HYERS-ULAM-RASSIAS STABILITY OF N-JORDAN *-HOMOMORPHISMS ON C^* -ALGEBRAS

SH. GHAFFARY GHALEH* AND KH. GHASEMI

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. In this paper we investigate the Hyers-Ulam-Rassias stability of n-jordan *-homomorphisms on C^* -algebras.

1. Introduction

Let $n \in \mathbb{N} - \{1\}$ and let A,B be two algebras (rings). A linear map $h: A \to B$ is called n-jordan homomorphism (n-ring homomorphism) if $h(a^n) = (h(a))^n$ for all $a \in A$, $(h(\sum_{i=1}^n a_i) = \sum_{i=1}^n h(a_i)$ for all $a_1, a_2, ..., a_n \in A)$. The concept of n-jordan homomorphisms was studied for complex algebras by eshaghi et al. [7] (see also [8] and [9]).

The stability of functional equations was first introduced by S. M. Ulam [29] in 1940. More precisely, he proposed the following problem: Given a group G_1 , a metric group (G_2,d) and $\epsilon>0$, does there exist a $\delta>0$ such that if a function $f:G_1\to G_2$ satisfies the inequality $d(f(xy),f(x)f(y))<\delta$ for all $x,y\in G_1$, then there exists a homomorphism $T:G_1\to G_2$ such that $d(f(x),T(x))<\epsilon$ for all $x\in G_1$? As mentioned above, when this problem has a solution, we say that the homomorphisms from G_1 to G_2 are stable. In 1941, Hyers [19] gave a

MSC(2010): Primary: 17C65; Secondary: 39B82, 46L05,47B45.

Keywords: Hyers-Ulam-Rassias stability, n-jordan *-homomorphism, n-jordan homomorphism, C^* -algebra.

Received: 18 November 2011, Accepted: 12 April 2012.

^{*}Corresponding author

[©] 2013 Iranian Mathematical Society.

partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_1 and G_2 are Banach spaces. In 1950, Aoki [1] generalized Hyers' theorem for approximately additive mappings. In 1978, Rassias [28] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Rassias [28] is called the Hyers-Ulam-Rassias stability. According to Rassias theorem:

Let $f: E_1 \to E_2$ be a mapping from a normed vector space E_1 into a Banach space E_2 subject to the inequality

$$(1.1) ||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. where ϵ and p are constants with $\epsilon > 0$ and p < 1. Then there exists a unique additive mapping $T : E_1 \to E_2$ such that

(1.2)
$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in E_1$. if p < 0 then inequality (1.1) holds for $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \mapsto f(tx)$ from \mathbb{R} into E_2 is continuous for each fixed $x \in E_1$, then T is linear.

During the last decades several stability problems of functional equations have been investigated by many mathematicians. A large list of references concerning the stability of functional equations can be found in [6, 13, 20, 22]. and see [2-5, 10-12, 15, 21, 24-27].

Miura et al. [23] proved the Hyers-Ulam-Rassias stability of jordan homomorphisms.

in this paper, we consider the Hyers-Ulam-Rassias stability of n-jordan *-homomorphisms on C^* -algebras.

2. Strong convergence

Let A,B be two algebras. A linear map $h:A\to B$ is called n-jordan homomorphism if

$$h(x^n) = (h(x))^n$$

for all $x \in A$.

Let $n \in \mathbb{N}$ and let A,B be two C^* -algebras. An n-jordan homomorphism $h:A\to B$ is called n-jordan *-homomorphism if

$$h(x^*) = (h(x))^*$$

for all $x \in A$.

Theorem 2.1. Let A, B be two C^* -algebras, let δ, ϵ, p, q be real numbers such that p, q < 1 or p, q > 1, and that q > 0. Assume that $f: A \to B$ satisfies the functional inequalities

$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)||_B \le \epsilon(||x||_A^p + ||y||_A^p),$$
(2.1)

$$(2.2) ||f(x^n) - f(x)^n||_B \le \delta ||x||_A^{nq},$$

$$(2.3) ||f(x^*) - f(x)^*||_B \le \delta ||x^*||_A^q$$

for all $x, y \in A$. Then, there exists a unique n-jordan *-homomorphism $h: A \to B$ such that

(2.4)
$$||f(x) - h(x)||_B \le \frac{2\epsilon}{|2 - 2^p|} ||x||_A^p$$

for all $x \in A$.

Proof. Let s = -sgn(p-1), and $h(x) = \lim_m \frac{f(2^{sm}x)}{2^{sm}}$ for all $x \in A$. from [14, 16, 17], we conclude that h is an additive map which satisfies (2.4).

