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ON THE CONVERGENCE OF THREE-STEP RANDOM

ITERATIVE PROCESESS WITH ERRORS OF NONSELF

ASYMPTOTICALLY NONEXPANSIVE RANDOM

MAPPINGS

R. A. RASHWAN ∗ AND D. M. ALBAQERI

Communicated by Behzad Djafari-Rouhani

Abstract. In this paper, we prove some strong and weak con-
vergence of three step random iterative scheme with errors to com-
mon random fixed points of three asymptotically nonexpansive non-
self random mappings in a real uniformly convex separable Banach
space.

1. Introduction

Random fixed point theory is playing an increasing role in mathematics
and applied sciences. At present, it received considerable attention due
to enormous application in many important areas such as nonlinear anal-
ysis, probability theory and the study of random equations arising in
various applied areas. Random fixed point theorems for random contrac-
tion mappings on separable complete metric spaces were first proved by
Spacek [29] and Hans [12, 13]. The survey article by Bharucha-Reid [7]
in 1976 attracted the attention of several mathematician and gave wings
to this theory. Itoh [15] extended Spacek’s result and Hans’s theorem
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to multivalued contraction mappings. In an attempt to construct it-
erations for finding fixed points of random operators defined on linear
spaces, random Ishikawa scheme was introduced in [10]. This iteration
and some other random iterations based on the same ideas have been
applied for finding solutions of random operators [10]. Recently, Papa-
georgiou [22], Xu [35], Beg [2–4], Beg and Shahzad [6] and many other
authors have studied the fixed point of random mappings.
The class of asymptotically nonexpansive self-mappings were introduced
by Goebel and Kirk [11] in 1972. Iterative techniques for approximating
fixed points of nonexpansive self-mappings have been studied by vari-
ous authors (see, e.g., [8, 14, 17, 20, 21, 26]). For nonself nonexpansive
mappings, some authors (see, e.g., [16, 18, 28, 31, 36]) have studied the
strong and weak convergence theorems in a Hilbert space or uniformly
convex Banach spaces. Suhu [27] introduced a modified Mann iteration
process to approximate fixed points of asymptotically nonexpansive self-
mappings in a Hilbert space.
The concept of deterministic non-self asymptotically nonexpansive map-
pings was introduced by Chidume, Ofoedu, Zegeye [9] in 2003 as a gen-
eralization of asymptotically nonexpansive self-mappings. They studied
the following iteration process

x1 ∈ C, xn+1 = P ((1− αn)xn + αnT (PT )n−1xn),(1.1)

where T : C → E is an asymptotically nonexpansive nonself-mapping,
{αn} is a real sequence in (0, 1) and P is a nonexpansive retraction from
E to C.
Wang [34] generalized the result of Chidume [9] and obtained some new
results. He defined and studied the following iteration process:

xn+1 = P ((1− αn)xn + αnT1(PT1)n−1yn),

yn = P ((1− βn)xn + βnT2(PT2)n−1xn), x1 ∈ C, n ≥ 1,

where T1, T2 : C → E are asymptotically nonexpansive nonself-mappings
and {αn}, {βn} are real sequences in [0, 1).
In 2009, Thianwan [33] introduced and studied a new class of iterative
scheme. The scheme is defined as follows:

xn+1 = P ((1− αn)yn + αnT1(PT1)n−1yn),

yn = P ((1− βn)xn + βnT2(PT2)n−1xn), x1 ∈ C, n ≥ 1,(1.2)
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where T1, T2 : C → E are asymptotically nonexpansive nonself-mappings
and {αn}, {βn} are real sequences in [0, 1).

Remark 1.1. If T1 = T2 = T and βn = 0, for all n ≥ 1. The iterative
scheme (1.2) reduces to (1.1).

More recently, Rashwan and Altwqi [25] extended the result of Thi-
anwan [33] by introducing the following three-step iteration scheme:

xn+1 = P ((1− αn)yn + αnT1(PT1)n−1yn),

yn = P ((1− βn)zn + βnT2(PT2)n−1zn),

zn = P ((1− γn)xn + γnT3(PT3)n−1xn) , x1 ∈ C, n ≥ 1,(1.3)

where {αn}, {βn} and {γn} are sequences in [0, 1). They studied the
weak and strong convergence theorems of the above iteration under some
conditions.

Remark 1.2. (i) As T2 = T3 and γn = 0, for all n ≥ 1, the iterative
scheme (1.3) reduces to (1.2).
(ii) As T1 = T2 = T3 = T and γn = βn = 0, for all n ≥ 1, the iterative
scheme (1.3) reduces to (1.1).

For random operators, Beg and Abbas [5] studied the different ran-
dom iterative algorithms for weakly contractive and asymptotically non-
expansive random operators on an arbitrary Banach space. They also
established convergence of an implicit random iterative process to a com-
mon fixed point for a finite family of asymptotically quasi-nonexpansive
operators. Plubtieng [23, 24] studied weak and strong convergence the-
orems established for a modified random Noor iterative scheme with
errors for three asymptotically nonexpansive self-mappings in Banach
space defined as follows:

ξn+1(t) = αnT
n
1 (t, ηn(t)) + βnξn(t) + γnfn(t),

ηn(t) = α′nT
n
2 (t, ζn(t)) + β′nξn(t) + γ′nf

′
n(t),

ζn(t) = α′′nT
n
3 (t, ξn(t)) + β′′nξn(t) + γ′′nf

′′
n(t) , n ≥ 1, t ∈ Ω,(1.4)

where T1, T2, T3 : Ω × C → C are three asymptotically nonexpansive
random mappings, ξ1(t) : Ω→ C is a measurable mapping from Ω to C,
{fn(t)}, {f ′n(t)}, {f ′′n(t)} are bounded sequences of measurable functions
from Ω to C and {αn}, {α′n}, {α′′n}, {βn}, {β′n}, {β′′n}, {γn}, {γ′n}, {γ′′n}
are sequences of real numbers in [0, 1] with αn+βn+γn = α′n+β′n+γ′n =
α′′n + β′′n + γ′′n = 1.
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Remark 1.3. If we take T1 = T2 = T3 = T and γn = γ′n = γ′′n = 0, then
(1.4) becomes as the following:

ξn+1(t) = αnT
n(t, ηn(t)) + βnξn(t),

ηn(t) = α′nT
n(t, ζn(t)) + β′nξn(t),

ζn(t) = α′′nT
n(t, ξn(t)) + β′′nξn(t) , n ≥ 1, t ∈ Ω,

which was studied by Beg and Abbas in [5].

