LOCALIZATION OPERATORS ON HOMOGENEOUS SPACES

R. A. KAMYABI GOL, F. ESMAEELZADEH* AND R. RAISI TOUSI

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. Let G be a locally compact group, H a compact subgroup of G and ϖ a representation of the homogeneous space G/H on a Hilbert space \mathcal{H} . For $\psi \in L^p(G/H)$, $1 \leq p \leq \infty$, and an admissible wavelet ζ for ϖ , we define the localization operator $L_{\psi,\zeta}$ on \mathcal{H} and we show that it is a bounded operator. Moreover, we prove that the localization operator is in Schatten p-class and it is a compact operator for $1 \leq p \leq \infty$.

1. Introduction and Preliminaries

Recently, localization operators have been a subject of study in quantum mechanics, in PDE and signal analysis. In engineering, a natural language is given by time-frequency analysis. A linear operator $D_{\psi,\zeta}:L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)$ associated to ψ in $L^1(\mathbb{R}^n\times\mathbb{R}^n)$ and ζ in $L^2(\mathbb{R}^n)$ with $\|\zeta\|_2=1$, which is called a Daubechies operator, is the same as the localization operator $L_{\psi,\zeta}$ associated to admissible wavelet ζ for the Schrodinger representation of the Weyl-Heisenberg group on

MSC(2010): Primary: 43A15; Secondary: 43A25, 42C15.

Keywords: Homogenous space, square integrable representation, admissible wavelet, localization operator, Schatten p-class operator.

Received: 14 August 2011, Accepted: 18 April 2012.

^{*}Corresponding author

[©] 2013 Iranian Mathematical Society.

 $L^2(\mathbb{R}^n)$. In fact,

$$< D_{\psi,\zeta} f, g>_{L^2(\mathbb{R}^n)} = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \psi(q,p) < f, \zeta_{q,p} > < \zeta_{q,p}, g> dq dp,$$

for all f, g in $L^2(\mathbb{R}^n)$, where $\zeta_{q,p}(x) = e^{ip.x}\zeta(x-q)$, $x \in \mathbb{R}^n$, for all q, p in \mathbb{R}^n [1,4,5,10,12]. Motivated by Daubechies operators, a localization operator is defined on locally compact groups [15]. Since, in many cases working with too large groups, the group representations are not square integrable, it is necessary to make the group smaller which can be performed by factoring out a suitable subgroup, that is, one has to work with homogenous spaces. Localization operators have been studied extensively on \mathbb{R}^n and also on locally compact groups in [3–7,14]. M. W. Wong in [15] has studied the localization operators in the setting of homogeneous spaces with a G-invariant measure. In this paper we do this task with a completely different approach considering a relatively invariant measure on a homogeneous space. The continuous wavelet transform on homogenous spaces has been studied in [8] whereas in this paper, we give a systematic study of localization operators on homogenous spaces which are related to the continuous wavelet transform.

Let G be a locally compact group and H let be a closed subgroup of G. Consider G/H as a homogeneous space on which G acts from the left and μ as a Radon measure on it. For $g \in G$ and a Borel subset E of G/H, we define the translation μ_g of μ by $\mu_g(E) = \mu(gE)$. A measure μ is said to be G-invariant if $\mu_g = \mu$, for all $g \in G$. A measure μ is said to be strongly quasi invariant provided that a continuous function $\lambda: G \times G/H \to (0, \infty)$ exists which satisfies

$$d\mu_g(kH) = \lambda(g,kH)d\mu(kH),$$

for all $g,k \in G$. If the functions $\lambda(g,.)$ reduce to constants, then μ is called relatively invariant under G (for a detailed account of homogeneous spaces, the reader is referred to [9]). A rho-function for the pair (G,H) is defined to be a continuous function $\rho:G\to (0,\infty)$ which satisfies

$$\rho(gh) = \frac{\Delta_H(h)}{\Delta_G(h)} \rho(g) \quad (g \in G, h \in H),$$

where Δ_G, Δ_H are the modular functions on G and H, respectively. It is well known (see [9]), that any pair (G, H) admits a rho-function and for each rho-function ρ there is a strongly quasi invariant measure μ on

G/H such that

$$\frac{d\mu_g}{d\mu}(kH) = \frac{\rho(gk)}{\rho(k)} \quad (g, k \in G).$$

As has been shown in [9], every strongly quasi invariant measure on G/H, arises from a rho-function and all such measures are strongly equivalent. That is, there exists a positive continuous function τ on G/H such that $\frac{d\hat{\mu}}{d\mu} = \tau$, where μ and $\hat{\mu}$ are strongly quasi invariant measures on G/H.

