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A NOTE ON SUPERSPECIAL AND MAXIMAL CURVES

A. KAZEMIFARD, A. R. NAGHIPOUR AND S. TAFAZOLIAN∗

Communicated by Teo Mora

Abstract. In this note we review a simple criterion, due to Ekedahl,
for superspecial curves defined over finite fields. Using this we gen-
eralize and give some simple proofs of some well-known results on
superspecial curves.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. A curve
of genus 1 is said to be supersingular if, as an elliptic curve defined over
k, its group of p-torsion k-points is trivial. A curve C of genus g > 1
is said to be supersingular if its Jacobian variety JC is isogenous, as
an abstract abelian variety, to the product of g supersingular elliptic
curves. One property of supersingular curves which can be stated in
elementary terms is the following. We know after A. Weil that the
number of Fq-points of a curve of genus g defined over Fq satisfies the
following limitations:

q + 1− 2g
√
q ≤ #C(Fq) ≤ 1 + q + 2g

√
q,

where C(Fq) denotes the set of Fq-rational points of the curve C.
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Here we are interested in maximal (resp. minimal) curves over Fq2 ,
that is, we will consider curves C attaining Hasse-Weil’s upper (lower,
respectively) bound:

#C(Fq2) = q2 + 1 + 2gq ( q2 + 1− 2gq).

It is easy to see that a maximal (or minimal) curve C is supersingular,
since all slopes of its Newton polygon are equal to 1/2. On the other
hand, if a curve C defined over a finite field Fq is supersingular, then C
is maximal or minimal over some finite extensions of Fq.

Among supersingular curves there is an interesting class called super-
special, which are curves such that their Jacobian (over an algebraically
closed field) is isomorphic to product of supersingular elliptic curves. On
the other hand, according to Nygaard [7] we know that if C is a curve
defined over k, then the curve C is superspecial if and only if the Cartier
operator C : H0(C,Ω1

C)→ H0(C,Ω1
C) vanishes identically.

In this paper we review a simple criterion due to Ekedahl for super-
special curves defined over finite fields. In fact, it has been shown that
a curve C over a field k is superspecial if and only if C descends to a
maximal or minimal curve over Fp2 , where p = char(k) (see Theorem
2.6).

Then using this result, we give generalization and some simple proofs
of some of the results in [11] and [13] (see Section 3).

2. Main Results

In this section first we review some well-known properties of maximal
and minimal curves.

Let C be a curve of genus g > 0 over the finite field Fq with q elements.
The zeta function of C is a rational function of the form

Z(C/Fq) =
LC(t)

(1− t)(1− qt)
,

where LC(t) ∈ Z[t] is a polynomial of degree 2g with integral coefficients.
From [10, p. 229] we know that a curve C is maximal (minimal, respec-
tively) over Fq2 if and only if LC(t) = (1 + qt)2g (LC(t) = (1 − qt)2g,
respectively).

We recall the following basic result concerning Jacobians. Let C be
a curve, F the Frobenius endomorphism (relative to the base field)
of the Jacobian J of C, and let h(t) = t2gL(t−1) be the characteristic

polynomial of F . Let h(t) =
∏T
i=1 hi(t)

ri be the irreducible factorization
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of h(t) over Z[t]. Then

(2.1)
T∏
i=1

hi(F) = 0 on J .

This follows from the semisimplicity of F and the fact that the represen-
tation of endomorphisms of J on the Tate module is faithful (see [12,
Theorem 2] and [5, VI, Section 3]). In the case of a maximal curve
over Fq2 , we have h(t) = (t + q)2g. Therefore from (2.1) we obtain the
following result, which is contained in the proof of [9, Lemma 1].

Lemma 2.1. The curve C is a maximal (minimal, respectively) curve
over Fq2 if and only if the Frobenius map Fq2 (relative to Fq2) of the
Jacobian J of the curve C acts as multiplication by −q (by +q, respec-
tively).

Corollary 2.2. Let C be a curve defined over Fq2.

• If the curve C is a maximal curve over Fq2, then C is minimal
(maximal, respectively) over Fq2r for r even (odd, respectively).
• If the curve C is a minimal curve over Fq2, then C is minimal

over any finite extension of Fq2.

Proof. These claims follow from the fact that the Frobenius Fq2r is re-
lated to Fq2 by the formula Fq2r = (Fq2)r. �

The following observation (with a different proof) is attributed to J.
P. Serre in the literature (see [4]):

Proposition 2.3. A subcover of a maximal (minimal, respectively) curve
is also maximal (minimal, respectively).