For nonself random mappings, Zhou and Wang [37] studied the ap-
proximation of the following iteration process:

ξn+1(t) = P ((1− αn)ξn(t) + αnT (PT )n−1(t, ηn(t))),

ηn(t) = P ((1− βn)ξn(t) + βnT (PT )n−1(t, ξn(t))) , n ≥ 1, t ∈ Ω,

where T : Ω×C → E is an asymptotically nonexpansive nonself random
mapping, ξ1(t) : Ω → C is a measurable mapping from Ω to C, {αn},
{βn} are sequences in [0,1] and P is a nonexpansive retraction from E
to C.
In this paper, we construct a projection type random iteration with er-
rors and study its approximation to common random fixed points of
three nonself asymptotically nonexpansive random mappings in a real
uniformly convex separable Banach space. Our results extend and im-
prove some recent results in [23,25,37].

2. Preliminaries

Let (Ω,Σ) be a measurable space, C a nonempty subset of E. A map-
ping ξ : Ω → C is called measurable if ξ−1(B

⋂
C) ∈ Σ for every Borel

subset B of a Banach space E.
A mapping T : Ω × C → C is said to be random mapping if for each
fixed x ∈ C, the mapping T (., x) : Ω→ C is measurable.
A measurable mapping ξ : Ω→ C is called a random fixed point of the
random mapping T : Ω× C → C if T (t, ξ(t)) = ξ(t) for each t ∈ Ω.
Throughout this paper, we denote the set of all random fixed points of
random mapping T byRF (T ) and the nth iterate T (t, T (t, T (, ...T (t, x))))
of T by Tn(t, x). The letter I denotes the identity random mapping
I : Ω× C → C defined by I(t, x) = x and T 0 = I.

Definition 2.1. [19] A Banach space E is said to satisfy the Opial’s
condition if for any sequence {xn} in E, xn ⇀ x weakly as n→∞ and

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,
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for all y ∈ E with y 6= x.

Definition 2.2. A map T : C → E is called demiclosed at y ∈ E if for
each sequence {xn} in C and each x ∈ E, xn → x and Txn → y imply
that x ∈ C and Tx = y.

Definition 2.3. A mapping T : C → C is completely continuous if and
only if {Txn} has a convergent subsequence for every bounded sequence
{xn} in C.

Definition 2.4. A subset C of E is said to be a retract of E if there
exists a continuous map P : E → C such that Px = x for all x ∈ C.
Note that every closed convex subset of uniformly convex Banach space
is retract. A map P : E → E is a retraction if P 2 = P . It follows that
if a map P is a retraction, then Py = y for all y in the range of P .

Definition 2.5. A mapping T : C → E is said to be semicompact if
for any sequence {xn} in C with lim

n→∞
‖ xn − Txn ‖= 0, there exists a

subsequence {xni} of {xn} such that xni → q ∈ C.

Definition 2.6. [1] A finite family {Ti : i ∈ I} of N continuous ran-

dom operators from Ω × C to E with F =
N⋂
i=1

RF (Ti) 6= ∅, is said to

satisfy condition B if there exists a nondecreasing function f : [0,∞)→
[0,∞) with f(0) = 0, f(r) ≥ 0 for all r ∈ (0,∞) such that for all
t ∈ Ω f(d(ξ(t), F )) ≤ max

1≤i≤N
{‖ξ(t) − Ti (t, ξ(t))‖} for all ξ(t), where

d(ξ(t), F ) = inf{‖ξ(t)− q(t)‖ : q(t) ∈ F =
N⋂
i=1

RF (Ti)}.

Definition 2.7. [9,37] Let C be a nonempty closed convex subset of a
real uniformly convex separable Banach space and let T : Ω×C → E be
a nonself random mapping. Then T is said to be

(1) Nonexpansive random operator if for arbitrary x, y ∈ C, ‖T (t, x)−
T (t, y)‖ ≤ ‖x− y‖ for all t ∈ Ω.

(2) Non-self asymptotically nonexpansive random mapping if there
exists a measurable mapping sequence rn(t) : Ω → [1,∞) with
limn→∞ rn(t) = 1 for each t ∈ Ω such that for arbitrary x, y ∈ C
and t ∈ Ω

‖T (PT )n−1(t, x)− T (PT )n−1(t, y)‖ ≤ rn(t)‖x− y‖, n = 1, 2, · · · .
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(3) Uniformly L-Lipschitzian random mapping if there exists a con-
stant L > 0 such that for arbitrary x, y ∈ C and t ∈ Ω

‖T (PT )n−1(t, x)− T (PT )n−1(t, y)‖ ≤ L‖x− y‖, n = 1, 2, · · · .

(4) Semicompact random mapping if for any sequence of measurable
mappings {ξn} from Ω to C with limn→∞ ‖ξn(t)−T (t, ξn(t))‖ = 0
for all t ∈ Ω there exists a subsequence {ξnj (t)} of {ξn(t)} such
that {ξnj (t)} → {ξn(t)} as j → ∞ for each t ∈ Ω, where {ξ(t)}
is a measurable mapping from Ω to C.

(5) Completely continuous random mapping if and only if {T (t, ξn(t))}
has a convergent subsequence for every bounded sequence {ξn(t)}
in C.

Remark 2.8. Every nonself asymptotically nonexpansive random map-
ping is uniformly L-Lipschitzian, where L = sup

t∈Ω,n≥1
rn(t).

Definition 2.9. Let T1, T2, T3 : Ω × C → E be three nonself random
mappings, where C is a nonempty convex subset of a separable Banach
space E. Let ξ1 : Ω → C be a measurable mapping from Ω to C. The
projection random iteration scheme with errors is defined for t ∈ Ω as
follows:

ξn+1(t) = P ((1−αn−σn)ηn(t)+αnT1(PT1)n−1(t,ηn(t))+σnfn(t)),

ηn(t) = P ((1−βn−δn)ζn(t)+βnT2(PT2)n−1(t,ζn(t))+δngn(t)),

ζn(t) = P ((1−γn−λn)ξn(t)+γnT3(PT3)n−1(t,ξn(t))+λnhn(t)) ,n≥1,(2.1)

where {αn}, {βn}, {γn}, {σn}, {δn} and {λn} are sequences in [0, 1],
{fn}, {gn} and {hn} are bounded sequence of measurable functions from
Ω to C, and P is a nonexpansive retraction from E to C.