Now, since $\lim_{m} 2^{smn(q-1)} = 0$, and from (2.2), for all $x \in A$ we have

$$\lim_{m} \frac{1}{2^{smn}} [\|f((2^{sm}x)(2^{sm}x) \dots (2^{sm}x)) - (f(2^{sm}x))^n \|_B]$$

$$\leq \lim_{m} \frac{1}{2^{smn}} \delta \|2^{sm}x\|_A^{nq}$$

$$= \lim_{m} (2^{smn(q-1)}) \delta \|x\|_A^{nq}$$

$$= 0.$$

Thus

$$h(x^{n}) = \lim_{m} \frac{1}{2^{smn}} f(2^{smn}(x^{n}))$$

$$= \lim_{m} \frac{1}{2^{smn}} f(2^{sm}x)(2^{sm}x)...(2^{sm}x)$$

$$= \lim_{m} \frac{1}{2^{smn}} [f(2^{sm}x)(2^{sm}x)...(2^{sm}x) - (f(2^{sm}x))^{n} + (f(2^{sm}x))^{n}]$$

$$= \lim_{m} \frac{1}{2^{smn}} f(2^{sm}x)^{n}$$

$$= (h(x))^{n}.$$

By that h is an additive map and from (2.3) we have

$$||h(x^*) - (h(x))^*||_B = ||\frac{1}{2^{sm}}h(2^{sm}x^*) - \frac{1}{2^{sm}}(h(2^{sm}x))^*||_B$$

$$\leq \frac{1}{2^{sm}}\delta(2^{sm})^q||x^*||_A^q$$

$$= 2^{sm(q-1)}\delta||x^*||_A^q.$$

Since $\lim_{m} 2^{sm(q-1)} = 0$, so

$$h(x^*) = (h(x))^*$$

for all $x \in A$. Therefore h is n-jordan *-homomorphism. The uniqueness property of h follows from [15, 28].

Theorem 2.2. Let A, B be two C^* -algebras, let δ, ϵ, p, q be real numbers such that p < 1 or q < 0. If $f : A \to B$ is a mapping with f(0) = 0, such that the inequalities (2.1), (2.2) and (2.3) are valid. Then, there exists a unique n-jordan *-homomorphism $h : A \to B$ such that

(2.5)
$$||f(x) - h(x)||_B \le \frac{2\epsilon}{|2 - 2^p|} ||x||_A^p$$

for all $x \in A$.

Proof. Let $||0||^p = \infty$. from [28] we conclude that there exists an additive map $h: A \to B$ satisfies (2.5). Now, it suffices to show that $h(x^n) = (h(x))^n$ and $h(x^*) = (h(x))^*$ for all $x \in A$. Since h is an additive map, we get h(0) = 0, and so the case x = 0 is omitted. By assumption $x \in A$ and $x \neq 0$, by the proof of Theorem 2.1 we have $h(x^*) = (h(x))^*$ and if $x^n \neq 0$ then $h(x^n) = (h(x))^n$. thus we need to investigate only the case $x^n = 0$. Since f(0) = 0, Replacing x by $2^m x$ in (2.2) we get

$$\begin{aligned} \|\frac{1}{2^{mn}}(f(2^m x))^n - \frac{1}{2^{mn}}f(2^m x^n)\|_B &= \|\frac{1}{2^{mn}}(f(2^m x))^n\|_B \\ &\leq \frac{1}{2^{mn}}\delta \|2^m x\|_A^{nq} \\ &= 2^{mn(q-1)}\delta \|x\|_A^{nq}. \end{aligned}$$

From the relation above it follows

(2.6)
$$\lim_{m} \frac{1}{2^{mn}} (f(2^m x))^n = 0.$$

Thus, we assume

(2.7)
$$h(a) = \lim_{m} \frac{1}{2^m} (f(2^m x)).$$

Combining (2.6) by (2.7) we get

$$h(x)^n = \lim_m \left[\frac{1}{2^{mn}} (f(2^m x))^n \right] = 0.$$

and since $h(x^n) = h(0) = 0$ therefore $h(x^n) = (h(x))^n = 0$. hence, $h: A \to B$ is *-preserving, in other words, h is n-jordan *-homomorphism.

