}
L3(97) G ∼= L3(97) or L3(97).2, where π ⊆ {2}
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Case L = L3(5)
It follows from Lemma 2.15, that S ∼= L3(5). ThenG/L3(5) ≤Out(L3(5))
∼= Z2. So we have G/K ∼= L3(7) or L3(7).2, where K is a nilpotent
{2, 3, 5}−group. We note that L3(5) contains a Frobenius subgroup
with Frobenius kernel of order 31 and Frobenius complement of order 3
by Lemma 2.14. If 5 ∈ π(K), then by Lemma 2.10, 3 ∼ 5 in Γ(G), which
is a contradiction. If 3 ∈ π(K), then let P ∈ Syl3(K) and Q ∈ Syl5(G).
Since K is a nilpotent group, then P char K. On the other hand, Since
K E G we can conclude that P E G. Since 3 6∼ 5 in Γ(G), then Q acts
fixed point free on P . Thus PQ is a Frobenius group, with Frobenius
kernel P and Frobenius complement Q. Therefore Q is cyclic by Lemma
2.5. This is a contradiction, since L3(5) has no element of order 53, by
Remark 2.2. Therefore we have G/O2(G) ∼= L3(5) or L3(5).2.

Case L = L3(7)
It follows from Lemma 2.15, that S ∼= L3(7). We know that Out(L3(7))
∼= Z3 : Z2

∼= S3. Then G/L3(7) ≤ S3. By Lemma 2.19, L3(7).3
has a connected prime graph, and so Γ(L3(7).3) is not a subgraph of
Γ(G). Hence we have G/K ∼= L3(7) or L3(7).2, where K is a nilpotent
{2, 3, 7}−group. We know that L3(7) contains a Frobenius subgroup
with Frobenius kernel of order 19 and Frobenius complement of order 3,
by Lemma 2.14. If 7 ∈ π(K), then by Lemma 2.10, 3 ∼ 7 in Γ(G), which
is a contradiction. If 3 ∈ π(K), then let P ∈ Syl3(K) and Q ∈ Syl7(G).
Since 3 6∼ 7 in Γ(G), then Q acts fixed point free on P . Thus PQ
is a Frobenius group, with Frobenius kernel P and Frobenius comple-
ment Q. Therefore Q is cyclic by Lemma 2.5. This is a contradiction,
since L3(7) has no element of order 73, by Remark 2.2. If 2 ∈ π(K),
then let x ∈ G/K, X = 〈x〉 and o(x) = 19 and z = exp(2πi/19).
Now by using [10] about the irreducible characters of L3(7) (mod 2),
we can see that 〈ϕ1|X , 1|X〉 = (1 + 1 × 18)/19 = 1 > 0, 〈ϕ2|X , 1|X〉 =
(56 + (−1) × 18)/19 = 2 > 0, 〈ϕi|X , 1|X〉 = (152 + 0 × 18)/19 = 8 > 0,
for i = 3, 4, 5, 〈ϕj |X , 1|X〉 = (288 + ((z+ z7 + z11) + (z−1 + z−7 + z−11)+
(z2+z14+z22)+(z−2+z−14+z−22)+ (z4+z28+z44)+(z−4+z−28+z−44))×
3)/19 = (288 + (

∑18
i=1 z

i) × 3)/19 = (288 + (−1) × 3)/19 = 15 > 0 for
j = 6, 7, ..., 11 and 〈ϕ12|X , 1|X〉 = (342 + 0 × 18)/19 = 18 > 0. There-
fore for every irreducible character ϕ of L3(7) (mod 2) we show that
〈ϕ|X , 1|X〉 =

∑
x∈X ϕ(x)/|X| > 0. Now by using Lemma 2.20, it follows

that 38 ∈ πe(G). Then 2 ∼ 19 in Γ(G), which is a contradiction. There-
fore G ∼= L3(7) or L3(7).2 and k(Γ(L3(7)) = 2.
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Case L = L3(8)
It follows from Lemma 2.15, that S ∼= L3(8). We note that Out(L3(8)) ∼=
Z3×Z2

∼= Z6. Since L3(8).2, L3(8).3 and L3(8).6 have elements of order
6, then Γ(L3(8).2), Γ(L3(8).3) and Γ(L3(8).6) are not subgraphs of Γ(G).
So we have G/K ∼= L3(8), where K is a nilpotent {2, 3, 7}−group. We
know that L3(8) contains a Frobenius subgroup with Frobenius kernel
of order 73 and Frobenius complement of order 3, by Lemma 2.14. If
2 ∈ π(K), then by Lemma 2.10, 2 ∼ 3 in Γ(G), which is a contradiction.
If 3 ∈ π(K), then let P ∈ Syl3(K) and Q ∈ Syl7(G). Since 3 6∼ 7 in
Γ(G), then Q acts fixed point free on P . Thus PQ is a Frobenius group,
with Frobenius kernel P and Frobenius complement Q. Therefore Q is
cyclic by Lemma 2.5. This is a contradiction, since L3(8) has no element
of order 73, by Remark 2.2. Therefore G/O7(G) ∼= L3(8).