Clearly, ξn, ηn and ζn are measurable sequences from Ω to C.
The following lemmas are useful for proving our main results.

Lemma 2.10. [32] Let {an}, {bn} and {mn} be nonnegative real se-
quences satisfying

an+1 ≤ (1 +mn)an + bn,

for all n ≥ 1. If
∞∑
n=1

mn <∞ and
∞∑
n=1

bn <∞, then

(1) lim
n→∞

an exists.

(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.
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Lemma 2.11. [27] Let E be a uniformly convex Banach space, and
0 ≤ p ≤ tn ≤ q < 1 for all positive integer n ≥ 1. Also suppose
that {xn} and {yn} are two sequences of E such that lim sup

n→∞
‖xn‖ ≤ r,

lim sup
n→∞

‖yn‖ ≤ r and lim
n→∞

‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0,

then lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.12. [9] Let E be a uniformly convex Banach space, C a
nonempty closed convex subset of E and T : C → E a nonself asymptot-
ically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and kn → 1
as n→∞. Then I − T is demiclosed at zero, i.e., if xn → x weakly and
‖xn− Txn‖ → 0 strongly, then x ∈ F (T ), where F (T ) is the set of fixed
points of T .

Lemma 2.13. [30] Let E be a Banach space which satisfies Opial’s
condition and let {xn} be a sequence in E. Let u, v ∈ E be such that
lim
n→∞

‖xn − u‖ and lim
n→∞

‖xn − v‖ exists. If {xnk
} and {xmk

} are sub-

sequences of {xn} which converge weakly to u and v, respectively, then
u = v.

3. Main Results

In this section, we will prove the strong and weak convergence of
the iteration scheme (2.1) to a common random fixed point for three
asymptotically nonexpansive nonself random mappings in a uniformly
convex separable Banach space.

Lemma 3.1. Let E be a real uniformly convex separable Banach space
and let C be a nonempty closed convex subset of E with P as a nonexpan-
sive retraction. Let Ti : Ω × C → E, i = 1, 2, 3 be three asymptotically
nonexpansive nonself random mappings with sequences of measurable

mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(t) − 1) < ∞, rin(t) → 1 as

n → ∞, for all t ∈ Ω and i = 1, 2, 3. Suppose that
3⋂
i=1

RF (Ti) 6= ∅ and

let {ξn(t)} be the sequence defined in (2.1) with the additional assump-

tion
∞∑
n=1

σn <∞,
∞∑
n=1

δn <∞ and
∞∑
n=1

λn <∞. Then lim
n→∞

‖ξn(t)− ξ(t)‖

exists for all ξ(t) ∈
3⋂
i=1

F (Ti).
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Proof. Let ξ(t) ∈
3⋂
i=1

F (Ti). Since {fn}, {gn} and {hn} are bounded

sequences of measurable function from Ω to C, for each t ∈ Ω we can
put

Mn(t) = sup
n≥1
‖fn(t)− ξ(t)‖ ∨ sup

n≥1
‖gn(t)− ξ(t)‖

∨ sup
n≥1
‖hn(t)− ξ(t)‖.(3.1)

Then Mn(t) < ∞ for each t ∈ Ω and n ≥ 1. Also, for each n ≥ 1 let
rn(t) = max{rin(t) : i = 1, 2, 3}. Setting rn(t) = 1 + un(t). Thus by the

hypothesis of the theorem we have
∞∑
n=1

un(t) =
∞∑
n=1

(rn(t)− 1) <∞.

Using (2.1) and (3.1) for ξ(t) ∈
3⋂
i=1

F (Ti) and t ∈ Ω we have

‖ζn(t)−ξ(t)‖ = ‖P ((1−γn−λn)ξn(t)+γnT3(PT3)n−1(t,ξn(t))+λnhn(t))−ξ(t)‖

≤ ‖(1−γn−λn)ξn(t)+γnT3(PT3)n−1(t,ξn(t))+λnhn(t)−ξ(t)‖

= ‖(1−γn−λn)(ξn(t)−ξ(t))+γn(T3(PT3)n−1(t,ξn(t))−ξ(t))

+ λn(hn(t)−ξ(t))‖

≤ (1−γn−λn)‖ξn(t)−ξ(t)‖+γn‖T3(PT3)n−1(t,ξn(t))−ξ(t)‖

+ λn‖hn(t)−ξ(t)‖

≤ (1−γn−λn)‖ξn(t)−ξ(t)‖+γnr3n (t)‖ξn(t)−ξ(t)‖+λnMn(t)

≤ (1−γn−λn)‖ξn(t)−ξ(t)‖+γnrn(t)‖ξn(t)−ξ(t)‖+λnMn(t)

≤ (1−γn−λn)‖ξn(t)−ξ(t)‖+γn(1+un(t))‖ξn(t)−ξ(t)‖+λnMn(t)

≤ (1−λn+γnun(t))‖ξn(t)−ξ(t)‖+λnMn(t)

≤ (1+un(t))‖ξn(t)−ξ(t)‖+λnMn(t).(3.2)

Again using (2.1) and (3.2) we obtain

‖ηn(t)−ξ(t)‖ = ‖P ((1−βn−δn)ζn(t)+βnT2(PT2)n−1(t,ζn(t))+δngn(t))−ξ(t)‖

≤ (1−βn−δn)‖ζn(t)−ξ(t)‖+βn‖T2(PT2)n−1(t,ζn(t))−ξ(t)‖

+ δn‖gn(t)−ξ(t)‖

≤ (1−βn−δn)‖ζn(t)−ξ(t)‖+βnr2n (t)‖ζn(t)−ξ(t))‖+δnMn(t)

≤ (1−βn−δn)‖ζn(t)−ξ(t)‖+βn(1+un(t))‖ζn(t)−ξ(t))‖+δnMn(t)

≤ (1+un(t))‖ζn(t)−ξ(t))‖+δnMn(t)

≤ (1+un(t))[(1+un(t))‖ξn(t)−ξ(t)‖+λnMn(t)]+δnMn(t)

= (1+un(t))2‖ξn(t)−ξ(t)‖+(1+un(t))λnMn(t)+δnMn(t)

= (1+2un(t)+u2n(t))‖ξn(t)−ξ(t)‖+An(t),(3.3)
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where An(t) = (1+un(t))λnMn(t)+δnMn(t). Note that
∞∑
n=1

An(t) <∞.