For the reader's convenience, we recall from [8] the basic concepts in the theory of unitary representations of homogeneous spaces. A continuous unitary representation of a homogeneous space G/H is a map ϖ from G/H into $U(\mathcal{H})$, the group of all unitary operators on some nonzero Hilbert space \mathcal{H} , for which the function $gH \mapsto < \varpi(gH)x, y >$ is continuous, for each $x, y \in \mathcal{H}$ and

$$\varpi(gkH) = \varpi(gH)\varpi(kH), \quad \varpi(g^{-1}H) = \varpi(gH)^*,$$

for each $g,k \in G$ (see Example 3.4). Moreover, a closed subspace M of \mathcal{H} is said to be invariant with respect to ϖ if $\varpi(gH)M \subseteq M$, for all $g \in G$. A continuous unitary representation ϖ is said to be irreducible if the only invariant subspaces of \mathcal{H} are $\{0\}$ and \mathcal{H} . In the sequel we always mean by a representation, a continuous unitary representation. An irreducible representation ϖ of G/H on \mathcal{H} is said to be square integrable if there exists a nonzero element $\zeta \in \mathcal{H}$ such that

(1.1)
$$\int_{G/H} \frac{\rho(e)}{\rho(g)} |< \zeta, \varpi(gH)\zeta > |^2 d\mu(gH) < \infty,$$

where μ is a relatively invariant measure on G/H which arises from a rho function $\rho: G \to (0, \infty)$. If ζ satisfies (1.1), it is called an *admissible vector*. An admissible vector $\zeta \in \mathcal{H}$ is called *admissible wavelet* if $\|\zeta\| = 1$. In this case, we define the wavelet constant c_{ζ} as

(1.2)
$$c_{\zeta} := \int_{G/H} \frac{\rho(e)}{\rho(g)} \mid \langle \zeta, \varpi(gH)\zeta \rangle \mid^{2} d\mu(gH).$$

We call c_{ζ} the wavelet constant associated to the admissible wavelet ζ . It is worthwhile to note that there is a close relation between the representation on homogeneous spaces G/H, where H is a compact subgroup of G, and the representation of G. More precisely if ϖ is a representation on G/H, then it defines a representation π of G in which the subgroup

H is considered to be contained in the kernel of π . Conversely, any representation π of G which is trivial on H induces a representation ϖ of G/H by letting $\varpi(gH) = \pi(g)$.

Recall that if T is a compact operator on a separable Hilbert space \mathcal{H} , then there exist orthonormal sets $\{\alpha_n\}$ and $\{\beta_n\}$ in \mathcal{H} such that

$$T\xi = \sum_{n} \lambda_n < \xi, \alpha_n > \beta_n, \quad \xi \in \mathcal{H},$$

where λ_n is the *n*th singular value of T [16].

Given 0 , the Schatten*p* $-class <math>S_p$ of \mathcal{H} is defined to be the space of all compact operators T on \mathcal{H} with its singular value sequence $\{\lambda_n\}$ belonging to l^p , the *p*-summable sequence space. When $1 \le p \le \infty$, S_p is a Banach space with the norm

$$||T||_p = [\sum_n |\lambda_n|^p]^{1/p}.$$

Two special cases S_1 and S_2 , which are called the trace class and the Hilbert-Schmidt class, respectively, are worth mentioning (for more detailed on Schatten p-class see [16]).

In this paper we study the localization operator $L_{\psi,\zeta}$ where $\psi \in L^p(G/H,\mu)$, $1 \leq p \leq \infty$, and ζ is admissible wavelet in a separable Hilbert space \mathcal{H} (see Definition 2.1). We investigate some significant properties of a localization operator, such as boundedness and compactness. This paper is organized as follows: In section 2, we show that for $\psi \in L^p(G/H)$, $1 \leq p \leq \infty$, and an admissible wavelet $\zeta \in \mathcal{H}$, the localization operator $L_{\psi,\zeta}$ on \mathcal{H} is bounded. Section 3 is devoted to proving that $L_{\psi,\zeta}$ is a compact operator which is in Schatten p-class.

