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LOCALIZATION OPERATORS ON HOMOGENEOUS

SPACES

R. A. KAMYABI GOL, F. ESMAEELZADEH∗ AND R. RAISI TOUSI

Communicated by Gholam Hossein Esslamzadeh

Abstract. Let G be a locally compact group, H a compact sub-
group of G and $ a representation of the homogeneous space G/H
on a Hilbert space H. For ψ ∈ Lp(G/H), 1 ≤ p ≤ ∞, and an
admissible wavelet ζ for $, we define the localization operator Lψ,ζ
on H and we show that it is a bounded operator. Moreover, we
prove that the localization operator is in Schatten p-class and it is
a compact operator for 1 ≤ p ≤ ∞.

1. Introduction and Preliminaries

Recently, localization operators have been a subject of study in quan-
tum mechanics, in PDE and signal analysis. In engineering, a nat-
ural language is given by time-frequency analysis. A linear operator
Dψ,ζ : L2(Rn) → L2(Rn) associated to ψ in L1(Rn × Rn) and ζ in
L2(Rn) with ‖ζ‖2 = 1 , which is called a Daubechies operator, is the
same as the localization operator Lψ,ζ associated to admissible wavelet
ζ for the Schrodinger representation of the Weyl-Heisenberg group on
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L2(Rn). In fact,

< Dψ,ζf, g >L2(Rn)=
1

(2π)n

∫
Rn

∫
Rn
ψ(q, p) < f, ζq,p >< ζq,p, g > dqdp,

for all f, g in L2(Rn), where ζq,p(x) = eip.xζ(x − q), x ∈ Rn, for all q, p
in Rn [1, 4, 5, 10, 12]. Motivated by Daubechies operators, a localization
operator is defined on locally compact groups [15]. Since, in many cases
working with too large groups, the group representations are not square
integrable, it is necessary to make the group smaller which can be per-
formed by factoring out a suitable subgroup, that is, one has to work
with homogenous spaces. Localization operators have been studied ex-
tensively on Rn and also on locally compact groups in [3–7, 14]. M. W.
Wong in [15] has studied the localization operators in the setting of ho-
mogeneous spaces with a G-invariant measure. In this paper we do this
task with a completely different approach considering a relatively invari-
ant measure on a homogeneous space. The continuous wavelet transform
on homogenous spaces has been studied in [8] whereas in this paper, we
give a systematic study of localization operators on homogenous spaces
which are related to the continuous wavelet transform.

Let G be a locally compact group and H let be a closed subgroup of
G. Consider G/H as a homogeneous space on which G acts from the
left and µ as a Radon measure on it. For g ∈ G and a Borel subset E of
G/H, we define the translation µg of µ by µg(E) = µ(gE). A measure
µ is said to be G-invariant if µg = µ, for all g ∈ G. A measure µ is
said to be strongly quasi invariant provided that a continuous function
λ : G×G/H → (0,∞) exists which satisfies

dµg(kH) = λ(g, kH)dµ(kH),

for all g, k ∈ G. If the functions λ(g, .) reduce to constants, then µ is
called relatively invariant under G (for a detailed account of homoge-
neous spaces, the reader is refered to [9]). A rho-function for the pair
(G,H) is defined to be a continuous function ρ : G → (0,∞) which
satisfies

ρ(gh) =
∆H(h)

∆G(h)
ρ(g) (g ∈ G, h ∈ H),

where ∆G,∆H are the modular functions on G and H, respectively. It
is well known (see [9]), that any pair (G,H) admits a rho-function and
for each rho-function ρ there is a strongly quasi invariant measure µ on
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G/H such that

dµg
dµ

(kH) =
ρ(gk)

ρ(k)
(g, k ∈ G).