Thus by using (3.3) we get

‖ξn+1(t)−ξ(t)‖ = ‖P ((1−αn−σn)ηn(t)+αnT1(PT1)n−1(t,ηn(t))+σnfn(t))−ξ(t)‖

≤ (1−αn−σn)‖ηn(t)−ξ(t)‖+αn‖T1(PT1)n−1(t,ηn(t))−ξ(t)‖

+ σn‖fn(t))−ξ(t)‖

≤ (1−αn−σn)‖ηn(t)−ξ(t)‖+αnr1n (t)‖ηn(t)−ξ(t)‖+σnMn(t)

≤ (1−αn−σn)‖ηn(t)−ξ(t)‖+αn(1+un(t))‖ηn(t)−ξ(t)‖+σnMn(t)

≤ (1+un(t))‖ηn(t)−ξ(t)‖+σnMn(t)

≤ (1+un(t))[(1+2un(t)+u2n(t))‖ξn(t)−ξ(t)‖+An(t)]+σnMn(t)

= (1+3un(t)+3u2n(t)+u3n(t))‖ξn(t)−ξ(t)‖+(1+un(t))An(t)+σnMn(t)

= (1+Bn(t))‖ξn(t)−ξ(t)‖+Dn(t),

where Bn(t) = 3un(t) + 3u2
n(t) + u3

n(t) and Dn(t) = (1 + un(t))An(t) +

σnMn(t). Since
∞∑
n=1

Bn(t) < ∞ and
∞∑
n=1

Dn(t) < ∞, it follows from

lemma 2.10 that lim
n→∞

‖ξn(t) − ξ(t)‖ exists for all ξ(t) ∈
3⋂
i=1

F (Ti) and

t ∈ Ω. �

Lemma 3.2. Let E be a real uniformly convex separable Banach space
and let C be a nonempty closed convex subset of E with P as a nonexpan-
sive retraction. Let Ti : Ω × C → E, i = 1, 2, 3 be three asymptotically
nonexpansive nonself random mappings with sequences of measurable

mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(t) − 1) < ∞, rin(t) → 1 as

n → ∞, for all t ∈ Ω and i = 1, 2, 3. Suppose that
3⋂
i=1

RF (Ti) 6= ∅ and

{ξn(t)} is the sequence defined as in (2.1) with the additional assump-

tions
∞∑
n=1

σn < ∞,
∞∑
n=1

δn < ∞ and
∞∑
n=1

λn < ∞. Then lim
n→∞

‖ξn(t) −

Ti(t, ξn(t))‖ = 0, for each t ∈ Ω and i = 1, 2, 3.

Proof. Let ξ(t) ∈
3⋂
i=1

RF (Ti). Since {fn}, {gn} and {hn} are bounded

sequences of measurable functions from Ω to C, for each t ∈ Ω we can
put

Mn(t) = sup
n≥1
‖fn(t)− ξ(t)‖ ∨ sup

n≥1
‖gn(t)− ξ(t)‖ ∨ sup

n≥1
‖hn(t)− ξ(t)‖.
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Then Mn(t) < ∞ for each t ∈ Ω. Also, for each n ≥ 1 let rn(t) =
max{rin(t) : i = 1, 2, 3}. Let rn(t) = 1+un(t). Then by the hypothesises

of the theorem we have
∞∑
n=1

un(t) =
∞∑
n=1

(rn(t) − 1) < ∞ for each t ∈ Ω.

By Lemma 3.1, we see that limn→∞ ‖ξn(t)− ξ(t)‖ exists for each t ∈ Ω.
Assume that limn→∞ ‖ξn(t)− ξ(t)‖ = c. From (3.2), we have

‖ζn(t)− ξ(t)‖ ≤ (1 + un(t))‖ξn(t)− ξ(t)‖+ λnMn(t).

Taking lim sup on both sides of the above inequality, (where limn→∞ λn =
0), we have

lim sup
n→∞

‖ζn(t)− ξ(t)‖ ≤ c.(3.4)

In addition we see that ‖T2(PT2)n−1(t, ζn(t)) − ξ(t))‖ ≤ r2n(t)‖ζn(t) −
ξ(t)‖. Taking the lim sup on both sides in this inequality, we have

lim sup
n→∞

‖T2(PT2)n−1(t, ζn(t))− ξ(t)‖ ≤ c.(3.5)

Similarly, using (3.3), we have

‖ηn(t)− ξ(t)‖ ≤ (1 + 2un(t) + u2
n(t))‖ξn(t)− ξ(t)‖+An(t).

Taking lim sup on both sides in the above inequality, (where lim
n→∞

An(t) =

0), we have

lim sup
n→∞

‖ηn(t)− ξ(t)‖ ≤ c.(3.6)

In addition we have ‖T1(PT1)n−1(t, ηn(t)) − ξ(t)‖ ≤ r1n‖ηn(t) − ξ(t)‖.
Taking lim sup on both sides in the above inequality, we have

lim sup
n→∞

‖T1(PT1)n−1(t, ηn(t))− ξ(t)‖ ≤ c.(3.7)

Since limn→∞(σn) = 0, it follows from (3.7) that

lim sup
n→∞

‖T1(PT1)n−1(t, ηn(t))− ξ(t) + σn(fn(t)− ηn(t))‖

≤ lim sup
n→∞

‖T1(PT1)n−1(t, ηn(t))− ξ(t)‖ ≤ c.(3.8)

In addition by (3.6) we have

lim sup
n→∞

‖ηn(t)− ξ(t) + σn(fn(t)− ηn(t))‖

≤ lim sup
n→∞

‖ηn(t)− ξ(t)‖ ≤ c.(3.9)



On the convergence of three-step 441

Now, using (2.1) we have

‖ξn+1(t)−ξ(t)‖= ‖P ((1−αn−σn)ηn(t)+αnT1(PT1)n−1(t,ηn(t))+σnfn(t))−ξ(t)‖

≤ ‖(1−αn−σn)ηn(t)+αnT1(PT1)n−1(t,ηn(t))+σnfn(t))−ξ(t)‖

= ‖(1−αn)ηn(t)−(1−αn)ξ(t)−σnηn(t)+σnfn(t)−αnσnfn(t)

− αnσnηn(t)+αnT1(PT1)n−1(t,ηn(t))−αnξ(t)+αnσnfn(t)−αnσnηn(t)‖

= ‖(1−αn)(ηn(t)−ξ(t)+σn(fn(t)−ηn(t)))

+ αn(T1(PT1)n−1(t,ηn(t))−ξ(t)+σn(fn(t)−ηn(t)))‖.