2. Boundedness of localization operators on G/H

Throughout this paper, we assume that the notation will be as the previous section. Let G a locally compact group and let H a compact subgroup of G. Consider G/H as a homogeneous space associated with a relatively invariant measure μ which arises from a rho-function ρ . Let \mathcal{H} be a separable Hilbert space, ϖ a square integrable representation of G/H on \mathcal{H} and ζ an admissible wavelet for ϖ . In this section, we introduce the localization operator $L_{\psi,\zeta}$ which is related to the continuous wavelet transform $W_{\zeta}: \mathcal{H} \to L^2(G/H), \ W_{\zeta}(x)(gH) = (\frac{\rho(e)}{\rho(g)})^{1/2} < x, \varpi(gH)\zeta >$, for each $\psi \in L^p(G/H), \ 1 \le p \le \infty$. In this setting, we

investigate the boundedness properties of localization operators. Now, we define the linear operator $L_{\psi,\zeta}: \mathcal{H} \to \mathcal{H}$ as follows.

Definition 2.1. Let \mathcal{H} be a Hilbert space and let ϖ be a square integrable representation of G/H on \mathcal{H} with an admissible wavelet ζ . Define the linear operator $L_{\psi,\zeta}$ on \mathcal{H} as: (2.1)

$$< L_{\psi,\zeta} x, y> = \frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} \psi(gH) < x, \varpi(gH)\zeta> < \varpi(gH)\zeta, y> d\mu(gH),$$

for all $\psi \in L^p(G/H)$ and $x, y \in \mathcal{H}$, where c_{ζ} is the wavelet constant defined as (1.2). We call $L_{\psi,\zeta}$ the localization operator.

First, we show that for $\psi \in L^{\infty}(G/H)$ the localization operator $L_{\psi,\zeta}$ is bounded. For this, we need to recall the reconstruction formula for square integrable representation ϖ of G/H, which is (Theorem 2.1, [8]).

Theorem 2.2. Let ϖ be a square integrable representation of G/H on \mathcal{H} . If ζ is an admissible wavelet for ϖ , then (2.2)

$$< x, y > = \frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} < x, \varpi(gH)\zeta > < \varpi(gH)\zeta, y > d\mu(gH),$$

where c_{ζ} is as in (1.2).

Now, we are ready to prove boundedness of $L_{\psi,\zeta}$ for $\psi \in L^{\infty}(G/H)$.

Proposition 2.3. Let $\psi \in L^{\infty}(G/H)$ and let $\zeta \in \mathcal{H}$ be an admissible wavelet. Then $L_{\psi,\zeta}: \mathcal{H} \to \mathcal{H}$ is a bounded linear operator and $||L_{\psi,\zeta}|| \leq ||\psi||_{\infty}$.

Proof. Using Theorem 2.2 and the Schwarz inequality we get,

$$| \langle L_{\psi,\zeta}x, y \rangle | \leq$$

$$\frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} |\psi(gH)| | \langle x, \varpi(gH)\zeta \rangle | | \langle \varpi(gH)\zeta, y \rangle | d\mu(gH) \leq$$

$$||\psi||_{\infty} (\frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} | \langle x, \varpi(gH)\zeta \rangle |^{2} d\mu(gH))^{1/2}$$

$$(\frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} | \langle \varpi(gH)\zeta, y \rangle |^{2} d\mu(gH))^{1/2} \leq$$

$$||\psi||_{\infty} ||x|| ||y||,$$

for all $x, y \in \mathcal{H}$. So $||L_{\psi,\zeta}|| \leq ||\psi||_{\infty}$.

Secondly, let $\psi \in L^1(G/H)$ where G/H is considered to be given a G-invariant measure μ . Note that since H is compact, G/H admits such a G-invariant measure.