As has been shown in [9], every strongly quasi invariant measure on
G/H, arises from a rho-function and all such measures are strongly
equivalent. That is, there exists a positive continuous function τ on
G/H such that dµ́

dµ = τ , where µ and µ́ are strongly quasi invariant

measures on G/H.
For the reader’s convenience, we recall from [8] the basic concepts in

the theory of unitary representations of homogeneous spaces. A con-
tinuous unitary representation of a homogeneous space G/H is a map
$ from G/H into U(H), the group of all unitary operators on some
nonzero Hilbert space H, for which the function gH 7→< $(gH)x, y >
is continuous, for each x, y ∈ H and

$(gkH) = $(gH)$(kH), $(g−1H) = $(gH)∗,

for each g, k ∈ G (see Example 3.4). Moreover, a closed subspace M ofH
is said to be invariant with respect to $ if $(gH)M ⊆M , for all g ∈ G.
A continuous unitary representation$ is said to be irreducible if the only
invariant subspaces of H are {0} and H. In the sequel we always mean
by a representation, a continuous unitary representation. An irreducible
representation $ of G/H on H is said to be square integrable if there
exists a nonzero element ζ ∈ H such that

(1.1)

∫
G/H

ρ(e)

ρ(g)
| < ζ,$(gH)ζ > |2dµ(gH) <∞,

where µ is a relatively invariant measure on G/H which arises from a
rho function ρ : G→ (0,∞). If ζ satisfies (1.1), it is called an admissible
vector. An admissible vector ζ ∈ H is called admissible wavelet if ‖ζ‖ =
1. In this case, we define the wavelet constant cζ as

(1.2) cζ :=

∫
G/H

ρ(e)

ρ(g)
| < ζ,$(gH)ζ > |2dµ(gH).

We call cζ the wavelet constant associated to the admissible wavelet ζ. It
is worthwhile to note that there is a close relation between the represen-
tation on homogeneous spaces G/H, where H is a compact subgroup of
G, and the representation of G. More precisely if $ is a representation
on G/H, then it defines a representation π of G in which the subgroup
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H is considered to be contained in the kernel of π. Conversely, any rep-
resentation π of G which is trivial on H induces a representation $ of
G/H by letting $(gH) = π(g).

Recall that if T is a compact operator on a separable Hilbert space
H, then there exist orthonormal sets {αn} and {βn} in H such that

Tξ =
∑
n

λn < ξ, αn > βn, ξ ∈ H,

where λn is the nth singular value of T [16].
Given 0 < p < +∞, the Schatten p-class Sp of H is defined to be the
space of all compact operators T on H with its singular value sequence
{λn} belonging to lp, the p-summable sequence space. When 1 ≤ p ≤ ∞,
Sp is a Banach space with the norm

‖T‖p = [
∑
n

|λn|p]1/p.

Two special cases S1 and S2, which are called the trace class and the
Hilbert-Schmidt class, respectively, are worth mentioning (for more de-
tailed on Schatten p-class see [16]).

In this paper we study the localization operator Lψ,ζ where ψ ∈
Lp(G/H,µ), 1 ≤ p ≤ ∞, and ζ is admissible wavelet in a separable
Hilbert space H (see Definition 2.1). We investigate some significant
properties of a localization operator, such as boundedness and compact-
ness. This paper is organized as follows: In section 2, we show that for
ψ ∈ Lp(G/H), 1 ≤ p ≤ ∞, and an admissible wavelet ζ ∈ H, the local-
ization operator Lψ,ζ on H is bounded. Section 3 is devoted to proving
that Lψ,ζ is a compact operator which is in Schatten p-class.

2. Boundedness of localization operators on G/H

Throughout this paper, we assume that the notation will be as the
previous section. Let G a locally compact group and let H a compact
subgroup of G. Consider G/H as a homogeneous space associated with
a relatively invariant measure µ which arises from a rho-function ρ. Let
H be a separable Hilbert space, $ a square integrable representation
of G/H on H and ζ an admissible wavelet for $. In this section, we
introduce the localization operator Lψ,ζ which is related to the contin-

uous wavelet transform Wζ : H → L2(G/H), Wζ(x)(gH) = ( ρ(e)
ρ(g))1/2 <

x,$(gH)ζ >, for each ψ ∈ Lp(G/H), 1 ≤ p ≤ ∞. In this setting, we
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investigate the boundednees properties of localization operators. Now,
we define the linear operator Lψ,ζ : H → H as follows.