Taking lim inf on both sides of the above inequality, we obtain

c ≤ lim inf
n→∞

‖(1− αn)(ηn(t)− ξ(t) + σn(fn(t)− ηn(t)))

+ αn(T1(PT1)n−1(t, ηn(t))− ξ(t) + σn(fn(t)− ηn(t)))‖.(3.10)

On the other hand, using (3.8) and (3.9) we get

lim sup
n→∞

‖(1−αn)(ηn(t)−ξ(t)+σn(fn(t)−ηn(t)))

+ αn(T1(PT1)n−1(t,ηn(t))−ξ(t)+σn(fn(t)−ηn(t)))‖

≤ (1−αn) lim supn→∞ ‖ηn(t)−ξ(t)+σn(fn(t)−ηn(t))‖

+ αn lim supn→∞ ‖T1(PT1)n−1(t,ηn(t))−ξ(t)+σn(fn(t)−ηn(t))‖≤c.

(3.11)

Both inequalties (3.10) and (3.11) imply that

lim
n→∞

‖(1− αn)(ηn(t)− ξ(t) + σn(fn(t)− ηn(t)))

+αn(T1(PT1)n−1(t, ηn(t))− ξ(t) + σn(fn(t)− ηn(t)))‖ = c.

(3.12)

It follows from (3.8),(3.9),(3.12) and Lemma (2.11) that

lim
n→∞

‖T1(PT1)n−1(t, ηn(t))− ηn(t)‖ = 0.(3.13)

In addition we have ‖T3(PT3)n−1(t, ξn(t))− ξ(t)‖ ≤ r3n(t)‖ξn(t)− ξ(t)‖.
Taking lim sup on both sides in the above inequality, we have

lim sup
n→∞

‖T3(PT3)n−1(t, ξn(t))− ξ(t)‖ ≤ c.(3.14)
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Again using (2.1) we get

‖ξn+1(t)−ξ(t)‖ = ‖P ((1−αn−σn)ηn(t)+αnT1(PT1)n−1(t,ηn(t))+σnfn(t))−ξ(t)‖

≤ (1−αn−σn)‖ηn(t)−ξ(t)‖+αn‖T1(PT1)n−1(t,ηn(t))−ξ(t)‖

+ σn‖fn(t))−ξ(t)‖

= (1−αn−σn)‖ηn(t)−ξ(t)‖

+ αn‖T1(PT1)n−1(t,ηn(t))−ηn(t)+ηn(t)−ξ(t)‖+σn‖fn(t)−ξ(t)‖

≤ (1−αn−σn)‖ηn(t)−ξ(t)‖+αn‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖

+ αn‖ηn(t)−ξ(t)‖+σn‖fn(t)−ξ(t)‖

≤ (1−σn)‖ηn(t)−ξ(t)‖+‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖+σn‖fn(t)−ξ(t)‖

≤ ‖ηn(t)−ξ(t)‖+‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖+σn‖fn(t)−ξ(t)‖.

Since lim
n→∞

‖ξn+1(t) − ξ(t)‖ = c, by taking lim inf on both sides of the

above inequality we have

lim inf
n→∞

‖ηn(t)− ξ(t)‖ ≥ c.(3.15)

It follows from (3.6) and (3.15) that

lim
n→∞

‖ηn(t)− ξ(t)‖ = c.(3.16)

Thus

‖ηn(t)−ξ(t)‖ = ‖P ((1−βn−δn)ζn(t)+βnT2(PT2)n−1(t,ζn(t))+δngn(t))−ξ(t)‖

≤ ‖(1−βn−δn)ζn(t)+βnT2(PT2)n−1(t,ζn(t))+δngn(t)−ξ(t)‖

= ‖(1−βn)(ζn(t)−ξ(t)+δn(gn(t)−ζn(t)))

+ βn(T2(PT2)n−1(t,ζn(t))−ξ(t)+δn(gn(t)−ζn(t)))‖.

Taking lim inf on both sides in the above inequality and using (3.16) we
have

c ≤ lim inf
n→∞

‖(1− βn)(ζn(t)− ξ(t) + δn(gn(t)− ζn(t)))

+ βn(T2(PT2)n−1(t, ζn(t))− ξ(t) + δn(gn(t)− ζn(t))‖.(3.17)
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On the other hand, using (3.4) and (3.5) we obtain

lim supn→∞ ‖(1−βn)(ζn(t)−ξ(t)+δn(gn(t)−ζn(t)))

+ βn(T2(PT2)n−1(t,ζn(t))−ξ(t)+δn(gn(t)−ζn(t)))‖

≤ lim supn→∞(1−βn)‖ζn(t)−ξ(t)+δn(gn(t)−ζn(t))‖

+ βn lim supn→∞ ‖T2(PT2)n−1(t,ζn(t))−ξ(t)+δn(gn(t)−ζn(t))‖≤c.

(3.18)

Both inequalities (3.17) and (3.18) imply that

limn→∞ ‖(1−βn)(ζn(t)−ξ(t)+δn(gn(t)−ζn(t)))

+βn(T2(PT2)n−1(t,ζn(t))−ξ(t)+δn(gn(t)−ζn(t)))‖=c

Using lemma 2.11, we have

lim
n→∞

‖T2(PT2)n−1(t, ζn(t))− ζn(t)‖ = 0.(3.19)

It follows that

‖ηn(t)−ξ(t)‖ = ‖P ((1−βn−δn)ζn(t)+βnT2(PT2)n−1(t,ζn(t))+δngn(t))−ξ(t)‖

≤ (1−βn−δn)‖ζn(t)−ξ(t)‖+βn‖T2(PT2)n−1(t,ζn(t))−ζn(t)+ζn(t)−ξ(t))‖

+ δn‖gn(t)−ξ(t)‖

≤ (1−βn−δn)‖ζn(t)−ξ(t)‖+βn‖T2(PT2)n−1(t,ζn(t))−ζn(t)‖

+ βn‖ζn(t)−ξ(t))‖+δn‖gn(t)−ξ(t)‖

≤ ‖ζn(t)−ξ(t)‖+‖T2(PT2)n−1(t,ζn(t))−ζn(t)‖+δn‖gn(t)−ξ(t)‖.