Proposition 2.4. Let $\psi \in L^1(G/H)$. Then $L_{\psi,\zeta}$ is a bounded linear operator and

$$||L_{\psi,\zeta}|| \le \frac{\rho(e)}{c_{\zeta}} ||\psi||_1.$$

Proof. Consider G/H with a G-invariant measure μ which arises from rho-function $\hat{\rho} \equiv 1$ [9]. Then,

$$\frac{d\mu}{d\acute{u}} = \tau, \quad \rho(g) = \tau(gH),$$

where μ is a relatively invariant measure which arises from ρ . We have

$$| < L_{\psi,\zeta}x, y > | \le \frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} |\psi(gH)| | < x, \varpi(gH)\zeta > | | < \varpi(gH)\zeta,$$

$$[1ex]y > |d\mu(gH)$$

$$\le \frac{1}{c_{\zeta}} \int_{G/H} \frac{\tau(eH)}{\tau(gH)} |\psi(gH)| | < x, \varpi(gH)\zeta > | | < \varpi(gH)\zeta,$$

$$y > |\tau(gH)d\dot{\mu}(gH)$$

$$\le \frac{1}{c_{\zeta}} \rho(e) ||\psi||_{1} ||x|| ||y||,$$

where
$$\|\psi\|_1 = \int_{G/H} \psi(gH) d\mathring{\mu}(gH)$$
.

Now we intend to show that if $\psi \in L^p(G/H)$, $1 , then <math>L_{\psi,\zeta}$ is a bounded linear operator.

Theorem 2.5. Let $\psi \in L^p(G/H)$, for $1 . Then there exists a unique bounded linear operator <math>L_{\psi,\zeta} : \mathcal{H} \to \mathcal{H}$ such that

(2.3)
$$||L_{\psi,\zeta}|| \le \left(\frac{\rho(e)}{c_{\zeta}}\right)^{1/p} ||\psi||_{p},$$

where $\|\psi\|_p$ is defined with respect to a G-invariant measure and $L_{\psi,\zeta}$ is given by (2.1) for all $x \in \mathcal{H}$ and all simple functions ψ on G/H for which $\mu(\{gH \in G/H; \ \psi(gH) \neq 0\}) < \infty$.

Proof. Let $\Gamma: \mathcal{H} \to L^2(\mathbb{R}^n)$ be a unitary operator and $\psi \in L^1(G/H)$. Then the linear operator $\tilde{L}_{\psi,\zeta}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ defined by

(2.4)
$$\tilde{L}_{\psi,\zeta} = \Gamma L_{\psi,\zeta} \Gamma^{-1},$$

is bounded and $\|\tilde{L}_{\psi,\zeta}\| \leq \frac{\rho(e)}{c_{\zeta}} \|\psi\|_1$. Also, if $\psi \in L^{\infty}(G/H)$, then $\tilde{L}_{\psi,\zeta}$ on $L^2(\mathbb{R}^n)$ defined as (2.4) is bounded and $\|\tilde{L}_{\psi,\zeta}\| \leq \|\psi\|_{\infty}$. Denote by \mathfrak{A} , the set of all simple functions ψ on G/H such that

$$\mu(\{gH\in G/H; \psi(gH)\neq 0\})<\infty.$$

Let $g \in L^2(\mathbb{R}^n)$ and let Φ be a linear transformation from \mathfrak{A} into the set of all Lebesgue measurable functions on \mathbb{R}^n defined as $\Phi_g(\psi) = \tilde{L}_{\psi,\zeta}(g)$. Then for all $\psi \in L^1(G/H)$

$$\|\Phi_g(\psi)\|_2 = \|\tilde{L}_{\psi,\zeta}(g)\|_2 \le \|\tilde{L}_{\psi,\zeta}\|\|g\|_2 \le \frac{\rho(e)}{c_\zeta}\|\psi\|_1\|g\|_2.$$

Similarly for all $\psi \in L^{\infty}(G/H)$,

$$\|\Phi_q(\psi)\|_2 \le \|\psi\|_{\infty} \|g\|_2.$$

By the Riesz Thorin Interpolation Theorem [16], we get,

$$\|\Phi_g(\psi)\|_2 \le (\frac{\rho(e)}{c_\zeta})^{1/p} \|\psi\|_p \|g\|_2.$$

Therefore,

$$\|\tilde{L}_{\psi,\zeta}(g)\|_2 \le (\frac{\rho(e)}{c_{\zeta}})^{1/p} \|\psi\|_p \|g\|_2.$$

So,

$$\|\tilde{L}_{\psi,\zeta}\| \le \left(\frac{\rho(e)}{c_{\zeta}}\right)^{1/p} \|\psi\|_{p},$$

for each $\psi \in \mathfrak{A}$.