Definition 2.1. Let H be a Hilbert space and let $ be a square integrable
representation of G/H on H with an admissible wavelet ζ. Define the
linear operator Lψ,ζ on H as:
(2.1)

< Lψ,ζx, y >=
1

cζ

∫
G/H

ρ(e)

ρ(g)
ψ(gH) < x,$(gH)ζ >< $(gH)ζ, y > dµ(gH),

for all ψ ∈ Lp(G/H) and x, y ∈ H, where cζ is the wavelet constant
defined as (1.2). We call Lψ,ζ the localization operator.

First, we show that for ψ ∈ L∞(G/H) the localization operator Lψ,ζ
is bounded. For this, we need to recall the reconstruction formula for
square integrable representation $ of G/H, which is (Theorem 2.1, [8]).

Theorem 2.2. Let $ be a square integrable representation of G/H on
H. If ζ is an admissible wavelet for $, then
(2.2)

< x, y >=
1

cζ

∫
G/H

ρ(e)

ρ(g)
< x,$(gH)ζ >< $(gH)ζ, y > dµ(gH),

where cζ is as in (1.2).

Now, we are ready to prove boundedness of Lψ,ζ for ψ ∈ L∞(G/H).

Proposition 2.3. Let ψ ∈ L∞(G/H) and let ζ ∈ H be an admissible
wavelet. Then Lψ,ζ : H → H is a bounded linear operator and ‖Lψ,ζ‖ ≤
‖ψ‖∞.

Proof. Using Theorem 2.2 and the Schwarz inequality we get,

| < Lψ,ζx, y > | ≤
1
cζ

∫
G/H

ρ(e)
ρ(g) |ψ(gH)| | < x,$(gH)ζ > | | < $(gH)ζ, y > |dµ(gH) ≤

‖ψ‖∞( 1
cζ

∫
G/H

ρ(e)
ρ(g) | < x,$(gH)ζ > |2dµ(gH))1/2

( 1
cζ

∫
G/H

ρ(e)
ρ(g) | < $(gH)ζ, y > |2dµ(gH))1/2 ≤

‖ψ‖∞‖x‖‖y‖,

for all x, y ∈ H. So ‖Lψ,ζ‖ ≤ ‖ψ‖∞. �
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Secondly, let ψ ∈ L1(G/H) where G/H is considered to be given a
G-invariant measure µ́. Note that since H is compact, G/H admits such
a G-invariant measure.

Proposition 2.4. Let ψ ∈ L1(G/H). Then Lψ,ζ is a bounded linear
operator and

‖Lψ,ζ‖ ≤
ρ(e)

cζ
‖ψ‖1.

Proof. Consider G/H with a G-invariant measure µ́ which arises from
rho-function ρ́ ≡ 1 [9]. Then,

dµ

dµ́
= τ, ρ(g) = τ(gH),

where µ is a relatively invariant measure which arises from ρ. We have

| < Lψ,ζx, y > | ≤ 1
cζ

∫
G/H

ρ(e)
ρ(g) |ψ(gH)| | < x,$(gH)ζ > | | < $(gH)ζ,

[1ex]y > |dµ(gH)

≤ 1
cζ

∫
G/H

τ(eH)
τ(gH) |ψ(gH)| | < x,$(gH)ζ > | | < $(gH)ζ,

y > |τ(gH)dµ́(gH)

≤ 1
cζ
ρ(e)‖ψ‖1‖x‖‖y‖,

where ‖ψ‖1 =
∫
G/H ψ(gH)dµ́(gH). �

Now we intend to show that if ψ ∈ Lp(G/H), 1 < p < ∞, then Lψ,ζ
is a bounded linear operator.

