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HYERS-ULAM STABILITY OF FIBONACCI
FUNCTIONAL EQUATION

S.-M. JUNG

Communicated by Mohammad Sal Moslehian

Abstract. We solve the Fibonacci functional equation, f(x) =
f(x− 1) + f(x− 2), and prove its Hyers-Ulam stability in the class
of functions f : R→ X, where X is a real Banach space.

1. Introduction

In 1940, Ulam gave a wide ranging talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of im-
portant unsolved problems (see [19]). Among those was the question
concerning the stability of homomorphisms:

Let G1 be a group and let G2 be a metric group with
a metric d(·, ·). Given any ε > 0, does there exist a
δ > 0 such that if a function h : G1 → G2 satisfies
the inequality d(h(xy), h(x)h(y)) < δ, for all x, y ∈ G1,
then there exists a homomorphism H : G1 → G2 with
d(h(x),H(x)) < ε, for all x ∈ G1?

In the following year, Hyers [8] affirmatively answered the question
of Ulam for the case where G1 and G2 are Banach spaces. Taking this
fact into account, the additive Cauchy functional equation f(x + y) =
f(x)+f(y) is said to satisfy the Hyers-Ulam stability. This terminology
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is also applied to the case of other functional equations. Later, the result
of Hyers was generalized by Rassias (see [15]). It should be remarked
that Aoki [1] proved a particular case of Rassias’ theorem regarding
the Hyers-Ulam stability of additive functions earlier than Rassias (see
[14]). We can find in the books [3, 9, 12] a lot of references concerning the
stability of functional equations (see also [2, 4, 5, 6, 7, 10, 11, 16, 17, 18]).

Throughout this paper, we denote by Fn the nth Fibonacci number,
for n ∈ N. In particular, we define F0 := 0. It is well known that
Fn = Fn−1 + Fn−2 for all n ≥ 2. From this famous formula, we may
derive a functional equation

(1.1) f(x) = f(x− 1) + f(x− 2),

which may be called the Fibonacci functional equation. A function
f : R → X will be called a Fibonacci function if it satisfies (1.1), for all
x ∈ R, where X is a real vector space.

By α and β we denote the positive root (respectively the negative
root) of the quadratic equation x2 − x− 1 = 0; i.e.,

α =
1 +

√
5

2
and β =

1−
√

5
2

.

For any x ∈ R, [x] stands for the largest integer that does not exceed x.
Here, we will solve the Fibonacci functional equation (1.1) and prove

its Hyers-Ulam stability for the class of functions f : R → X.

2. General solution of Fibonacci equation

Here, let X be a real vector space. We investigate the general solu-
tion of the Fibonacci functional equation (1.1). As we shall see in the
following theorem, the general solution of Fibonacci functional equation
is strongly related to the Fibonacci numbers Fn.

Theorem 2.1. Let X be a real vector space. A function f : R → X is a
Fibonacci function if and only if there exists a function g : [−1, 1) → X
such that
(2.1)

f(x) =

{
F[x]+1g(x− [x]) + F[x]g(x− [x]− 1) (x ≥ 0),

(−1)[x]
[
F−[x]−1g(x− [x])− F−[x]g(x− [x]− 1)

]
(x < 0).
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Proof. Since α + β = 1 and αβ = −1, it follows from (1.1) that

(2.2)

{
f(x)− αf(x− 1) = β [f(x− 1)− αf(x− 2)] ,

f(x)− βf(x− 1) = α [f(x− 1)− βf(x− 2)] .

By mathematical induction, we can easily verify that

(2.3)

{
f(x)− αf(x− 1) = βn [f(x− n)− αf(x− n− 1)] ,

f(x)− βf(x− 1) = αn [f(x− n)− βf(x− n− 1)] ,

for all x ∈ R and n ∈ {0, 1, 2, . . .}. If we substitute x + n (n ≥ 0) for
x in (2.3) and divide the resulting equations by βn (resp. αn), and if
we then substitute −m for n in the resulting equations, then we obtain
the equations in (2.3) with m in place of n, where m ∈ {0,−1,−2, . . .}.
Therefore, the equations in (2.3) are true for all x ∈ R and n ∈ Z.

