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HYERS-ULAM-RASSIAS STABILITY OF N-JORDAN
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Abstract. In this paper we investigate the Hyers-Ulam-Rassias
stability of n-jordan ∗-homomorphisms on C∗-algebras.

1. Introduction

Let n ∈ N − {1} and let A,B be two algebras (rings). A linear
map h : A → B is called n-jordan homomorphism (n-ring homomor-
phism) if h(an) = (h(a))n for all a ∈ A, (h(

∑n
i=1 ai) =

∑n
i=1 h(ai) for all

a1, a2, ..., an ∈ A). The concept of n-jordan homomorphisms was stud-
ied for complex algebras by eshaghi et al. [7] (see also [8] and [9]).

The stability of functional equations was first introduced by S. M.
Ulam [29] in 1940. More precisely, he proposed the following problem:
Given a group G1, a metric group (G2, d) and ε > 0, does there exist
a δ > 0 such that if a function f : G1 → G2 satisfies the inequality
d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomor-
phism T : G1 → G2 such that d(f(x), T (x)) < ε for all x ∈ G1? As
mentioned above, when this problem has a solution, we say that the
homomorphisms from G1 to G2 are stable. In 1941, Hyers [19] gave a
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partial solution of Ulam,s problem for the case of approximate additive
mappings under the assumption that G1 and G2 are Banach spaces. In
1950, Aoki [1] generalized Hyers, theorem for approximately additive
mappings. In 1978, Rassias [28] generalized the theorem of Hyers by
considering the stability problem with unbounded Cauchy differences.
This phenomenon of stability that was introduced by Rassias [28] is
called the Hyers-Ulam-Rassias stability. According to Rassias theorem:

Let f : E1 → E2 be a mapping from a normed vector space E1 into a
Banach space E2 subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)(1.1)

for all x, y ∈ E1. where ε and p are constants with ε > 0 and p < 1.
Then there exists a unique additive mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p(1.2)

for all x ∈ E1. if p < 0 then inequality (1.1) holds for x, y 6= 0, and (1.2)
for x 6= 0. Also, if the function t 7→ f(tx) from R into E2 is continuous
for each fixed x ∈ E1, then T is linear.

During the last decades several stability problems of functional equa-
tions have been investigated by many mathematicians. A large list of
references concerning the stability of functional equations can be found
in [6, 13,20,22]. and see [2–5,10–12,15,21,24–27].

Miura et al. [23] proved the Hyers-Ulam-Rassias stability of jordan
homomorphisms.
in this paper, we consider the Hyers-Ulam-Rassias stability of n-jordan
∗-homomorphisms on C∗-algebras.

2. Strong convergence

Let A,B be two algebras. A linear map h : A→ B is called n-jordan
homomorphism if

h(xn) = (h(x))n

for all x ∈ A.
Let n ∈ N and let A,B be two C∗-algebras. An n-jordan homomor-

phism h : A→ B is called n-jordan ∗-homomorphism if

h(x∗) = (h(x))∗

for all x ∈ A.
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Theorem 2.1. Let A,B be two C∗-algebras, let δ, ε, p, q be real numbers
such that p, q < 1 or p, q > 1, and that q > 0. Assume that f : A → B
satisfies the functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖B ≤ ε(‖x‖pA + ‖y‖pA),

(2.1)

‖f(xn)− f(x)n‖B ≤ δ‖x‖nqA ,(2.2)

‖f(x∗)− f(x)∗‖B ≤ δ‖x∗‖qA(2.3)

for all x, y ∈ A. Then, there exists a unique n-jordan ∗-homomorphism
h : A→ B such that

‖f(x)− h(x)‖B ≤
2ε

|2− 2p|
‖x‖pA(2.4)

for all x ∈ A.

Proof. Let s = −sgn(p − 1), and h(x) = limm
f(2smx)

2sm for all x ∈ A.
from [14, 16, 17], we conclude that h is an additive map which satisfies
(2.4).

Now, since limm 2smn(q−1) = 0, and from (2.2), for all x ∈ A we have

limm
1

2smn [‖f((2smx)(2smx) ...(2smx))− (f(2smx))n‖B]

≤ lim
m

1

2smn
δ‖2smx‖nqA

= lim
m

(2smn(q−1))δ‖x‖nqA
= 0.