Case L = L3(9)
It follows from Lemma 2.15, that S ∼= L3(9). We note that Out(L3(9)) ∼=
Z2 × Z2. Since L3(9).22 and L3(9).23, have elements of order 26 and
14 respectively, then Γ(L3(9).22) and Γ(L3(9).23) are not subgraphs of
Γ(G). So we have G/K ∼= L3(9) or L3(9).21, where K is a nilpotent
{2, 3, 5}−group. We know that L3(9) contains a Frobenius subgroup
with Frobenius kernel of order 7 and Frobenius complement of order 3,
by Lemma 2.14. If 5 ∈ π(K), then by Lemma 2.10, 3 ∼ 5 in Γ(G),
which is a contradiction. We may assume that K is an elementary
Abelian p-group for p ∈ {2, 3}. If 2 ∈ π(K), then Let x ∈ G/K,
X = 〈x〉, o(x) = 7. Now by using [10] about the irreducible characters
of L3(9) (mod 2), we can see that 〈ϕ1|X , 1|X〉 = (1 + 1× 6)/7 = 1 > 0,
〈ϕ2|X , 1|X〉 = (90 + (−1)× 6)/7 = 12 > 0, 〈ϕ3|X , 1|X〉 = 〈ϕ4|X , 1|X〉 =
(640 + 3(1/2(−1 + i

√
7)) + 3(1/2(−1 − i

√
7)))/7 = (640 − 3)/7 = 91 >

0, 〈ϕi|X , 1|X〉 = (640 + 3 × 6)/7 = 94 > 0 for i = 5, 6, 7, 8, simi-
larly 〈ϕj |X , 1|X〉 = (640 + 3(1/2(−1 + i

√
7)) + 3(1/2(−1 − i

√
7)))/7 =

(640 − 3)/7 = 91 > 0 for j = 9, . . . , 32, 〈ϕ33|X , 1|X〉 = 〈ϕ34|X , 1|X〉 =
〈ϕ35|X , 1|X〉 = (728 + 0 × 6)/7 = 104 > 0. Therefore for every ir-
reducible character ϕ of L3(9) (mod 2) we show that 〈ϕ|X , 1|X〉 =∑

x∈X ϕ(x)/|X| > 0. Now by using Lemma 2.20, it follows that 14 ∈
πe(G). Then 2 ∼ 7 in Γ(G), which is a contradiction. If 3 ∈ π(K),
then Let x ∈ G/K, X = 〈x〉, o(x) = 5. Now by [10], we can check
easily 〈ϕ|X , 1|X〉 =

∑
x∈X ϕ(x)/|X| > 0 for every irreducible character

ϕ of L3(9) (mod 3). By Lemma 2.20, it follows that 15 ∈ πe(G). Then
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3 ∼ 5 in Γ(G), which is a contradiction. Hence K = 1 and G ∼= L3(9)
or L3(9).21. Therefore k(Γ(L3(9)) = 2.

The proof of the other cases are similar and for convenience, we give
some of them, namely L3(11), L3(13), L3(16), L3(25) and L3(32).

Case L = L3(11)
It follows from Lemma 2.15, that S ∼= L3(11). We know thatOut(L3(11))
∼= Z2. Then G/L3(11) ≤ Z2. So we have G/K ∼= L3(11) or L3(11).2,
where K is a nilpotent {2, 3, 5, 11}−group. We know that L3(11) con-
tains a Frobenius subgroup with Frobenius kernel of order 7 and Frobe-
nius complement of order 3 by Lemma 2.14. If 11 ∈ π(K), then by
Lemma 2.10, 3 ∼ 11 in Γ(G), which is a contradiction. If 3 ∈ π(K),
then let P ∈ Syl3(K) and Q ∈ Syl11(G). We know that 3 6∼ 11 in Γ(G).
So Q acts fixed point free on P . Thus PQ is a Frobenius group, with
Frobenius kernel P and Frobenius complement Q. Therefore Q is cyclic
by Lemma 2.5. This is a contradiction, since L3(11) has no element of
order 113. Therefore G/Oπ(G) ∼= L3(11) or L3(11).2, where π ⊆ {2, 5} .