Now, let $\psi \in L^p(G/H)$, for all $1 . Then there exists a sequence <math>\{\psi_k\}_{k=1}^{\infty}$ of functions in \mathfrak{A} such that ψ_k is convergent to ψ in $L^p(G/H)$ as $k \to \infty$. Also, $\{\tilde{L}_{\psi_k,\zeta}\}_{k=1}^{\infty}$ is a Cauchy sequence in $B(L^2(\mathbb{R}^n))$. Indeed,

$$\|\tilde{L}_{\psi_n,\zeta} - \tilde{L}_{\psi_m,\zeta}\| \le (\frac{\rho(e)}{c_{\zeta}})^{1/p} \|\psi_n - \psi_m\|_p \to 0.$$

By completeness of $B(L^2(\mathbb{R}^n))$, there exists a bounded linear operator $\tilde{L}_{\psi,\zeta}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ such that $\tilde{L}_{\psi_k,\zeta}$ converges to $\tilde{L}_{\psi,\zeta}$ in $B(L^2(\mathbb{R}^n))$, in which

$$\|\tilde{L}_{\psi,\zeta}\| \le (\frac{\rho(e)}{c_{\zeta}})^{1/p} \|\psi\|_{p}.$$

Thus, the linear operator $L_{\psi,\zeta}: \mathcal{H} \to \mathcal{H}$ where $L_{\psi,\zeta} = \Gamma^{-1}\tilde{L}_{\psi,\zeta}\Gamma$, is a bounded linear operator and

$$||L_{\psi,\zeta}|| \le (\frac{\rho(e)}{c_{\zeta}})^{1/p} ||\psi||_p.$$

To prove uniqueness, let $\psi \in L^p(G/H)$, $1 , and suppose that <math>P_{\psi,\zeta}$ is another bounded linear operator satisfying the conclusions of the theorem. Consider $\Theta : L^p(G/H) \to B(\mathcal{H})$ to be the linear operator defined by

$$\Theta(\psi) = L_{\psi,\zeta} - P_{\psi,\zeta}, \quad \psi \in L^p(G/H).$$

Then by (2.3),

$$\|\Theta(\psi)\| \le 2(\frac{\rho(e)}{c_{\zeta}})^{1/p} \|\psi\|_{p}.$$

Moreover, $\Theta(\psi)$ is equal to the zero operator on \mathcal{H} for all $\psi \in \mathfrak{A}$. Thus, $\Theta: L^p(G/H) \to B(\mathcal{H})$ is a bounded linear operator which is equal to zero on the dense subspace \mathfrak{A} of $L^p(G/H)$. Therefore, $L_{\psi,\zeta} = P_{\psi,\zeta}$ for all $\psi \in L^p(G/H)$.

3. Localization operator as an element of Schatten p-class operators

Our goal in this section is to give a complete account of the Schatten p-class property of localization operators. To this end, we note that if $T: \mathcal{H} \to \mathcal{H}$ is a positive operator such that

$$\sum_{n} \langle T\xi_n, \xi_n \rangle \langle \infty,$$

for all orthonormal bases $\{\xi_n, n=1,2,...\}$ for \mathcal{H} , then $T:\mathcal{H}\to\mathcal{H}$ is in the trace class S_1 . Moreover, $\|T\|_{S_1}=tr(T)=\sum_n< T\xi_n,\xi_n>$. The following proposition shows that $L_{\psi,\zeta}$ is in the trace class when $\psi\in (L^1(G/H), \acute{\mu})$ where $\acute{\mu}$ is a G-invariant measure on G/H.