Thus

h(xn) = lim
m

1

2smn
f(2smn(xn))

= lim
m

1

2smn
f(2smx)(2smx)...(2smx)

= lim
m

1

2smn
[f(2smx)(2smx)...(2smx)− (f(2smx))n

+(f(2smx))n]

= lim
m

1

2smn
f(2smx)n

= (h(x))n.
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By that h is an additive map and from (2.3) we have

‖h(x∗)− (h(x))∗‖B = ‖ 1

2sm
h(2smx∗)− 1

2sm
(h(2smx))∗‖B

≤ 1

2sm
δ(2sm)q‖x∗‖qA

= 2sm(q−1)δ‖x∗‖qA.

Since limm 2sm(q−1) = 0, so

h(x∗) = (h(x))∗

for all x ∈ A. Therefore h is n-jordan ∗-homomorphism.
The uniqueness property of h follows from [15,28]. �

Theorem 2.2. Let A,B be two C∗-algebras, let δ, ε, p, q be real numbers
such that p < 1 or q < 0. If f : A → B is a mapping with f(0) = 0,
such that the inequalities (2.1) , (2.2) and (2.3) are valid. Then, there
exists a unique n-jordan ∗-homomorphism h : A→ B such that

‖f(x)− h(x)‖B ≤
2ε

|2− 2p|
‖x‖pA(2.5)

for all x ∈ A.

Proof. Let ‖0‖p =∞. from [28] we conclude that there exists an additive
map h : A → B satisfies (2.5). Now, it suffices to show that h(xn) =
(h(x))n and h(x∗) = (h(x))∗ for all x ∈ A. Since h is an additive map,
we get h(0) = 0, and so the case x = 0 is omitted. By assumption x ∈ A
and x 6= 0, by the proof of Theorem 2.1 we have h(x∗) = (h(x))∗ and if
xn 6= 0 then h(xn) = (h(x))n. thus we need to investigate only the case
xn = 0. Since f(0) = 0, Replacing x by 2mx in (2.2) we get

‖ 1

2mn
(f(2mx))n − 1

2mn
f(2mxn)‖B = ‖ 1

2mn
(f(2mx))n‖B

≤ 1

2mn
δ‖2mx‖nqA

= 2mn(q−1)δ‖x‖nqA .
From the relation above it follows

lim
m

1

2mn
(f(2mx))n = 0.(2.6)

Thus, we assume

h(a) = lim
m

1

2m
(f(2mx)).(2.7)
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Combining (2.6) by (2.7) we get

h(x)n = lim
m

[
1

2mn
(f(2mx))n] = 0.

and since h(xn) = h(0) = 0 therefore h(xn) = (h(x))n = 0. hence, h :
A→ B is ∗-preserving, in other words, h is n-jordan ∗-homomorphism.

�

Corollary 2.3. Let A,B be two C∗-algebras, let δ, ε ≥ 0 and let p, q be
real numbers such that (p−1)(q−1) > 0 , q < 0 or that (p−1)(q−1) > 0
, q ≥ 0 and f(0) = 0. Assume that f : A → B satisfies functional
inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖B ≤ ε(‖x‖pA + ‖y‖pA),

‖f(xn)− f(x)n‖B ≤ δ‖x‖nqA ,

‖f(x∗)− f(x)∗‖B ≤ δ‖x∗‖qA
for all x, y ∈ A. Then, there exists a unique n-jordan ∗-homomorphism
h : A→ B such that

‖f(x)− h(x)‖B ≤
2ε

|2− 2p|
‖x‖pA

for all x ∈ A.

Proof. It follows from Theorem 2.1 and Theorem 2.2. �

A linear map h : A → B is an n-homomorphism if h(
∏n

i=1 xi) =∏n
i=1 h(xi), for all x1, x2, ..., xn ∈ A (see [18]).

Corollary 2.4. Let n ∈ {3, 4, 5} be fixed and let A,B be two commuta-
tive C∗-algebras. Then every n-jordan ∗-homomorphism h : A → B is
an n-homomorphism—, that is h is ∗-preserving.

Proof. The proof follows from [7,23] �
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