Corollary 2.3. Let A, B be two C^* -algebras, let $\delta, \epsilon \geq 0$ and let p, q be real numbers such that (p-1)(q-1) > 0, q < 0 or that (p-1)(q-1) > 0, $q \geq 0$ and f(0) = 0. Assume that $f: A \rightarrow B$ satisfies functional inequalities

$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)||_B \le \epsilon (||x||_A^p + ||y||_A^p),$$
$$||f(x^n) - f(x)^n||_B \le \delta ||x||_A^{nq},$$
$$||f(x^*) - f(x)^*||_B \le \delta ||x^*||_A^q$$

for all $x, y \in A$. Then, there exists a unique n-jordan *-homomorphism $h: A \to B$ such that

$$||f(x) - h(x)||_B \le \frac{2\epsilon}{|2 - 2^p|} ||x||_A^p$$

for all $x \in A$.

Proof. It follows from Theorem 2.1 and Theorem 2.2. \Box

A linear map $h: A \to B$ is an n-homomorphism if $h(\prod_{i=1}^n x_i) = \prod_{i=1}^n h(x_i)$, for all $x_1, x_2, ..., x_n \in A$ (see [18]).

Corollary 2.4. Let $n \in \{3,4,5\}$ be fixed and let A,B be two commutative C^* -algebras. Then every n-jordan *-homomorphism $h:A \to B$ is an n-homomorphism—, that is h is *-preserving.

Proof. The proof follows from [7,23]

Acknowledgments

The authors would like to thank the anonymous referee for his/her comments that helped us to improve the article.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, *J. Math. Soc. Japan.* **2** (1950) 64–66.
- [2] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), no. 2, 589–597.
- [3] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167–173.
- [4] A. Bodaghi, I. A. Alias and M. Eshaghi Gordji, On the stability of quadratic double centralizers and quadratic multipliers: a fixed point approach, J. Inequal. Appl. 2011 (2011) 9 pages.
- [5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, *Duke Math. J.* 16 (1949) 385–397.
- [6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, 2002.
- [7] M. Eshaghi Gordji, n-jordan homomorphisms, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159–164.
- [8] M. Eshaghi Gordji, On approximate n-ring homomorphisms and n-ring derivations, To appear in NFAA.
- [9] M. Eshaghi Gordji, S. Kaboli Gharetapeh, H. Ziyaei, T. Karimi, S. Shagholi and M. Aghaei, Approximate n-jordan homomorphisms: An alternative fixed point approach, J. Math. Anal. 2 (2011), no. 1, 1–7.
- [10] M. Eshaghi Gordji and Z. Alizadeh, Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras, Abstr. Appl. Anal. 2011 (2011) 10 pages.
- [11] M. Eshaghi Gordji, M. Bavand Savadkouhi, M. Bidkham, C. Park and J. R. Lee, Nearly partial derivations on Banach Ternary algebras, J. Math. Stat. 6 (2010) 454–461.
- [12] M. Eshaghi Gordji, M. B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, and A. Ebadian, On the stability of J^* -derivations, J. Geom. Phys. **60** (2010), no. 3, 454–459.
- [13] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations, LAP Lambert Academic Publishing, Saarbrücken, 2010.
- [14] W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aeguationes Math. 71 (2006), no. 1-2, 149–161.
- [15] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1941), no. 3, 431–434.
- [16] A. Gilanyi, Eine zur parallelogrammgleichung aquivalente ungleichung, Aequationes Math. 62 (2001), no. 3, 303–309.
- [17] A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), no. 4, 707–710.
- [18] S. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (2005), no. 1, 13–23.
- [19] D. H. Hyers, On the stability of the linear functional equation, *Proc. Nat. Acad. Sci. U.S.A.* **27** (1941) 222–224.

- [20] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and Their Applications, 34, Birkhuser Boston, Inc., Boston, 1998.
- [21] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125–153.
- [22] S. M. Jung, Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, 2001.
- [23] T. Miura, S. E. Takahasi and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2005 (2005), no. 4, 435–441.
- [24] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math 132 (2008), no. 2, 87–96.
- [25] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 79–97.
- [26] C. Park and G. M. Rassias, Stability of the Jensen-type functional equation in C*-algebras: a fixed point approach, Abstr. Appl. Anal. (2009) 17 pages.
- [27] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23–130.
- [28] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300.
- [29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley & Sons, Inc., New York, 1964

Shahram Ghaffary Ghaleh

Department of Mathematics, Payame Noor University of Zahedan Branch, Zahedan, Iran

Email: shahram.ghaffary@Gmail.com

Khatereh Ghasemi

Department of Mathematics, Payame Noor University of Khash Branch, Khash, Iran Email: khatere.ghasemi@Gmail.com