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LOCALIZATION OPERATORS ON HOMOGENEOUS
SPACES
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ABSTRACT. Let G be a locally compact group, H a compact sub-
group of G and w a representation of the homogeneous space G/H
on a Hilbert space H. For ¢p € LP(G/H), 1 < p < oo, and an
admissible wavelet ¢ for w, we define the localization operator L ¢
on H and we show that it is a bounded operator. Moreover, we
prove that the localization operator is in Schatten p-class and it is
a compact operator for 1 < p < oo.

1. Introduction and Preliminaries

Recently, localization operators have been a subject of study in quan-
tum mechanics, in PDE and signal analysis. In engineering, a nat-
ural language is given by time-frequency analysis. A linear operator
Dy : L*(R") — L?(R") associated to ¢ in L'(R" x R") and ¢ in
L?*(R™) with ||¢|l2 = 1 , which is called a Daubechies operator, is the
same as the localization operator Ly, . associated to admissible wavelet
¢ for the Schrodinger representation of the Weyl-Heisenberg group on
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L2(R™). In fact,
1
< Dycfig >r2@mm= @ /Rn - ¥(g,p) < f,Cqp >< Capr g > dadp,

for all f,g in L*(R"), where (;,(z) = ¢P*((z — q), * € R, for all ¢,p
in R™ [1,4,5,10,12]. Motivated by Daubechies operators, a localization
operator is defined on locally compact groups [15]. Since, in many cases
working with too large groups, the group representations are not square
integrable, it is necessary to make the group smaller which can be per-
formed by factoring out a suitable subgroup, that is, one has to work
with homogenous spaces. Localization operators have been studied ex-
tensively on R™ and also on locally compact groups in [3-7,14]. M. W.
Wong in [15] has studied the localization operators in the setting of ho-
mogeneous spaces with a G-invariant measure. In this paper we do this
task with a completely different approach considering a relatively invari-
ant measure on a homogeneous space. The continuous wavelet transform
on homogenous spaces has been studied in [8] whereas in this paper, we
give a systematic study of localization operators on homogenous spaces
which are related to the continuous wavelet transform.

Let G be a locally compact group and H let be a closed subgroup of
G. Consider G/H as a homogeneous space on which G acts from the
left and p as a Radon measure on it. For g € G and a Borel subset E of
G/H, we define the translation pg of u by pg(E) = p(gE). A measure
o is said to be G-invariant if u, = p, for all g € G. A measure p is
said to be strongly quasi invariant provided that a continuous function
A:G x G/H — (0,00) exists which satisfies

dug(kH) = Mg, kH)dp(kH),

for all g,k € G. If the functions A(g,.) reduce to constants, then g is
called relatively invariant under G (for a detailed account of homoge-
neous spaces, the reader is refered to [9]). A rho-function for the pair
(G, H) is defined to be a continuous function p : G — (0,00) which
satisfies

plgh) = < (h)p(g) (9 € G,heH),

where Ag, Ay are the modular functions on G and H, respectively. It
is well known (see [9]), that any pair (G, H) admits a rho-function and
for each rho-function p there is a strongly quasi invariant measure p on
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G/H such that

dpg _ plgk)

As has been shown in [9], every strongly quasi invariant measure on
G/H, arises from a rho-function and all such measures are strongly
equivalent. That is, there exists a positive continuous function 7 on
G/H such that Z—ﬁ = 7, where p and [ are strongly quasi invariant
measures on G/H.

For the reader’s convenience, we recall from [8] the basic concepts in
the theory of unitary representations of homogeneous spaces. A con-
tinuous unitary representation of a homogeneous space G/H is a map
w from G/H into U(H), the group of all unitary operators on some
nonzero Hilbert space H, for which the function gH —< w(gH)z,y >
is continuous, for each x,y € H and

w(gkH) = w(gH)w(kH), w(g~'H)=w(gH)*,

for each g, k € G (see Example 3.4). Moreover, a closed subspace M of H
is said to be invariant with respect to w if w(¢gH)M C M, for all g € G.
A continuous unitary representation w is said to be irreducible if the only
invariant subspaces of H are {0} and . In the sequel we always mean
by a representation, a continuous unitary representation. An irreducible
representation w of G/H on H is said to be square integrable if there
exists a nonzero element ( € H such that

wy [ PO <o > Pdull) < o,
a/u P(9)

where p is a relatively invariant measure on G/H which arises from a

rho function p : G — (0, 00). If  satisfies (1.1), it is called an admissible

vector. An admissible vector ¢ € H is called admissible wavelet if ||| =

1. In this case, we define the wavelet constant c; as

(1.2 coim [ AD < alg)C > Pauo),
a/u P9)

We call ¢, the wavelet constant associated to the admissible wavelet ¢. It

is worthwhile to note that there is a close relation between the represen-

tation on homogeneous spaces G/H, where H is a compact subgroup of

GG, and the representation of G. More precisely if w is a representation

on G/H, then it defines a representation 7 of G in which the subgroup
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H is considered to be contained in the kernel of w. Conversely, any rep-
resentation m of G which is trivial on H induces a representation w of
G/H by letting w(gH) = 7(g).