Taking lim inf on both sides in the above inequality and using (3.19) we
get

c ≤ lim inf
n→∞

‖ζn(t)− ξ(t)‖.(3.20)

From (3.4) and (3.20), we get that

limn→∞‖ζn(t)− ξ(t)‖ = c.(3.21)

Similarly, by using (3.14), (3.21) and the same arguments as above we
get

lim
n→∞

‖(1−γn)(ξn(t)−ξ(t)+λn(hn(t)−ξn(t)))

+ γn(T3(PT3)n−1(t,ξn(t))−ξ(t)+λn(hn(t)−ξn(t)))‖=c.
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By Lemma (2.11) this implies that

limn→∞‖(T3(PT3)n−1(t, ξn(t))− ξn(t)‖ = 0.(3.22)

Now, using (3.22) we obtain

‖ζn(t)−ξn(t)‖ = ‖P ((1−γn−λn)ξn(t)+γnT3(PT3)n−1(t,ξn(t))+λnhn(t))−ξn(t)‖

≤ (1−γn−λn)‖ξn(t)−ξn(t)‖+γn‖T3(PT3)n−1(t,ξn(t))−ξn(t)‖

+ λn‖hn(t)−ξn(t)‖.

→ 0(as n→∞).(3.23)

Also, (3.19) implies

‖ηn(t)−ζn(t)‖ = ‖P ((1−βn−δn)ζn(t)+βnT2(PT2)n−1(t,ζn(t))+δngn(t))−ζn(t)‖

≤ (1−βn−δn)‖ζn(t)−ζn(t)‖+βn‖T2(PT2)n−1(t,ζn(t))−ζn(t)‖

+ δn‖gn(t)−ζn(t)‖.

→ 0(as n→∞).(3.24)

From (3.23) and (3.24), we obtain

‖ηn(t)− ξn(t)‖ ≤ ‖ηn(t)− ζn(t)‖+ ‖ζn(t)− ξn(t)‖.
→ 0 (as n→∞).(3.25)

In addition we have

‖T1(PT1)n−1(t,ξn(t))−ξn(t)‖ ≤ ‖T1(PT1)n−1(t,ξn(t))−ηn(t)‖+‖ηn(t)−ξn(t)‖

= ‖T1(PT1)n−1(t,ξn(t))−T1(PT1)n−1(t,ηn(t))

+ T1(PT1)n−1(t,ηn(t))−ηn(t)‖+‖ηn(t)−ξn(t)‖

≤ ‖T1(PT1)n−1(t,ξn(t))−T1(PT1)n−1(t,ηn(t))‖

+ ‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖+‖ηn(t)−ξn(t)‖

≤ r1n‖ξn(t)−ηn(t))‖+‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖

+ ‖ηn(t)−ξn(t)‖.

→ 0 (as n→∞).(3.26)
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Using (3.13) and (3.25) we have

‖ξn+1(t)−ξn(t)‖ ≤ (1−αn−σn)‖ηn(t)−ξn(t)‖+αn‖T1(PT1)n−1(t,ηn(t))−ξn(t)‖

+ σn‖fn(t))−ξn(t)‖

≤ (1−αn−σn)‖ηn(t)−ξn(t)‖+αn‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖

+ αn‖ηn(t)−ξn(t)‖+σn‖fn(t))−ξn(t)‖

≤ ‖ηn(t)−ξn(t)‖+‖T1(PT1)n−1(t,ηn(t))−ηn(t)‖

+ σn‖fn(t))−ξn(t)‖

→ 0 (as n→∞).(3.27)

Also using (3.27) and (3.26) we get,

‖ξn+1(t)−T1(PT1)n−1(t,ξn+1(t))‖ = ‖ξn+1(t)−ξn(t)+ξn(t)−T1(PT1)n−1(t,ξn(t))

+ T1(PT1)n−1(t,ξn(t))−T1(PT1)n−1(t,ξn+1(t))‖

≤ ‖ξn+1(t)−ξn(t)‖

+ ‖T1(PT1)n−1(t,ξn+1(t))−T1(PT1)n−1(t,ξn(t))‖

+ ‖T1(PT1)n−1(t,ξn(t))−ξn(t)‖

≤ ‖ξn+1(t)−ξn(t)‖+r1n (t)‖ξn+1(t)−ξn(t)‖

+ ‖T1(PT1)n−1(t,ξn(t))−ξn(t)‖

→ 0 (as n→∞).(3.28)

In addition we have

‖ξn+1(t)−T1(PT1)n−2(t,ξn+1(t))‖ = ‖ξn+1(t)−ξn(t)+ξn(t)−T1(PT1)n−2(t,ξn(t))

+ T1(PT1)n−2(t,ξn(t))−T1(PT1)n−2(t,ξn+1(t))‖

≤ ‖ξn+1(t)−ξn(t)‖

+ ‖T1(PT1)n−2(t,ξn+1(t))−T1(PT1)n−2(t,ξn(t))‖

+ ‖T1(PT1)n−2(t,ξn(t))−ξn(t)‖

≤ ‖ξn+1(t)−ξn(t)‖

+ L‖ξn+1(t)−ξn(t)‖+‖T1(PT1)n−2(t,ξn(t))−ξn(t)‖,

where L = sup {r1n(t) : n ≥ 1, t ∈ Ω}. It follows from (3.27) and (3.28)
that

lim
n→∞

‖ξn+1(t)− T1(PT1)n−2(t, ξn+1(t))‖ = 0.(3.29)
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We denote the random identity map by I = (PT1)1−1 : Ω× C → C. It
follows by the inequalites (3.28) and (3.29) that

‖ξn+1(t)−T1(t,ξn+1(t))‖ ≤ ‖ξn+1(t)−T1(PT1)n−1(t,ξn+1(t))‖

+ ‖T1(PT1)n−1(t,ξn+1(t))−T1(t,ξn+1(t))‖

≤ ‖ξn+1(t)−T1(PT1)n−1(t,ξn+1(t))‖

+ ‖T1(PT1)1−1(PT1)n−1(t,ξn+1(t))−T1(PT1)1−1(t,ξn+1(t))‖

≤ ‖ξn+1(t)−T1(PT1)n−1(t,ξn+1(t))‖

+ L‖(PT1)n−1(t,ξn+1(t))−ξn+1(t)‖

= ‖ξn+1(t)−T1(PT1)n−1(t,ξn+1(t))‖

+ L‖(PT1)(PT1)n−2(t,ξn+1(t))−P (ξn+1(t))‖

≤ ‖ξn+1(t)−T1(PT1)n−1(t,ξn+1(t))‖

+ L‖T1(PT1)n−2(t,ξn+1(t))−ξn+1(t)‖

→ 0 (as n→∞).