Theorem 2.5. Let ψ ∈ Lp(G/H), for 1 < p < ∞. Then there exists a
unique bounded linear operator Lψ,ζ : H → H such that

(2.3) ‖Lψ,ζ‖ ≤ (
ρ(e)

cζ
)1/p‖ψ‖p,

where ‖ψ‖p is defined with respect to a G-invariant measure and Lψ,ζ
is given by (2.1) for all x ∈ H and all simple functions ψ on G/H for
which µ({gH ∈ G/H; ψ(gH) 6= 0}) <∞.

Proof. Let Γ : H → L2(Rn) be a unitary operator and ψ ∈ L1(G/H).

Then the linear operator L̃ψ,ζ : L2(Rn)→ L2(Rn) defined by

(2.4) L̃ψ,ζ = ΓLψ,ζΓ
−1,
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is bounded and ‖L̃ψ,ζ‖ ≤ ρ(e)
cζ
‖ψ‖1. Also, if ψ ∈ L∞(G/H), then L̃ψ,ζ on

L2(Rn) defined as (2.4) is bounded and ‖L̃ψ,ζ‖ ≤ ‖ψ‖∞.
Denote by A, the set of all simple functions ψ on G/H such that

µ({gH ∈ G/H;ψ(gH) 6= 0}) <∞.

Let g ∈ L2(Rn) and let Φ be a linear transformation from A into the set

of all Lebesgue measurable functions on Rn defined as Φg(ψ) = L̃ψ,ζ(g).
Then for all ψ ∈ L1(G/H)

‖Φg(ψ)‖2 = ‖L̃ψ,ζ(g)‖2 ≤ ‖L̃ψ,ζ‖‖g‖2 ≤
ρ(e)

cζ
‖ψ‖1‖g‖2.

Similarly for all ψ ∈ L∞(G/H),

‖Φg(ψ)‖2 ≤ ‖ψ‖∞‖g‖2.

By the Riesz Thorin Interpolation Theorem [16], we get,

‖Φg(ψ)‖2 ≤ (
ρ(e)

cζ
)1/p‖ψ‖p‖g‖2.

Therefore,

‖L̃ψ,ζ(g)‖2 ≤ (
ρ(e)

cζ
)1/p‖ψ‖p‖g‖2.

So,

‖L̃ψ,ζ‖ ≤ (
ρ(e)

cζ
)1/p‖ψ‖p,

for each ψ ∈ A.
Now, let ψ ∈ Lp(G/H), for all 1 < p <∞. Then there exists a sequence
{ψk}∞k=1 of functions in A such that ψk is convergent to ψ in Lp(G/H) as

k →∞. Also, {L̃ψk,ζ}∞k=1 is a Cauchy sequence in B(L2(Rn)). Indeed,

‖L̃ψn,ζ − L̃ψm,ζ‖ ≤ (
ρ(e)

cζ
)1/p‖ψn − ψm‖p → 0.

By completeness of B(L2(Rn)), there exists a bounded linear operator

L̃ψ,ζ : L2(Rn)→ L2(Rn) such that L̃ψk,ζ converges to L̃ψ,ζ in B(L2(Rn)),
in which

‖L̃ψ,ζ‖ ≤ (
ρ(e)

cζ
)1/p‖ψ‖p.
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Thus, the linear operator Lψ,ζ : H → H where Lψ,ζ = Γ−1L̃ψ,ζΓ, is a
bounded linear operator and

‖Lψ,ζ‖ ≤ (
ρ(e)

cζ
)1/p‖ψ‖p.

To prove uniqueness, let ψ ∈ Lp(G/H), 1 < p < ∞, and suppose that
Pψ,ζ is another bounded linear operator satisfying the conclusions of the
theorem. Consider Θ : Lp(G/H) → B(H) to be the linear operator
defined by

Θ(ψ) = Lψ,ζ − Pψ,ζ , ψ ∈ Lp(G/H).

Then by (2.3),

‖Θ(ψ)‖ ≤ 2(
ρ(e)

cζ
)1/p‖ψ‖p.