Recall that if T' is a compact operator on a separable Hilbert space
H, then there exist orthonormal sets {«,} and {8,} in H such that

TE=) M <&an>Bn, €M,

where A, is the nth singular value of T' [16].

Given 0 < p < 400, the Schatten p-class S, of H is defined to be the
space of all compact operators T on ‘H with its singular value sequence
{An} belonging to P, the p-summable sequence space. When 1 < p < oo,
Sp is a Banach space with the norm

1Tl = [Aal1P.

Two special cases S1 and S, which are called the trace class and the
Hilbert-Schmidt class, respectively, are worth mentioning (for more de-
tailed on Schatten p-class see [16]).

In this paper we study the localization operator L where 1 €
LP(G/H,u), 1 < p < oo, and ¢ is admissible wavelet in a separable
Hilbert space H (see Definition 2.1). We investigate some significant
properties of a localization operator, such as boundedness and compact-
ness. This paper is organized as follows: In section 2, we show that for
Y e LP(G/H), 1<p<o0o,and an admissible wavelet ¢ € H, the local-
ization operator Ly - on H is bounded. Section 3 is devoted to proving
that Ly ¢ is a compact operator which is in Schatten p-class.

2. Boundedness of localization operators on G/H

Throughout this paper, we assume that the notation will be as the
previous section. Let G a locally compact group and let H a compact
subgroup of G. Consider G/H as a homogeneous space associated with
a relatively invariant measure y which arises from a rho-function p. Let
‘H be a separable Hilbert space, w a square integrable representation
of G/H on H and ¢ an admissible wavelet for w. In this section, we
introduce the localization operator L, ¢ which is related to the contin-

uous wavelet transform W, : H — L*(G/H), W¢(z)(gH) = (2523)1/2 <

z,w(gH)¢ >, for each ¢ € LP(G/H), 1 < p < oo. In this setting, we
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investigate the boundednees properties of localization operators. Now,
we define the linear operator Ly ¢ : H — H as follows.

Definition 2.1. Let H be a Hilbert space and let w be a square integrable
representation of G/H on H with an admissible wavelet (. Define the
linear operator Ly, ¢ on H as:

(2.1)
p(e)

1
< Lycx,y >=— 7¢(9H) <z, w(gH)( >< w(gH)(,y > du(gH),
G/H r(9)

for all ¢ € LP(G/H) and x,y € H, where c; is the wavelet constant
defined as (1.2). We call Ly ¢ the localization operator.

First, we show that for ¢ € L>(G/H) the localization operator Ly ¢
is bounded. For this, we need to recall the reconstruction formula for
square integrable representation w of G/H, which is (Theorem 2.1, [8]).

Theorem 2.2. Let w be a square integrable representation of G/H on
H. If ¢ is an admissible wavelet for w, then

(2.2)
p(e)

1
<xy>=— —— <, w(gH){ >< w(gH)(,y > du(gH),
a/u P(9)

where c¢ is as in (1.2).
Now, we are ready to prove boundedness of Ly, ¢ for ¢ € L>(G/H).

Proposition 2.3. Let ¢p € L>(G/H) and let ( € H be an admissible
wavelet. Then Ly ¢ : H — H is a bounded linear operator and ||Ly ¢|| <

19| oo-
Proof. Using Theorem 2.2 and the Schwarz inequality we get,

| < Ly, cx y > <
fG/H 29 p(gH)| | < @, @(gH)C > | | < @(gH)C,y > |du(gH) <
||w||oo 1 fG/H 28 | <@, w(gH)C > [Pdu(gH))?
(& Joym 55 1 < W(gH)C,y > [Pdu(gH))"? <
HwHoonHHyH,

for all z,y € H. So || Ly ¢l < [|¥]loo- O
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Secondly, let v € L'(G/H) where G/H is considered to be given a
G-invariant measure fi. Note that since H is compact, G/H admits such
a G-invariant measure.

Proposition 2.4. Let ¢ € LY(G/H). Then Ly is a bounded linear
operator and
(¢)

ple
Lyl < ==l
&
Proof. Consider G/H with a G-invariant measure /i which arises from
rho-function g =1 [9]. Then,

d
df/‘; =7, plg) = 7(gH),

where p is a relatively invariant measure which arises from p. We have

| < Lpcr,y > < & fon 45 [W(gH)| | <2, @(gH)C > | | < @(gH)C,
[lex]y > |du(gH)

<L fon 298 [(gH)| | < 2, w(gH)C > | | < w(gH)C,

y > [7(gH)da(gH)
< @izl lyll,

where [0 = i ¥ (gH)dii(gH). O

Now we intend to show that if ) € LP(G/H), 1 < p < oo, then Ly ¢
is a bounded linear operator.