We multiply the first and the second equations of (2.3) by β and α,
respectively. If we subtract the first resulting equation from the second
one, then we obtain:

(2.4) f(x) =
αn+1 − βn+1

α− β
f(x− n) +

αn − βn

α− β
f(x− n− 1),

for any x ∈ R and n ∈ Z.
For any given x ≥ 0, if we put n = [x] in (2.4), then it follows from

Binet’s formula (see [13, Theorem 5.6]) that

f(x) = F[x]+1f(x− [x]) + F[x]f(x− [x]− 1).

If x < 0, then we put n = [x] = −|[x]| in (2.4). Since αβ = −1, by
Binet’s formula, we have,

f(x) =
α−|[x]|+1 − β−|[x]|+1

α− β
f(x− [x]) +

α−|[x]| − β−|[x]|

α− β
f(x− [x]− 1)

=
−1

(αβ)|[x]|−1

α|[x]|−1 − β|[x]|−1

α− β
f(x− [x])

+
−1

(αβ)|[x]|
α|[x]| − β|[x]|

α− β
f(x− [x]− 1)

= (−1)[x]F|[x]|−1f(x− [x]) + (−1)[x]+1F|[x]|f(x− [x]− 1)

= (−1)[x]
[
F−[x]−1f(x− [x])− F−[x]f(x− [x]− 1)

]
.

Since 0 ≤ x− [x] < 1 and −1 ≤ x− [x]− 1 < 0, if we define a function
g : [−1, 1) → X by g := f |[−1,1), then we can see that f is a function of
the form (2.1).
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Now, we assume that f is a function of the form (2.1), where g :
[−1, 1) → X is an arbitrary function. We show that f is a Fibonacci
function.

First, we assume that x ≥ 2. Since x > x − 1 > x − 2 ≥ 0 and
(x− 1)− [x− 1] = x− [x], it follows from (2.1) that

f(x) = F[x]+1g(x− [x]) + F[x]g(x− [x]− 1),

f(x− 1) = F[x]g(x− [x]) + F[x]−1g(x− [x]− 1),

f(x− 2) = F[x]−1g(x− [x]) + F[x]−2g(x− [x]− 1).

Thus, we get

f(x− 1) + f(x− 2)
=

(
F[x] + F[x]−1

)
g(x− [x]) +

(
F[x]−1 + F[x]−2

)
g(x− [x]− 1)

= F[x]+1g(x− [x]) + F[x]g(x− [x]− 1)

= f(x).

Now, suppose that 1 ≤ x < 2. For this case, we have 0 ≤ x − 1 < 1
and −1 ≤ x − 2 < 0. Since [x] = 1, [x − 1] = 0 and [x − 2] = −1, it
follows from (2.1) that

f(x) = F2g(x− [x]) + F1g(x− [x]− 1),

f(x− 1) = F1g(x− [x]) + F0g(x− [x]− 1),

f(x− 2) = − [F0g(x− [x])− F1g(x− [x]− 1)] .

Consequently, since F0 = 0 and F1 = F2 = 1, we obtain:

f(x− 1) + f(x− 2) = F2g(x− [x]) + F1g(x− [x]− 1) = f(x).

If 0 ≤ x < 1, then −1 ≤ x−1 < 0 and −2 ≤ x−2 < −1. In this case,
we have [x] = 0, [x − 1] = −1 and [x − 2] = −2. Hence, (2.1) implies
that 

f(x) = F1g(x− [x]),

f(x− 1) = F1g(x− [x]− 1),

f(x− 2) = F1g(x− [x])− F2g(x− [x]− 1).

Therefore, we have

f(x− 1) + f(x− 2) = F1g(x− [x]) = f(x).



Hyers-Ulam stability of Fibonacci functional equation 221

Finally, assume that x < 0. In view of (2.1), we see that
f(x) = (−1)[x]

[
F−[x]−1g(x− [x])− F−[x]g(x− [x]− 1)

]
,

f(x− 1) = (−1)[x]−1
[
F−[x]g(x− [x])− F−[x]+1g(x− [x]− 1)

]
,

f(x− 2) = (−1)[x]−2
[
F−[x]+1g(x− [x])− F−[x]+2g(x− [x]− 1)

]
.