Moreover, Θ(ψ) is equal to the zero operator on H for all ψ ∈ A. Thus,
Θ : Lp(G/H) → B(H) is a bounded linear operator which is equal to
zero on the dense subspace A of Lp(G/H). Therefore, Lψ,ζ = Pψ,ζ for
all ψ ∈ Lp(G/H). �

3. Localization operator as an element of Schatten p-class
operators

Our goal in this section is to give a complete account of the Schatten
p-class property of localization operators. To this end, we note that if
T : H → H is a positive operator such that∑

n

< Tξn, ξn ><∞,

for all orthonormal bases {ξn, n = 1, 2, ...} for H, then T : H → H is
in the trace class S1. Moreover, ‖T‖S1 = tr(T ) =

∑
n < Tξn, ξn >.

The following proposition shows that Lψ,ζ is in the trace class when
ψ ∈ (L1(G/H), µ́) where µ́ is a G-invariant measure on G/H.

Proposition 3.1. Let ψ ∈ L1(G/H). Then the localization operator
Lψ,ζ : H → H is in S1 and

‖Lψ,ζ‖S1 ≤ 4
ρ(e)

cζ
‖ψ‖1,

where ‖ψ‖1 =
∫
G/H ψ(gH)dµ́(gH) and µ́ is a G-invariant measure on

G/H.
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Proof. We assume that ψ ∈ L1(G/H) is non-negative. Then

< Lψ,ζx, x >=
1

cζ

∫
G/H

ρ(e)

ρ(g)
ψ(gH)| < x,$(gH)ζ > |2dµ(gH) ≥ 0

for all x ∈ H. That is, Lψ,ζ is positive. Let {ζk}∞k=1 be an orthonormal
basis for H. Then using the fact that µ́ is a G-invariant measure on G/H
which arises from ρ́(g) = 1 we get,

‖Lψ,ζ‖S1 =
∑∞

k=1 < Lψ,ζζk, ζk >

=
∑∞

k=1
1
cζ

∫
G/H

ρ(e)
ρ(g)ψ(gH)| < ζk, $(gH)ζ > |2dµ(gH)

= 1
cζ

∫
G/H ρ(e)ψ(gH)

∑∞
k=1 | < ζk, $(gH)ζ > |2dµ́(gH)

= ρ(e)
cζ

∫
G/H ψ(gH)dµ́(gH)

= ρ(e)
cζ
‖ψ‖1.

Now if ψ ∈ L1(G/H) is real valued, then we write ψ = ψ+ − ψ−. So we
have,

‖Lψ,ζ‖S1 ≤ 2
ρ(e)

cζ
‖ψ‖1.

Let ψ ∈ L1(G/H). Then ψ = ψ1 + iψ2, where ψ1, ψ2 is real valued. So,

‖Lψ,ζ‖S1 ≤ 4
ρ(e)

cζ
‖ψ‖1.

�

Let S∞ be the set of bounded linear operators onH. Thus ‖.‖S∞ is the
operator norm. By Proposition 2.3, if ψ ∈ L∞(G/H), then ‖Lψ,ζ‖S∞ ≤
‖ψ‖∞. Now, the following proposition shows that Lψ,ζ is in Sp for ψ ∈
Lp(G/H), 1 < p <∞.

Theorem 3.2. Let ψ ∈ Lp(G/H), for 1 < p <∞. Then Lψ,ζ : H → H
is in Sp and

‖Lψ,ζ‖Sp ≤ (4
ρ(e)

cζ
)1/p‖ψ‖p,

where ‖ψ‖p is given with respect to a G-invariant measure.

Proof. By Proposition 3.1 and Riesz Thorin Interpolation Theorem [16],
the proof is obvious. �

In the following proposition we prove that the localization operator
is compact.
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Theorem 3.3. Let ψ ∈ Lp(G/H), for 1 ≤ p ≤ ∞. Then Lψ,ζ : H → H
is a compact operator.