Theorem 2.5. Let ¢ € LP(G/H), for 1 < p < co. Then there ezists a
unique bounded linear operator Ly ¢ : H — H such that

(2.3) 1Lyl < <’)§f)>1/p||¢||p,

where |||, is defined with respect to a G-invariant measure and Ly ¢
is given by (2.1) for all x € H and all simple functions ¥ on G/H for
which w({gH € G/H; (gH) # 0}) < 0.

Proof. Let T : H — L%(R") be a unitary operator and ¢ € L'(G/H).
Then the linear operator Ly ¢ : L*(R") — L?(R™) defined by

(2.4) E%C = FL¢7<F71,
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is bounded and || Ly ¢|| < %f)lllblll- Also, if ¢ € L(G/H), then Ly on

L*(R™) defined as (2.4) is bounded and || Ly ¢|| < [|%]|oo-
Denote by 2, the set of all simple functions ¢ on G/H such that

n({gH € G/H;¢(gH) # 0}) < oc.

Let g € L?(R™) and let @ be a linear transformation from 2 into the set

of all Lebesgue measurable functions on R" defined as ®,(¢)) = Ly ¢(g).
Then for all ¢ € LY(G/H)

- - p(e)
P4 (D)2 = 1 Ly.c(9)ll2 < Ly cllllgll2 < ?II¢II1H9H2-

Similarly for all v € L>*(G/H),

1@g(¥)ll2 < [[¥llosllgll2-

By the Riesz Thorin Interpolation Theorem [16], we get,

ple)

24l < (D)) g
¢
Therefore,
o)l < (2D 7ol Lol
So,
1Egell < ( (<)>1/Puwup,

for each ¢ € 2.
Now, let ¢ € LP(G/H), for all 1 < p < co. Then there exists a sequence
{Wr}32 of functions in A such that 1)y, is convergent to 1 in LP(G/H) as
k — 00. Also, {Ly, ¢}?2, is a Cauchy sequence in B(L?(R")). Indeed,

ple)

1 = Limcll < (B2 Cc ) Pl = Pllp — 0-
By completeness of B (L?(R™)), there exists a bounded linear operator
L¢ ¢ L*(R™) — L?(R™) such that Ly, ¢ converges to Ly ¢ in B(L*(R™)),
in which
(¢)

IZugll < (B2l
¢
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Thus, the linear operator Ly ¢ : H — H where Ly = Filfjw’CI‘, is a
bounded linear operator and

ple)
[ Lyl < (?)1/p||¢||p~
¢
To prove uniqueness, let ¢» € LP(G/H), 1 < p < oo, and suppose that
Py ¢ is another bounded linear operator satisfying the conclusions of the
theorem. Consider © : LP(G/H) — B(H) to be the linear operator
defined by
OW) = Lyc— Pye, ¢ € LP(G/H).
Then by (2.3),
p(e)
o)l <22y,
Moreover, O(v) is equal to the zero operator on H for all ¢ € . Thus,
© : LP(G/H) — B(H) is a bounded linear operator which is equal to
zero on the dense subspace 2 of LP(G/H). Therefore, Ly = Py for
all v € LP(G/H). O

3. Localization operator as an element of Schatten p-class
operators

Our goal in this section is to give a complete account of the Schatten
p-class property of localization operators. To this end, we note that if
T :H — H is a positive operator such that

D < T, & >< o0,
n

for all orthonormal bases {§,,n = 1,2,...} for H, then T : H — H is
in the trace class Si. Moreover, ||T|s, = tr(T) = >, < Tén, & >.
The following proposition shows that Ly ¢ is in the trace class when
Y € (LY(G/H), fi) where fi is a G-invariant measure on G/H.

Proposition 3.1. Let ¢p € LY(G/H). Then the localization operator
Lyc¢:H—H isin Sy and

(¢)

ple
1Ly clls: < 4= =¥,
¢

where ||Y]|1 = fG/H@b(gH)d/l(gH) and [i is a G-invariant measure on
G/H.
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Proof. We assume that ¢ € L1(G/H) is non-negative. Then

<Lypezos=— [ 2Dym)| < o, m(gH)C > Pdu(gH) 2 0

c¢ Jaym P(9)
for all z € H. That is, Ly ¢ is positive. Let {(;}72, be an orthonormal
basis for 7. Then using the fact that /i is a G-invariant measure on G/H
which arises from f(g) = 1 we get,

St = g1 < LycCrCe >
= N & Joym 4G 0(gH)| < Gy w(gH)C > [Pdu(gH)
= & Joymp(@(gH) 332 | < Goyw(gH)C > [Pdi(gH)
= 29 [ Y(gH)dji(gH)
= 29)jgs.