Proposition 3.1. Let $\psi \in L^1(G/H)$. Then the localization operator $L_{\psi,\zeta}: \mathcal{H} \to \mathcal{H}$ is in S_1 and

$$||L_{\psi,\zeta}||_{S_1} \le 4 \frac{\rho(e)}{c_{\zeta}} ||\psi||_1,$$

where $\|\psi\|_1 = \int_{G/H} \psi(gH) d\mathring{\mu}(gH)$ and $\mathring{\mu}$ is a G-invariant measure on G/H.

Proof. We assume that $\psi \in L^1(G/H)$ is non-negative. Then

$$\langle L_{\psi,\zeta}x, x \rangle = \frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} \psi(gH) | \langle x, \varpi(gH)\zeta \rangle |^2 d\mu(gH) \geq 0$$

for all $x \in \mathcal{H}$. That is, $L_{\psi,\zeta}$ is positive. Let $\{\zeta_k\}_{k=1}^{\infty}$ be an orthonormal basis for \mathcal{H} . Then using the fact that $\dot{\mu}$ is a G-invariant measure on G/H which arises from $\dot{\rho}(g) = 1$ we get,

$$\begin{split} \|L_{\psi,\zeta}\|_{S_{1}} &= \sum_{k=1}^{\infty} \langle L_{\psi,\zeta}\zeta_{k}, \zeta_{k} \rangle \\ &= \sum_{k=1}^{\infty} \frac{1}{c_{\zeta}} \int_{G/H} \frac{\rho(e)}{\rho(g)} \psi(gH) | \langle \zeta_{k}, \varpi(gH)\zeta \rangle |^{2} d\mu(gH) \\ &= \frac{1}{c_{\zeta}} \int_{G/H} \rho(e) \psi(gH) \sum_{k=1}^{\infty} | \langle \zeta_{k}, \varpi(gH)\zeta \rangle |^{2} d\mu(gH) \\ &= \frac{\rho(e)}{c_{\zeta}} \int_{G/H} \psi(gH) d\mu(gH) \\ &= \frac{\rho(e)}{c_{\zeta}} \|\psi\|_{1}. \end{split}$$

Now if $\psi \in L^1(G/H)$ is real valued, then we write $\psi = \psi_+ - \psi_-$. So we have,

$$||L_{\psi,\zeta}||_{S_1} \le 2\frac{\rho(e)}{c_{\zeta}}||\psi||_1.$$

Let $\psi \in L^1(G/H)$. Then $\psi = \psi_1 + i\psi_2$, where ψ_1, ψ_2 is real valued. So,

$$||L_{\psi,\zeta}||_{S_1} \le 4 \frac{\rho(e)}{c_{\zeta}} ||\psi||_1.$$

Let S_{∞} be the set of bounded linear operators on \mathcal{H} . Thus $\|.\|_{S_{\infty}}$ is the operator norm. By Proposition 2.3, if $\psi \in L^{\infty}(G/H)$, then $\|L_{\psi,\zeta}\|_{S_{\infty}} \leq \|\psi\|_{\infty}$. Now, the following proposition shows that $L_{\psi,\zeta}$ is in S_p for $\psi \in L^p(G/H)$, 1 .

Theorem 3.2. Let $\psi \in L^p(G/H)$, for $1 . Then <math>L_{\psi,\zeta} : \mathcal{H} \to \mathcal{H}$ is in S_p and

$$||L_{\psi,\zeta}||_{S_p} \le (4\frac{\rho(e)}{c_{\zeta}})^{1/p} ||\psi||_p,$$

where $\|\psi\|_p$ is given with respect to a G-invariant measure.

Proof. By Proposition 3.1 and Riesz Thorin Interpolation Theorem [16], the proof is obvious. \Box

In the following proposition we prove that the localization operator is compact.

Theorem 3.3. Let $\psi \in L^p(G/H)$, for $1 \le p \le \infty$. Then $L_{\psi,\zeta} : \mathcal{H} \to \mathcal{H}$ is a compact operator.

