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ABSTRACT. The inflation G; of a graph G with n(G) vertices and
m(G) edges is obtained from G by replacing every vertex of degree
d of G by a clique, which is isomorphic to the complete graph Kg,
and each edge (z;,x;) of G is replaced by an edge (u,v) in such a
way that v € X;, v € X, and two different edges of G are replaced
by non-adjacent edges of G;. The total domination number v (G)
of a graph G is the minimum cardinality of a total dominating set,
which is a set of vertices such that every vertex of G is adjacent
to one vertex of it. A graph is K,-covered if every vertex of it is
contained in a clique K,. Cockayne et al. in [Total domination in
K,-covered graphs, Ars Combin. 71 (2004) 289-303] conjectured
that the total domination number of every K,-covered graph with
n vertices and no K,-component is at most % This conjecture
has been proved only for 3 < r < 6. In this paper, we prove this
conjecture for a big family of K,-covered graphs.

1. Preliminaries

Let G = (V, E) be a simple graph with vertez set V' of order n(QG)
and edge set E of size m(G). The open neighborhood of a vertex v in
G is the set Ng(v) = {u € V]uv € E}. The degree of a vertex v
is d(v) =| Ng(v) |. The minimum and maximum degree among the
vertices of G are denoted by 0(G) and A(G), respectively. We write K,
for the complete graph of order n. A clique with n vertices in a graph G
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is the induced subgraph of G that is isomorphic to the complete graph
K,. A vertex of degree 1 in G is called a leaf of G. A graph H is a
spanning subgraph of a graph G if V(H) = V(G) and E(H) C E(G).

An edge subset M in G is called a matching in G if no two edges of
M has any vertex in common. If e = vw € M, then we say either M
saturates two vertices v and w or v and w are M-saturated (by e). A
matching M is a mazimum matching if there is no other matching M’
with | M" |>| M |. In a graph G the number of edges in a maximum
matching is denoted by o/(G).

We define ¢1,(G) as the maximum possible number of leaves of G that
are M-unmatched taken over all maximum matchings M in G. Recall
that a subset S of V' is independent if no two vertices of S are adjacent

and a graph is K,-covered if every vertex of it is contained in a clique
K,.

Definition 1.1. The inflation or inflated graph G of a graph G without
isolated vertices is obtained as follows: each vertex x; of degree d(x;)
of G is replaced by a clique X; = K,,) and each edge (v;,z;) of G is
replaced by an edge (u,v) in such a way that v € X;, v € Xj, and two
different edges of G are replaced by non-adjacent edges of Gf.

An obvious consequence of the definition is that
6(Gr) =46(G), A(Gr) = A(G)
and

n(Gr)= Y dalx) =2m(G).

$1€V(G)

There are two different kinds of edges in G;. The edges of the clique X;
are colored red and the X;’s are called the red cliques (a red clique X is
reduced to a point if z; is a leaf of G). The other ones, which correspond
to the edges of G, are colored blue and they form a perfect matching
of Gy . Every vertex of G belongs to exactly one red clique and one
blue edge. Two adjacent vertices of G are said to red-adjacent if they
belong to the same red clique, blue-adjacent otherwise. In general, we
adopt the following notation: if x; and x; are two adjacent vertices of G,
the end vertices of the blue edge of G replacing the edge (z;,z;) of G
are called z;z; in X; and z;x; in X, and this blue edge is (x;xj, xjz;).
Clearly an inflation is claw-free. More precisely, Gy is the line-graph
L(S(G)) where the subdivision S(G) of G is obtained by replacing each
edge of G by a path of length 2. Also a subgraph H of G that is
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an inflated graph is called an H-inflated subgraph of G. The study
of various domination parameters in inflated graphs was originated by
Dunbar and Haynes in [2]. Results related to the domination parameters
in inflated graphs can be found in [3], [4] and [9)].

Domination in graphs is now well studied in graph theory. The lit-
erature on this subject has been surveyed and detailed in two books by
Haynes, Hedetniemi, and Slater [6] and [7]. A famous type of domination
is total domination, and a recent survey of it can be found in [8].

Definition 1.2. A total dominating set, abbreviated TDS, of a graph
G is a set S of vertices of G such that every vertex of G is adjacent to a
vertex in S. The total domination number ~v,(G) of G is the minimum
cardinality of a TDS of G. A TDS of G of cardinality v,(G) is called a
7(G)-set.

Cockayne and et al. have conjectured the following r-CC' conjecture
in [1].