It follows that lim
n→∞

‖ξn(t) − T1(t, ξn(t))‖ = 0. Similarly, we can prove

that lim
n→∞

‖ξn(t) − T2(t, ξn(t))‖ = 0 and lim
n→∞

‖ξn(t) − T3(t, ξn(t))‖ =

0. �

Theorem 3.3. Let E be a real uniformly convex separable Banach space
and let C be a nonempty closed convex subset of E with P as a nonexpan-
sive retraction. Let Ti : Ω × C → E, i = 1, 2, 3 be three asymptotically
nonexpansive nonself random mappings with sequences of measurable

mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(t) − 1) < ∞, rin(t) → 1 as

n → ∞, for all t ∈ Ω and i = 1, 2, 3. Suppose that
3⋂
i=1

RF (Ti) 6= ∅ and

{ξn(t)}, {ηn(t)} and {ζn(t)} are the sequences defined in (2.1) where αn,

βn, γn are sequences in [ε, 1− ε] for some ε > 0,
∞∑
n=1

σn <∞,
∞∑
n=1

δn <∞

and
∞∑
n=1

λn <∞. If one of Tis, i = 1, 2, 3 is completely continuous then

{ξn(t)},{ηn(t)} and {ζn(t)} converge to a common random fixed point
of T1, T2 and T3.

Proof. By Lemma 3.1, {ξn(t)} is bounded. In addition, by lemma 3.2,
lim
n→∞

‖ξn(t) − Ti(t, ξn(t))‖ = 0, i = 1, 2, 3, and {Ti(t, ξn(t))}, i = 1, 2, 3
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are also bounded. If T1 is completely continuous, there exists a subse-
quence {T1(t, ξnj (t))} of {T1(t, ξn(t))} such that T1(t, ξnj (t)) → ξ(t) as
j → ∞. From Lemma 3.2, we have that lim

n→∞
‖ξnj (t) − Ti(t, ξnj (t))‖ =

0, i = 1, 2, 3. It follows from Lemma 2.12, that ξ(t) = Ti(t, ξ(t)),
i = 1, 2, 3. So by the continuity of T1, for i = 1, 2, 3 we have

‖ξnj (t)− ξ(t)‖ ≤ ‖ξnj (t)− Ti(t, ξnj (t))‖+ ‖Ti(t, ξnj (t))− ξ(t)‖
→ 0 (as n→∞).

Furthermore, by Lemma 3.1, lim
n→∞

‖ξn(t))−ξ(t)‖ exists. Thus lim
n→∞

‖ξn(t))

− ξ(t)‖ = 0, for all t ∈ Ω and since ξ(t) is a pointwise limit of the
measurable mapping sequence {ξn(t)}, ξ(t) is measurable and therefore

ξ(t) ∈
3⋂
i=1

RF (Ti). It follows from (3.25) that

‖ηn(t)− ξ(t)‖ ≤ ‖ηn(t)− ξn(t)‖+ ‖ξn(t)− ξ(t)‖,
→ 0 (as n→∞),

and using (3.23) we get

‖ζn(t)− ξ(t)‖ ≤ ‖ζn(t)− ξn(t)‖+ ‖ξn(t)− ξ(t)‖
→ 0 (as n→∞).

�

Theorem 3.4. Let E be a real uniformly convex separable Banach
space and let C be a nonempty closed convex subset of E with P as
a nonexpansive retraction. Let Ti : Ω × C → E, i = 1, 2, 3 be three
asymptotically nonexpansive nonself random mappings with sequences

of measurable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(t) − 1) < ∞,

rin(t) → 1 as n → ∞, for all t ∈ Ω and i = 1, 2, 3. Suppose that
3⋂
i=1

RF (Ti) 6= ∅ and, {ξn(t)}, {ηn(t)} and {ζn(t)} are the sequences de-

fined in (2.1), where αn, βn, γn are sequences in [ε, 1− ε] for some ε > 0

and
∞∑
n=1

σn < ∞,
∞∑
n=1

δn < ∞ and
∞∑
n=1

λn < ∞. If one of Tis, i = 1, 2, 3,

is semicompact, then {ξn(t)}, {ηn(t)} and {ζn(t)} converge to a common
random fixed point of T1, T2 and T3.

Proof. By Lemmas 3.1 and 3.2, {ξn(t)} is bounded and lim
n→∞

‖ξn(t) −
Ti(t, ξn(t))‖ = 0, i = 1, 2, 3. Since T1 or T2 or T2 is semicompact,
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there exists subsequence {ξnj (t)} of {ξn(t)} such that {ξnj (t)} con-
verges strongly to {ξ(t)} for all t ∈ Ω. Then by Lemma 2.12 we have
ξ(t) = Ti(t, ξ(t)), i = 1, 2, 3, and since ξ(t) is a pointwise limit of the
measurable mapping sequence {ξnj (t)}, ξ(t) is measurable and therefore

ξ(t) ∈
3⋂
i=1

RF (Ti). Thus by Lemma 3.1, lim
n→∞

‖ξn(t))− ξ(t)‖ exists, and

lim
n→∞

‖ξn(t)) − ξ(t)‖= 0, for all t ∈ Ω. From (3.25) and (3.23), we have

lim
n→∞

‖ηn(t)− ξ(t)‖ = 0 and lim
n→∞

‖ζn(t)− ξ(t)‖ = 0. �

In the next result, we prove the strong convergence of the scheme
(2.1) under condition B which is weaker than the compactness of the
domain of the mappings.

Theorem 3.5. Let E be a real uniformly convex separable Banach
space and let C be a nonempty closed convex subset of E with P as
a nonexpansive retraction. Let Ti : Ω × C → E, i = 1, 2, 3, be three
asymptotically nonexpansive nonself random mappings with sequences

of measurable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(t) − 1) < ∞,

rin(t) → 1 as n → ∞, for all t ∈ Ω and i = 1, 2, 3. Suppose that

F =
3⋂
i=1

RF (Ti) 6= ∅ and {ξn(t)},{ηn(t)} and {ζn(t)} are the sequences

defined in (2.1) where αn,βn,γn are sequences in [ε, 1− ε] for some ε > 0

and
∞∑
n=1

σn < ∞,
∞∑
n=1

δn < ∞ and
∞∑
n=1

λn < ∞. If Ti satisfies the con-

dition B for all t ∈ Ω and i = 1, 2, 3, then {ξn(t)},{ηn(t)} and {ζn(t)}
converge strongly to a common random fixed point of T1, T2 and T3.