Proof. Let \mathfrak{A} be the set of all simple functions ψ on G/H such that $\mu(\{gH \in G/H, \ \psi(gH) \neq 0\}) < \infty$. Let $\{\psi_n\}_{n=1}^{\infty}$ be a sequence of functions in \mathfrak{A} such that $\psi_n \to \psi$ in $L^p(G/H)$ as $n \to \infty$. Then

$$||L_{\psi_n,\zeta} - L_{\psi,\zeta}|| \le (\frac{\rho(e)}{c_{\zeta}})^{1/p} ||\psi_n - \psi||_p \to 0,$$

as $n \to \infty$. But $\{L_{\psi_n,\zeta}\}$ is in S_1 . Since $S_p \subseteq S_q$, for $1 \le p \le q \le \infty$, we have $L_{\psi_n,\zeta} \in S_2$. So $\{L_{\psi_n,\zeta}\}$ is a sequence of compact operators and hence $L_{\psi,\zeta}$ is a compact operator.

Here we intend to support our technical considerations developed in the previous discussion by giving some examples.

Example 3.4. Consider the Euclidean group $G = SO(n) \times_{\tau} \mathbb{R}^n$ with group operations

$$(R_1, p_1).(R_2, p_2) = (R_1R_2, R_1p_2 + p_1), (R, p)^{-1} = (R^{-1}, -R^{-1}p).$$

Put n=2 in G, i.e., $G=SO(2)\times_{\tau}\mathbb{R}^2$ and $\mathcal{H}=L^2(S^1)\simeq L^2[-\pi,\pi]$. In this setting any $R\in SO(2)$ and $s\in S^1$ are given explicitly by

$$R = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
$$s = \begin{pmatrix} \sin\gamma \\ \cos\gamma \end{pmatrix}.$$

The representation ϖ of G/H, in which $H = \{(0,0,p_2) \in G\}$, is defined as

$$\varpi(\theta, p_1)\psi(\gamma) = e^{ip_1 sin\gamma}\psi(\gamma - \theta),$$

for all $(\theta, p_1) \in G/H$, $\psi \in L^2(S^1)$. For an admissible wavelet $\psi \in L^2(S^1)$ and $F \in L^p(G/H)$, $1 \le p \le \infty$, the localization operator $L_{F,\psi} : L^2(S^1) \to L^2(S^1)$ is given by

$$< L_{F,\psi}f, g> = \frac{1}{c_{\psi}} \int_{0}^{2\pi} \int_{-\infty}^{\infty} F(\theta, p_1) < f, \psi_{\theta, p_1} > < \psi_{\theta, p_1}, g > d\theta dp_1,$$

where $\psi_{\theta,p_1}(\gamma) = e^{ip_1 sin\gamma} \psi(\gamma - \theta)$. Also, by Theorem 3.2

$$||L_{F,\psi}||_{S_p} \le (4\frac{\rho(e)}{c_{\psi}})^{1/p} ||F||_p.$$

Example 3.5. Denote by $SO_o(3,1)$ the connected component of Lorentz group. It is a non-abelian group which may be realized as the set of all real 4×4 pseudo orthogonal matrices A, i.e., matrices with the following property

$$A^{T}\eta A = \eta, det A = 1, A_{00} \ge 1, \eta = diag(-1, 1, 1, 1).$$

Let So(n) be the group of rotations around the origin of \mathbb{R}^n and $\frac{SO_o(3,1)}{So(2)}$ be identified whit 2-sphere S^2 , which is not a group. It is well known that, $SO_o(3,1) = KAH$ in which

$$K \simeq SO(3), A \simeq SO_o(1,1) \simeq \mathbb{R} \simeq \mathbb{R}_*^+, H \simeq \mathbb{C}(Iwasawa\ decomposition).$$

Since $\frac{SO_o(3,1)}{H} \simeq SO(3)A$, then every element $gH \in \frac{SO_o(3,1)}{H}$ can be represented by $gH \equiv (\gamma,a)$ where $\gamma \in SO(3), a \in A$. Now define the representation ϖ of $\frac{SO_o(3,1)}{H}$ on $L^2(S^2)$ as follows

$$\varpi: \frac{SO_o(3,1)}{H} \to U(L^2(S^2)), (\varpi(gH)f)(\xi) = \lambda(\gamma.a,\xi)^{1/2}f((\gamma.a)^{-1}\xi),$$