These equations yield:

f(x− 1) + f(x− 2)

= (−1)[x]
[(

F−[x]+1 − F−[x]

)
g(x− [x])

−
(
F−[x]+2 − F−[x]+1

)
g(x− [x]− 1)

]
= (−1)[x]

[
F−[x]−1g(x− [x])− F−[x]g(x− [x]− 1)

]
= f(x),

which completes our proof. �

3. Hyers-Ulam stability of Fibonacci equation

As already stated, α denotes the positive root of the quadratic equa-
tion x2 − x − 1 = 0 and β is its negative root. We can prove the
Hyers-Ulam stability of the Fibonacci functional equation (1.1) as we
see in the following theorem.

Theorem 3.1. Let (X, ‖ · ‖) be a real Banach space. If a function
f : R → X satisfies the inequality,

(3.1) ‖f(x)− f(x− 1)− f(x− 2)‖ ≤ ε,

for all x ∈ R and for some ε > 0, then there exists a Fibonacci function
G : R → X such that

(3.2) ‖f(x)−G(x)‖ ≤
(

1 +
2√
5

)
ε,

for all x ∈ R.

Proof. Analogous to the first equation of (2.2), we get from (3.1):

‖f(x)− αf(x− 1)− β[f(x− 1)− αf(x− 2)]‖ ≤ ε,
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for each x ∈ R. If we replace x by x− k in the last inequality, then we
have,

‖f(x− k)− αf(x− k − 1)− β[f(x− k − 1)− αf(x− k − 2)]‖ ≤ ε

and furthermore,

‖βk[f(x− k)− αf(x− k − 1)]

−βk+1[f(x− k − 1)− αf(x− k − 2)]‖(3.3)

≤ |β|kε,
for all x ∈ R and k ∈ Z. By (3.3), we obviously have,

‖f(x)− αf(x− 1)− βn[f(x− n)− αf(x− n− 1)]‖

≤
n−1∑
k=0

‖βk[f(x− k)− αf(x− k − 1)]

−βk+1[f(x− k − 1)− αf(x− k − 2)]‖(3.4)

≤
n−1∑
k=0

|β|kε,

for x ∈ R and n ∈ N.
For any x ∈ R, (3.3) implies that {βn[f(x − n) − αf(x − n − 1)]}

is a Cauchy sequence (note that |β| < 1). Therefore, we can define a
function G1 : R → X by

G1(x) = lim
n→∞

βn[f(x− n)− αf(x− n− 1)],

since X is complete. In view of the above definition of G1, we obtain:

G1(x− 1) + G1(x− 2)
= β−1 lim

n→∞
βn+1[f(x− (n + 1))− αf(x− (n + 1)− 1)]

+ β−2 lim
n→∞

βn+2[f(x− (n + 2))− αf(x− (n + 2)− 1)]

= β−1G1(x) + β−2G1(x)
= G1(x),

for all x ∈ R. Hence, G1 is a Fibonacci function. If n goes to infinity,
then (3.4) yields:

(3.5) ‖f(x)− αf(x− 1)−G1(x)‖ ≤ 3 +
√

5
2

ε,

for every x ∈ R.
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On the other hand, it also follows from (3.1) that

‖f(x)− βf(x− 1)− α[f(x− 1)− βf(x− 2)]‖ ≤ ε

(see the second equation in (2.2)). Analogous to (3.3), replacing x by
x + k in the above inequality, we have,

‖α−k[f(x + k)− βf(x + k − 1)]

−α−k+1[f(x + k − 1)− βf(x + k − 2)]‖(3.6)

≤ α−kε,

for all x ∈ R and k ∈ Z. By using (3.6), we further obtain:

‖α−n[f(x + n)− βf(x + n− 1)]− [f(x)− βf(x− 1)]‖

≤
n∑

k=1

‖α−k[f(x + k)− βf(x + k − 1)]

−α−k+1[f(x + k − 1)− βf(x + k − 2)]‖(3.7)

≤
n∑

k=1

α−kε,

for x ∈ R and n ∈ N.
On account of (3.6), we see that {α−n[f(x + n)− βf(x + n− 1)]} is a

Cauchy sequence, for any fixed x ∈ R. Hence, we can define a function
G2 : R → X by

G2(x) = lim
n→∞

α−n[f(x + n)− βf(x + n− 1)].