Proof. By Lemma 3.2, we have lim
n→∞

‖ξn(t)−Ti(t, ξn(t))‖ = 0, i = 1, 2, 3.

Since {Ti : i = 1, 2, 3} satisfy the condition B, we have that

lim
n→∞

f(d(ξn(t), F )) = 0.

Since f : [0,∞)→ [0,∞) is a nondecreasing function satisfying f(0) = 0,
f(r) > 0 for all r ∈ (0,∞), we obtain that lim

n→∞
f(d(ξn(t), F )) = 0. Next

we claim that {ξn(t)} is a Cauchy sequence. Indeed, from Lemma 3.1
we have that ‖ξn+1(t)− ξ(t)‖ ≤ (1 +Bn(t))‖ξn(t)− ξ(t)‖+Dn(t),
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so, for each t ∈ Ω and for all natural numbers m,n, we have

‖ξn+m(t)− ξ(t)‖ ≤ (1 +Bn+m−1(t))‖ξn+m−1(t)− ξ(t)‖+Dn+m−1(t)

≤ eBn+m−1(t)‖ξn+m−1(t)− ξ(t)‖+Dn+m−1(t)

≤ eBn+m−1(t)+Bn+m−2(t)‖ξn+m−2(t)−ξ(t)‖

+ eBn+m−1(t)Dn+m−2(t)+Dn+m−1(t)

.

.

.

≤ e

n+m−1∑
i=n

(Bi(t))

‖ξn(t)−ξ(t)‖+
n+m−1∑
k=n

Dk(t)e

n+m∑
i=k

(Bi(t))

+ Dn+m−1(t)

≤ R(t)‖ξn(t)−ξ(t)‖+R(t)
∞∑

k=n

Dk(t),

where R(t) = e

∞∑
n=1

Bn(t)
< ∞. Therefore, for any ξ(t) ∈

3⋂
i=1

RF (Ti), we

have

‖ξn+m(t)− ξn(t)‖ ≤ ‖ξn+m(t)−ξ(t)‖+‖ξn(t)−ξ(t)‖

≤ R(t)‖ξn(t)−ξ(t)‖+R(t)
∞∑

k=n
Dk(t)+‖ξn(t)−ξ(t)‖

= (R(t)+1)‖ξn(t)−ξ(t)‖+R(t)
∞∑

k=n
Dk(t).(3.30)

Since lim
n→∞

f(d(ξn(t), F )) = 0, and
∞∑
n=1

Dn(t) <∞, given ε > 0 there ex-

ists a natural number n0 such that d(ξn(t), F ) < ε
2(R(t)+1) and

∞∑
n=1

Dn(t) <

ε
2R(t) for all n ≥ n0. So there exists ξ∗(t) ∈ F such that ‖ξn(t)−ξ∗(t)‖ <

ε
2(R(t)+1) for all n ≥ n0. Therefore from (3.30), for all n ≥ n0 we have

that

‖ξn+m(t)− ξn(t)‖ ≤ (R(t) + 1)‖ξn(t)− ξ∗(t)‖+R(t)

∞∑
k=n

(Dk(t))

< (R(t) + 1)
ε

2(R(t) + 1)
+R(t)

ε

2R(t)
= ε,

which implies that {ξn(t)} is a Cauchy sequence for each t ∈ Ω and
so is convergent since E is complete. Let lim

n→∞
ξn(t) = p(t). Now we
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show that p(t) ∈ F . Since lim
n→∞

d(ξn(t), F ) = 0 gives that d(p(t), F ) = 0.

Since F is closed, we have p(t) ∈ F . From (3.25) and (3.23) we have
lim
n→∞

‖ηn(t)− p(t)‖ = 0 and lim
n→∞

‖ζn(t)− p(t)‖ = 0. �

Finally, we prove the weak convergence of the iterative scheme (2.1)
for three asymptotically nonexpansive nonself random mappings in a
uniformly convex separable Banach space satisfying Opial’s condition.

Theorem 3.6. Let E be a real uniformly convex separable Banach space
which satisfies Opial’s condition and let C be a nonempty closed convex
subset of E with P as a nonexpansive retraction. Let Ti : Ω × C → E,
i = 1, 2, 3, be three asymptotically nonexpansive nonself random map-
pings with sequences of measurable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(t)− 1) <∞, rin(t)→ 1 as n→∞, for all t ∈ Ω and i = 1, 2, 3.

Suppose that F =
3⋂
i=1

RF (Ti) 6= ∅ and, {ξn(t)}, {ηn(t)} and {ζn(t)} are

the sequences defined in (2.1) where αn, βn, γn are sequences in [ε, 1−ε]
for some ε > 0 and

∞∑
n=1

σn < ∞,
∞∑
n=1

δn < ∞ and
∞∑
n=1

λn < ∞. Then

{ξn(t)},{ηn(t)} and {ζn(t)} converge weakly to a common random fixed
point of T1, T2 and T3.

Proof. From Lemma 3.2, we have that lim
n→∞

‖ξn(t)−Ti(t, ξn(t))‖ = 0 for

i = 1, 2, 3. Since E is uniformly convex and {ξn(t)} is bounded, without
loss of generality we may assume that ξn(t) → u(t) weakly as n → ∞.

Hence by Lemma 2.12, we have u(t) ∈
3⋂
i=1

RF (Ti). Suppose that subse-

quences ξnk
(t), ξmk

(t) and ξlk(t) of ξn(t) converge weakly to u(t), v(t) and

w(t), respectively. Lemma 2.12 implies that u(t), v(t), w(t) ∈
3⋂
i=1

RF (Ti)

and by lemma 3.1, lim
n→∞

‖ξn(t)−u(t)‖, lim
n→∞

‖ξn(t)−v(t)‖ and lim
n→∞

‖ξn(t)−
w(t)‖ exist. It follows from Lemma 2.13, that u(t) = v(t) = w(t). There-
fore {ξn(t)} converges weakly to a common fixed point of T1, T2 and T3.
In addition by (3.25) and (3.23) we have ηn(t)→ u(t) weakly as n→∞
and ζn(t)→ u(t) weakly as n→∞. �
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