for $f \in L^2(S^2)$, $\xi \in S^2$, where $\lambda(\gamma.a, \xi)$ is the Radon Nikodym derivative. This representation is square integrable (see [2] for more details). For an admissible wavelet $\psi \in L^2(S^2)$ and $F \in L^p(G/H)$, $1 \le p \le \infty$, the localization operator $L_{F,\psi}: L^2(S^2) \to L^2(S^2)$ is defined as follows:

$$\langle L_{F,\psi}f, g \rangle = \frac{1}{c_{\psi}} \int_{So_3} \int_A F(\gamma, a) \langle f, \varpi(\gamma, a)\psi \rangle \langle \varpi(\gamma, a)\psi,$$

$$g > \frac{d\mu(\gamma)da}{a^3},$$

for $f, g \in L^2(S^2)$. Moreover, by Theorem 3.2 and Theorem 2.5 we have

$$||L_{F,\psi}||_{S_p} \le (4\frac{\rho(e)}{c_{\psi}})^{1/p}||F||_p,$$

and

$$||L_{F,\psi}|| \le (\frac{\rho(e)}{c_{\psi}})^{1/p} ||F||_p.$$

Acknowledgments

The authors would like to thank the referee for their valuable comments and remarks. This research was supported by a grant from Ferdowsi university of Mashhad, No. MP90230KMY.

References

- S. T. Ali, J. P. Antoine and J. P. Gazeau, Coherent States, Wavelets and their Generalizations, Springer-Verlag, New York, 2000.
- [2] S. T. Ali, J. P. Antoine, P. Vandergheynst and R. Murenzi, Two Dimensional Wavelets and their Relatives, Cambridge University Press, Cambridge, 2004.
- [3] P. Boggiatto, A. Oliaro and M. W. Wong, L^p boundedness and compactness of localization operators, J. Math. Anal. Appl. 322 (2006), no. 1, 193–206.
- [4] J. Du and M. W. Wong, Gaussian functions and Daubechies operators, *Integral Equations Operator Theory* **38** (2000), no. 1, 1–8.
- [5] J. Du and M. W. Wong, Gaussian series and Daubechies operators, *Appl. Anal.* **76** (2000), no. 1-2, 83–91.
- [6] J. Du and M. W. Wong, Polar wavelet transforms and localization operators, Integral Equations Operator Theory 58 (2007), no. 1, 99–110.
- [7] J. Du, M. W. Wong and Z. Zhang, Trace class norm inequalities for localization operators, *Integral Equations Operator Theory* **41** (2001), no. 4, 497–503.
- [8] F. Esmaeelzadeh, R. A. Kamyabi Gol and R. Raisi Tousi, On the continuous wavelet transform on homogeneous spaces, *Int. J. Wavelets Multiresolut. Inf.* Process. 10 (2012), no. 4, 18 pages.
- [9] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995.
- [10] D. Gabor, Theory of communications, J. Inst. Elec. Eng. (London) 93 (1946), no. 26, 429–457.
- [11] A. Grossmann, J. Morlet and T. Pau, Transform associated to square integrable group representation I, J. Math. Phys. 26 (1985), no .10, 2773–2479.
- [12] R. A. Kamyabi Gol and A. Safapour, A necessary condition for Weyl-Heisenberg frames, Bull. Iranian Math. Soc. 30 (2004), no. 2, 67–79.
- [13] R. A. Kamyabi Gol and N. Tavallaei, Convolution and homogeneous spaces, Bull. Iranian Math. Soc. 35 (2009), no. 1, 129–146.
- [14] S. Molahajloo and M. W. Wong, Square-integrable group representations and localization operators for modified Stockwell transforms, *Rend. Semin. Mat. Univ. Politec. Torino* **67** (2009), no. 2, 215–227.
- [15] M. W. Wong, Wavelet Transform and Localization Operators, Birkhäuser Verlag, Basel, 2002.
- [16] K. Zhu, Operator Theory in Function Spaces, Mathematical Surveys and Monographs, 138. Amer. Math. Soc., Providence, 2007.

R. A. Kamyabi Gol

Department of Mathematics, Center of Excellency in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

Email: kamyabi@ferdowsi.um.ac.ir

F. Esmaeelzadeh

Department of Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran

Email: esmaeelzadeh@stu-mail.um.ac.ir

R. Raisi Tousi

Department of Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

Email: raisi@ferdowsi.um.ac.ir