Using the above definition of G2, we get:

G2(x− 1) + G2(x− 2)

= α−1 lim
n→∞

α−(n−1)[f(x + n− 1)− βf(x + (n− 1)− 1)]

+ α−2 lim
n→∞

α−(n−2)[f(x + n− 2)− βf(x + (n− 2)− 1)]

= α−1G2(x) + α−2G2(x)
= G2(x),

for any x ∈ R. So, G2 is also a Fibonacci function. If we let n go to
infinity, then it follows from (3.7) that

(3.8) ‖G2(x)− f(x) + βf(x− 1)‖ ≤
√

5 + 1
2

ε,

for x ∈ R.
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By (3.5) and (3.8), we have,∥∥∥∥f(x)−
[

β

β − α
G1(x)− α

β − α
G2(x)

]∥∥∥∥
=

1
|β − α|

‖(β − α)f(x)− [βG1(x)− αG2(x)]‖

≤ 1
α− β

‖βf(x)− αβf(x− 1)− βG1(x)‖

+
1

α− β
‖αG2(x)− αf(x) + αβf(x− 1)‖

≤
(

1 +
2√
5

)
ε,

for all x ∈ R. We now set:

G(x) =
β

β − α
G1(x)− α

β − α
G2(x),

and it is not difficult to show that G is a Fibonacci function.

Before we prove the uniqueness of the Fibonacci function G of Theo-
rem 3.1, we show the following result.

Lemma 3.2. Let (X, ‖ · ‖) be a real normed space and let u, v ∈ X be
given. If ‖Fn+1u + Fnv‖ ≤ C, for all n ∈ N and for some C ≥ 0, then
αu + v = 0.

Proof. We have,

Fn‖αu + v‖ = ‖Fn+1u + Fnv − Fn+1u + αFnu‖
≤ ‖Fn+1u + Fnv‖+ |Fn+1 − αFn| ‖u‖

≤ C +
∣∣∣∣αn+1 − βn+1

α− β
− α

αn − βn

α− β

∣∣∣∣ ‖u‖
= C + |β|n‖u‖,

for all n ∈ N. Since |β| < 1 and Fn → ∞ as n → ∞, we obtain
αu + v = 0. �

In the following theorem, we prove the uniqueness of the Fibonacci
function G of Theorem 3.1.
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Theorem 3.3. The Fibonacci function G : R → X of Theorem 3.1 is
unique.

Proof. For i ∈ {1, 2}, let Gi : R → X be a Fibonacci function satisfying

(3.9) ‖f(x)−Gi(x)‖ ≤
(

1 +
2√
5

)
ε,

for all x ∈ R. Due to Theorem 2.1, there exist functions gi : [−1, 1) → X
(i ∈ {1, 2}) such that
(3.10)

Gi(x) =

{
F[x]+1gi(x− [x]) + F[x]gi(x− [x]− 1) (x ≥ 0),

(−1)[x]
[
F−[x]−1gi(x− [x])− F−[x]gi(x− [x]− 1)

]
(x < 0),

for i ∈ {1, 2}.
Fix a t with 0 ≤ t < 1. It then follows from (3.9) that

‖G1(n + t)−G2(n + t)‖
≤ ‖G1(n + t)− f(n + t)‖+ ‖f(n + t)−G2(n + t)‖

≤ 2
(

1 +
2√
5

)
ε,

for any n ∈ Z. Furthermore, by (3.10) and the last inequality, we obtain:

‖Fn+1[g1(t)− g2(t)] + Fn[g1(t− 1)− g2(t− 1)]‖
= ‖G1(n + t)−G2(n + t)‖

≤ 2
(

1 +
2√
5

)
ε

and

‖Fn−1[g1(t)− g2(t)]− Fn[g1(t− 1)− g2(t− 1)]‖
= ‖G1(−n + t)−G2(−n + t)‖

≤ 2
(

1 +
2√
5

)
ε,

for each n ∈ N.
According to Lemma 3.2, we have,{

α[g1(t)− g2(t)] + [g1(t− 1)− g2(t− 1)] = 0,

−α[g1(t− 1)− g2(t− 1)] + [g1(t)− g2(t)] = 0



226 Jung

or (
α 1

1 −α

)(
g1(t)− g2(t)

g1(t− 1)− g2(t− 1)

)
=

(
0

0

)
.

Because −α2 − 1 6= 0, we conclude:

g1(t)− g2(t) = g1(t− 1)− g2(t− 1) = 0.

Since 0 ≤ t < 1 is arbitrary, we have g1(t) = g2(t), for any −1 ≤ t < 1;
i.e., it follows from (3.10) that G1(x) = G2(x), for all x ∈ R. �
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