Conjecture 1.3. [1] Every K,-covered graph G of order n with no K,-

component satisfies v(G) < 7,2%

This conjecture has been proved only for 3 < r < 6 (see [1] and [5]).
In this paper, we will prove it for a big family of graphs in the next
Theorem 1.4 which will be proved in the next section.

Theorem 1.4. Let G be a K,.-covered graph with no K,-component
and no isolated vertex that contains Hy as greatest spanning inflated
subgraph. If H is reqular or satisfies

A(H) — 6(H)

);

then G satisfies the r-CC conjecture.

2. Main Results

We first state the following observation without its proof . It gives
a sufficient condition for verifying when a graph G satisfies the r-CC
conjecture.

Observation 2.1. If inflated graphs satisfy the r-CC' conjecture, then
every K,-covered graph G that contains a spanning inflated subgraph
satisfies the r-CC' conjecture.
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Lemma 2.2. If G is a graph with no isolated vertex, then

7(G1) < 2n(G) — 2d/(G) — ¢1(G).

Proof. Among all maximum matchings in G, let M be one that max-
imizes the number of leaves that are M-unmatched. If w is an M-
unmatched leaf and v is its unique neighbor, then v is M-saturated, by
the maximality of M. Form a set D of G as follows.

For each x;x; € M, let x;xj,x2; € D. Since x;x; € X; and zjz; € X,
these 20/(G) vertices dominate UpevanXi- If @ is an M-unsaturated
leaf and x; is its unique neighbor in G, then z; is M-saturated by an
edge z;jx;, € M, for some k # i, j. Let z;x;, € D. Hence z;2; is adjacent
to vertex z;xy in D. Let xjz; € D also. If x; is an M-unsaturated
vertex of degree at least two, place two arbitrary vertices x;x; and z;xy
of X; in D such that z;,z, € Ng(x;).

Then D is a total dominating set of Gy and | D |= 2n(G) — 2/ (G) —
¢r(G). To justify this counting, observe that D contains two vertices
from each X; except when z; is one of the 2a/(G) M-saturated vertices
or one of the ¢ (G) M-unsaturated leaves. O

We use Lemma 2.2 to prove the following theorem.

Theorem 2.3. Let G be a graph with no isolated vertex and size m. If
G is reqular or satisfies formula (1.1), then v(Gr) < 4m/(6(G) + 1).

Proof. Let n = n(G), o = d(G), 6 = §(G), A = A(G) and let
¢r = ¢r(G). Among all maximum matchings in G, let M be one that
maximizes the number of leaves that are M-unmatched. Let V(G) =
V(M)UV, be a partition. Then the induced subgraph G[Vp] is an inde-
pendent set, and since §(G) > 1, every vertex of V} is adjacent to at least
one vertex of V(M). Let zy € M. We claim that if Ng(x) — V(M) # 0
and Ng(y) — V(M) # 0, then Ng(y) — V(M) C Ng(z) — V(M) or
Ng(z) = V(M) C Ng(y) — V(M). Otherwise, if v € Ng(x) — V(M),
w € Ng(y) — V(M) and v # w, then M’ = (M — {zy}) U {zv,yw}
is a matching of G with | M’ |>| M |. Therefore we have a partition
V(M) = V1 U Va such that | Vi |=| V2 |= o and every edge of M has
a vertex in V; and other vertex in V5. We may also assume that every
vertex of Vj is adjacent to at least one vertex of V. Let xy € M such

that x € V1 and y € V5. Since x is adjacent to at most A — 1 vertices of
Vo, | Vo [€ &/(A = 1).
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If G is regular, then | V) |< &/(6 — 1) implies that /6 > n — o/, and

SO
2m = Z’UEV deg (’U)
= Z’UEVI degG( ) + ZUEVQUVZ deg@(”)
= dé+(n—da)o
> (n—d)(6+1).
By Lemma 2.2,
%(Gr) < 2n—2d' —¢L
< 2n—2d
< 4dm/(6+1).

If G is not regular, then ¢ > 2a/§ff5) and | V |< /(A — 1), which
implies that

v)

+ EUEVOUV2 degg(v)

2m = Z’UEV deg(
Zvevl degG( )
o'+ (n—a')d
(n—a)(d+1)—d'(A=9).

VIVl

Again by Lemma 2.2,

w(Gr) < 2n-2d —¢p
< 2n—2d — 20‘/5(fl_5)
< 4m/(§+1).

0

Corollary 2.4. Let G be a graph with no isolated vertex and size m such
that G is regular or satisfies formula (1.1). Then for every 1 < r < §(G),
Y(Gr) <4dm/(r 4+ 1).

Now Observation 2.1 and Corollary 2.4 prove Theorem 1.4.
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