Proof. Let A be the set of all simple functions ψ on G/H such that
µ({gH ∈ G/H, ψ(gH) 6= 0}) < ∞. Let {ψn}∞n=1 be a sequence of
functions in A such that ψn → ψ in Lp(G/H) as n→∞. Then

‖Lψn,ζ − Lψ,ζ‖ ≤ (
ρ(e)

cζ
)1/p‖ψn − ψ‖p → 0,

as n → ∞. But {Lψn,ζ} is in S1. Since Sp ⊆ Sq, for 1 ≤ p ≤ q ≤ ∞,
we have Lψn,ζ ∈ S2. So {Lψn,ζ} is a sequence of compact operators and
hence Lψ,ζ is a compact operator. �

Here we intend to support our technical considerations developed in
the previous discussion by giving some examples.

Example 3.4. Consider the Euclidean group G = SO(n) ×τ Rn with
group operations

(R1, p1).(R2, p2) = (R1R2, R1p2 + p1), (R, p)−1 = (R−1,−R−1p).

Put n = 2 in G, i.e., G = SO(2) ×τ R2 and H = L2(S1) ' L2[−π, π].
In this setting any R ∈ SO(2) and s ∈ S1 are given explicitly by

R =

(
cosθ sinθ
−sinθ cosθ

)
s =

(
sinγ
cosγ

)
.

The representation $ of G/H, in which H = {(0, 0, p2) ∈ G}, is defined
as

$(θ, p1)ψ(γ) = eip1sinγψ(γ − θ),
for all (θ, p1) ∈ G/H,ψ ∈ L2(S1). For an admissible wavelet ψ ∈ L2(S1)
and F ∈ Lp(G/H), 1 ≤ p ≤ ∞, the localization operator LF,ψ : L2(S1)→
L2(S1) is given by

< LF,ψf, g >=
1

cψ

∫ 2π

0

∫ ∞
−∞

F (θ, p1) < f,ψθ,p1 >< ψθ,p1 , g > dθdp1,

where ψθ,p1(γ) = eip1sinγψ(γ − θ). Also, by Theorem 3.2

‖LF,ψ‖Sp ≤ (4
ρ(e)

cψ
)1/p‖F‖p.
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Example 3.5. Denote by SOo(3, 1) the connected component of Lorentz
group. It is a non-abelian group which may be realized as the set of all
real 4×4 pseudo orthogonal matrices A, i.e., matrices with the following
property

AT ηA = η, detA = 1, A00 ≥ 1, η = diag(−1, 1, 1, 1).

Let So(n) be the group of rotations around the origin of Rn and SOo(3,1)
So(2)

be identified whit 2-sphere S2, which is not a group. It is well known
that, SOo(3, 1) = KAH in which

K ' SO(3), A ' SOo(1, 1) ' R ' R+
∗ , H ' C(Iwasawa decomposition).

Since SOo(3,1)
H ' SO(3)A, then every element gH ∈ SOo(3,1)

H can be
represented by gH ≡ (γ, a) where γ ∈ SO(3), a ∈ A. Now define the

representation $ of SOo(3,1)
H on L2(S2) as follows

$ :
SOo(3, 1)

H
→ U(L2(S2)), ($(gH)f)(ξ) = λ(γ.a, ξ)1/2f((γ.a)−1ξ),

for f ∈ L2(S2), ξ ∈ S2, where λ(γ.a, ξ) is the Radon Nikodym derivative.
This representation is square integrable (see [2] for more details). For
an admissible wavelet ψ ∈ L2(S2) and F ∈ Lp(G/H), 1 ≤ p ≤ ∞, the
localization operator LF,ψ : L2(S2)→ L2(S2) is defined as follows:

< LF,ψf, g >=
1

cψ

∫
So3

∫
A
F (γ, a) < f,$(γ, a)ψ >< $(γ, a)ψ,

g >
dµ(γ)da

a3
,

for f, g ∈ L2(S2). Moreover, by Theorem 3.2 and Theorem 2.5 we have

‖LF,ψ‖Sp ≤ (4
ρ(e)

cψ
)1/p‖F‖p,

and

‖LF,ψ‖ ≤ (
ρ(e)

cψ
)1/p‖F‖p.
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