Proof. If there is a non-constant morphism defined over the field k be-
tween two curves f : C −→ D, then we have an induced homomorphism
f∗ : JD −→ JC on the Jacobians. Furthermore, JD is isogenous to
an abelian subvariety of JC (because Ker(f∗) is finite). Thus, if the
Frobenuis of JC/Fq2 is equal to ±q, then the same is true for the Frobe-
nius of JD. Therefore it follows from Lemma 2.1 that a subcover D of
a maximal (minimal, respectively) curve C is also maximal (minimal,
respectively). �

We have the following fact due to Ekedahl which is established in the
course of proving Theorem 1.1 in [1, p. 166].
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Theorem 2.4. Let C be a curve defined over a field k of characteristic
p > 0. If the Jacobian JC is a product of supersingular curves, then the
curve C descends to Fp2 with Frobenius p or −p.

The following proposition is also crucial for us (see [1, Proposition
1.2]):

Proposition 2.5. Let A be an abelian variety defined over Fq2 , where
q = pn. If the Frobenius F relative to Fq2 acts on the abelian variety A
as multiplication by ±q, then we have that Fn = 0 on H1(A,OA). In
particular, if q is a prime then A is a product of supersingular elliptic
curves over Fp2.

Thus using the above facts we conclude:

Theorem 2.6. Let C be a curve defined over Fq2, q = pr. Then C is
superspecial if and only if it is (Fq2- isomorphic) to a twist of a curve
over Fq2 which descends to a maximal or a minimal curve over Fp2.

Proof. Suppose C is a maximal or a minimal curve over Fp2 . Then from
Lemma 2.1 we know that on the Jacobian, the Frobenius is equal to
multiplication by ±p. So the result follows from Proposition 2.5. The
converse follows from Theorem 2.4. �

Corollary 2.7. Let C be a curve of genus g defined over a field k with
char(k) = p > 0. If the curve C is superspecial, then either g = p(p−1)/2
or g ≤ (p− 1)2/4.

Proof. Suppose the curve C is superspecial. By Theorem 2.4, C descends
to a minimal or a maximal curve over Fp2 . It is easy to see that the genus
of a minimal curve over Fp2 is not larger than p/2 (see [8, Proposition
2.1]). Thus the result follows from [2]. �

Corollary 2.8. Let C and D be two curves defined over a field k. Sup-
pose there is a non-constant morphism defined over the field k between
two curves f : C −→ D. If C is superspecial, then D is also superspecial.

3. Examples

In this section we use the above facts to give some simple proofs for
being superspecial of some families of curves. Moreover, we generalize
some well-known results on superspecial curves.
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From [10, Proposition 5.3.3] we know that if a curve C is maximal
over Fq2 , then its genus satisfies

(3.1) g ≤ q2 − q
2

.

There is a unique maximal curve over Fq2 which attains the above genus
bound, and it can be given by the affine equation (see [9])

(3.2) yq + y = xq+1,

or birationally equivalently, it is given by

(3.3) xq+1 + yq+1 = 1.

This is the so-called Hermitian curve over Fq2 , denoted by H(q+1)/Fq2 .
From [10, Example 6.3.6] we know that H(q+1)/Fq2 is a maximal curve
over Fq2 . Using Proposition 2.3 one way to construct explicit maximal
curves over Fq2 , is to find equations for subcovers of the Hermitian curve.
In the following we use this idea to give some superspecial curves as
subcovers of the Hermitian curve.

Proposition 3.1. Let p be a prime and let m,n ≥ 1. Set r := lcm(m,n)
and s := m(n−1). Then the following curves are maximal over Fp2 and
hence are superspecial.

(a) Cm,n : xm ± yn = 1 if r is a divisor of p+ 1.

(b) C′m,n : ym = xn − x if s is a divisor of p+ 1.

(c) Cm : yp + y = xm if m is a divisor of p+ 1.

Proof. The Hermitian curve H(p+ 1) is maximal over Fp2 . By Theorem
2.6 it is superspecial. Now according to Proposition 2.3, it is sufficient
to show that these curves are covered by the Hermitian curve H(p+ 1).
For the part (a), put p+ 1 = r`, r = mα and r = nβ. The result follows
from the following morphism{

H(p+ 1) → Cm,n
(x, y) 7→ (xα`, yβ`).