Case L = L3(13)
It follows from Lemma 2.15, that S ∼= L3(13). We know thatOut(L3(13))
∼= Z3 : Z2, by Lemma 2.18. By Lemma 2.19, L3(13).3 has a con-
nected prime graph, and so Γ(L3(13).3) is not subgraph of Γ(G). Hence
G/L3(13) ≤ Z2, and so G/K ≤ L3(13).Z2, where K is a nilpotent
{2, 3, 7, 13}−group. We know that L3(13) contains a Frobenius sub-
group with Frobenius kernel of order 61 and Frobenius complement of
order 3 by Lemma 2.14. If 13 ∈ π(K), then by Lemma 2.5, 3 ∼ 13 in
Γ(G), which is a contradiction. Similarly 7 6∈ π(K). If 3 ∈ π(K), then
let P ∈ Syl3(K) and Q ∈ Syl13(G). We know that 3 6∼ 13 in Γ(G).
So Q acts fixed point free on P . Thus PQ is a Frobenius group, with
Frobenius kernel P and Frobenius complement Q. Therefore Q is cyclic
by Lemma 2.5. This is a contradiction, since L3(13) has no element of
order 133. Therefore G/O2(G) ≤ L3(13).Z2.

Case L = L3(16)
It follows from Lemma 2.15, that S ∼= L3(16). We know thatOut(L3(16))
∼= Z3 : Z4 : Z2, by Lemma 2.18. By Lemma 2.19, L3(16).3 has a con-
nected prime graph, and so Γ(L3(16).3) is not a subgraph of Γ(G). Hence
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G/L3(16) ≤ (Z4 × Z2), and so G/K ≤ L3(16).(Z4 × Z2), where K is a
nilpotent {2, 3, 5, 17}−group. We know that L3(16) contains a Frobenius
subgroup with Frobenius kernel of order 7 and Frobenius complement
of order 3 by Lemma 2.14. If 2 ∈ π(K), then by Lemma 2.10, 2 ∼ 3 in
Γ(G), which is a contradiction. Since S � A7, A1(q) and 2 6∼ 3 in Γ(G),

then by Lemma 2.8, we have 3 - |K||G/L3(16)|. So 3 6∈ π(K). Similarly
17 6∈ π(K). Therefore G/O5(G) ≤ L3(16).(Z4 × Z2).

Case L = L3(25)
It follows from Lemma 2.15, that S ∼= L3(25). We know thatOut(L3(25))
∼= Z3 : Z2 : Z2, by Lemma 2.18. By Lemma 2.19, L3(25).3 has a con-
nected prime graph, and so Γ(L3(25).3) is not a subgraph of Γ(G). Hence
G/L3(25) ≤ (Z2 × Z2), where K is a nilpotent {2, 3, 5, 13}−group. We
know that L3(25) contains a Frobenius subgroup with Frobenius kernel
of order 7 and Frobenius complement of order 3 by Lemma 2.14. If
5 ∈ π(K), then by Lemma 2.10, 3 ∼ 5 in Γ(G), which is a contradic-
tion. Similarly, 13 ∈ π(K). If 3 ∈ π(K), then let P ∈ Syl3(K) and
Q ∈ Syl5(G). We know that 3 6∼ 5 in Γ(G). So Q acts fixed point
free on P . Thus PQ is a Frobenius group, with Frobenius kernel P and
Frobenius complement Q. Therefore Q is cyclic by Lemma 2.5. This
is a contradiction, since L3(25) has no element of order 54. Therefore,
G/O2(G) ≤ L3(25).(Z2 × Z2).

Case L = L3(32)
It follows from Lemma 2.15, that S ∼= L3(32). We know thatOut(L3(32))
∼= Z5× Z2

∼= Z10. Hence G/L3(32) ≤ Z10 and so G/K ≤ L3(32).Z10.
We know that L3(32) contains a Frobenius subgroup with Frobenius
kernel of order 7 and Frobenius complement of order 3 by Lemma 2.14.
If 2 ∈ π(K), then by Lemma 2.10, 2 ∼ 3 in Γ(G), which is a contradic-
tion. Since S � A7, A1(q) and 2 6∼ 3 in Γ(G), then by Lemma 2.8, we

have 3 - |K||G/L3(32)|. So 3 6∈ π(K). Similarly, 11 6∈ π(K). Therefore
G/O31(G) ≤ L3(32).Z10.

By the main theorem and definitions of recognizability, quasirecogniz-
ability and n−recognizability of prime graph, we can conclude the fol-
lowing corollaries.

Corollary 3.1. The finite simple group L3(q) for 3 < q < 100 is
quasirecognizable by its prime graph.
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Corollary 3.2. The finite simple group L3(4) is recognizable by its
prime graph and the finite simple groups L3(7) and L3(9) are 2−recognizable
by its prime graph.

By [27], we know that the simple groups L3(3) is not recognizable by
spectrum, and so it is not recognizable by its prime graph. It seems that
if p ≥ 7 is a prime number, then the simple group L3(p) is 2−recognizable
by its prime graph. Finally, we pose the following problem:

Problem: Is the simple group L3(p), 2−recognizable by its prime graph,
where p ≥ 7 is a prime number?
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