Now if ¢ € L'(G/H) is real valued, then we write ¢ = ¢, —1_. So we
have,

[ Ly cl

pe)
[Lycllsy < 2=l
&
Let ¢ € L'(G/H). Then 9 = 1)1 + i), where 91,5 is real valued. So,

p(e)
[ Lycllsy < 4?’@”1'

g

Let S be the set of bounded linear operators on H. Thus ||.||s., is the
operator norm. By Proposition 2.3, if ¢ € L>(G/H), then || Ly ¢|/s.. <
|¥]|oo- Now, the following proposition shows that Ly ¢ is in S, for ¢ €
LP(G/H), 1 <p < .

Theorem 3.2. Lety € LP(G/H), for 1 <p <oo. Then Ly¢:H —H
is in Sy and

ple)
Lo, < GED P,
where [|¢||, is given with respect to a G-invariant measure.

Proof. By Proposition 3.1 and Riesz Thorin Interpolation Theorem [16],
the proof is obvious. O

In the following proposition we prove that the localization operator
is compact.



464 Kamyabi Gol, Esmaeelzadeh and Raisi Tousi

Theorem 3.3. Let oy € LP(G/H), for 1 <p <oo. Then Ly¢:H —H
1S a compact operator.

Proof. Let 2 be the set of all simple functions 1) on G/H such that
w{gH € G/H, ¢(gH) # 0}) < oo. Let {¢,}°°; be a sequence of
functions in 2 such that v, — ¢ in LP(G/H) as n — oo. Then

p(e)
IEbuc = Lol < (D)2l — vl 0
as n — oo. But {Ly, ¢} is in S;. Since S, € Sy, for 1 < p < g < o0,

we have Ly, € Sa. So {Ly,, ¢} is a sequence of compact operators and
hence Ly ¢ is a compact operator. ]

Here we intend to support our technical considerations developed in
the previous discussion by giving some examples.

Example 3.4. Consider the Euclidean group G = SO(n) x, R™ with
group operations

(R1,p1)-(Ra,p2) = (R1Ry, Ripa + p1), (R,p)~' = (R™', =R 'p).
Putn =2 in G, ie., G = SO?2) x; R? and H = L*(S?) ~ L*[-7, 7).
In this setting any R € SO(2) and s € S' are given explicitly by

cosf  sinb
R= ( —sinf cosl )

o= < Siny ) .
cosYy
The representation w of G/H, in which H = {(0,0,p2) € G}, is defined
as

@ (0, p1)(7) = Py (y —6),

for all (0,p1) € G/H,v € L2(SY). For an admissible wavelet 1) € L*(S*
and F € LP(G/H),1 < p < oo, the localization operator L., : L*(S') —
L?(SY) is given by

1 2w poo

< LF,d)fag >= C'd)/ / F<07p1) < f7 q;b@,pl >< ¢0,p1)g > dedplu
0 —00

where g p, (7) = P15V (y — 0). Also, by Theorem 3.2

p(e)
I Lrylls, < (43)1“””}7\\;7-
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Example 3.5. Denote by SO,(3,1) the connected component of Lorentz
group. It is a mon-abelian group which may be realized as the set of all
real 4 X 4 pseudo orthogonal matrices A, i.e., matrices with the following
property

ATnA =n,detA=1,A00> 1, = diag(—1,1,1,1).

S0,(3,1)
So(2)
be identified whit 2-sphere S?, which is not a group. It is well known

that, SO,(3,1) = KAH in which

K ~ SO(3),A~ S0,(1,1) R ~ R}, H ~ C(Iwasawa decomposition,).

50,(3,1) 500(3,1)
H H

Let So(n) be the group of rotations around the origin of R™ and

Since ~ SO(3)A, then every element gH € can be
represented by gH = (7v,a) where v € SO(3),a € A. Now define the

representation w of SO"T(?’J) on L?(S?) as follows

w:Saﬁin—+U@%¥»Awwﬂﬁxo=Awu@ﬂ”ﬂWar%%

for f € L?(S?),¢& € S?, where \(v.a, &) is the Radon Nikodym derivative.
This representation is square integrable (see [2] for more details). For
an admissible wavelet 1 € L?(S?) and F € LP(G/H),1 < p < oo, the
localization operator L., : L*(S?) — L*(S?) is defined as follows:

<Lm%g>i;A%AFm®<ﬂWWﬂW><wm®M
dp(v)da

3 )
a
for f,g € L?>(S?). Moreover, by Theorem 3.2 and Theorem 2.5 we have

g >

p(e)
I Lrylls, < (4?)1“’HFIIp,

and ©
ple

ILpyll < (52) P Flp.
Cy
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