Now suppose s = m(n−1) is a divisor of p+1. From part (a) we know
that the curve Cs,s is superspecial. Again to prove part (b), according
to Proposition 2.3, it is sufficient to show that these curves are covered
by the curve Cs,s. But this follows from the following morphism
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{
Cs,s → C′m,n

(x, y) 7→ (xm, xyn−1).

The last part can be concluded by similar arguments. �

We should mention that all of the above facts are true also over a finite
field Fq2 , not just for q = p. Now using the above proposition we give
simple proofs of some results on certain classes of superspecial curves.
All of the following results are well-known, but they have been proved
using the Cartier operators. Here we will see that they are special cases
of the above proposition.

3.1. Fermat curves. Let C(m) be the Fermat curve defined over Fp2
by the equation

xm + ym = 1,

where m is an integer such that m ≥ 3 and gcd(m, p) = 1.
In this case we have that C(m) = Cm,m and so according to Proposition

3.1 (a) we conclude the following result (see [6, Theorem 3]):

Theorem 3.2. Let m be a divisor of p + 1. The Fermat curve C(m)
defined by the equation ym + xm = 1 is superspecial over Fp2.

3.2. Picard curves. Let p > 3 be a prime number, and let C be a
smooth projective curve over Fp2 with an affine model

y3 = x4 + a3x
3 + a2x

2 + a1x+ a0, ai ∈ Fp2 .

Here we assume that f(x) = x4 +a3x
3 +a2x

2 +a1x+a0 is a polynomial
with no multiple roots. The curve C is called a Picard curve.

In [11], using Cartier operators, Takizawa found a classification of the
p-adic Newton polygons associated to two families of Picard curves. Here
we conclude the following results as a corollary of Proposition 3.1(a), (b).

Theorem 3.3. Let p > 3 be a prime number.
1) Let C1 be the Picard curve

y3 = x4 − 1.

If p ≡ 11 (mod 12), then C1 is superspecial.

2) Let C2 be the Picard curve

y3 = x4 − x.
If p ≡ 8 (mod 9), then C2 is superspecial.
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Remark 3.4. In [11] it was mentioned without proof that if p ≡ 2 (mod 9)
or p ≡ 5 (mod 9), then the curve C2 : y3 = x4− x is supersingular. This
can be deduced from Proposition 2.3 by observing that in this case 9 is
a divisor of p3 + 1. Hence the curve C(9) is maximal over Fp6 and so the
curve C2 is maximal over Fp6 and thus it is supersingular.

3.3. Hyperelliptic curves. Let Fp be a finite field of characteristic
p > 2. Let C be a projective nonsingular hyperelliptic curve over Fp of
genus g. Then C can be defined by an affine equation of the form

y2 = f(x),

where f(x) is a polynomial over Fp of degree 2g + 1, without multiple
roots. If C is superspecial, then we have an upper bound on the genus
(see [1]), namely

g(C) ≤ p− 1

2
.

In [13] a characterization of hyperelliptic curves with zero Hasse-Witt
matrix is given. Thus by Nygaard [7] we have a classification of such
curves which are superspecial. Here we can obtain the following theorem
as a corollary of Proposition 3.1(c).

Theorem 3.5. The hyperelliptic curve C given by the equation y2 =
xp + x is superspecial over Fp.

We also deduce the following result (see [13, Theorem 2]):

Theorem 3.6. Let g be a positive integer with 2 ≤ g ≤ (p− 1)/2. The
following hyperelliptic curves are superspecial

1) y2 = x2g+1 + x if p ≡ −1 or 2g + 1 (mod 4g),

2) y2 = x2g+1 − 1 if p ≡ −1 (mod 2g + 1).

Proof. Consider the curve C defined by y2 = x2g+1 + x. If p ≡ 1 +
2g (mod 4g), then we set p − 1 − 2g = 4ga and p + 1 = 2b. Now if we
consider the following morphism{

H(p+ 1) : yp+1 = xp + x → C
(x, y) 7→ (x2a+1, xayb),

then C is covered by the Hermitian curve H(p + 1) and so is maximal
over Fp2 . This implies that the curve C is superspecial. The rest follows
from Proposition 3.1(a), (b). �
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Remark 3.7. All of the above examples are covered by the Hermitian
curve. But the authors of [3] construct maximal curves over Fp6 which
are not covered by the Hermitian curve. However, it is not clear (in fact
unlikely) that these curves are superspecial.
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