Bulletin of the Iranian Mathematical Society Vol. 35 No. 2 (2009), pp 255-264.

COMMON FIXED POINTS OF GENERALIZED CONTRACTIVE MAPS IN CONE METRIC SPACES

A. AZAM* AND M. ARSHAD

Communicated by Fraydoun Rezakhanlou

ABSTRACT. We prove a coincidence and common fixed point theorems of three self mappings satisfying a generalized contractive type condition in cone metric spaces. Our results generalize some well-known recent results.

1. Introduction and preliminaries

Huang and Zhang [3] introduced the concept of cone metric space and established some fixed point theorems for contractive type mappings in a normal cone metric space. Subsequently, some other authors [1, 2, 4-7] studied the existence of fixed points of self mappings satisfying a contractive type condition. Here, we obtain points of coincidence and common fixed points for three self mappings satisfying generalized contractive type condition in a complete normal cone metric space. Our results improve and generalize the results in [1, 3].

A subset P of a real Banach space E is called a *cone* if it has the following properties:

- (i) P is non-empty, closed and $P \neq \{\mathbf{0}\}$;
- (ii) $0 \le a, b \in R$ and $x, y \in P \Rightarrow ax + by \in P$;

*Corresponding author.

© 2009 Iranian Mathematical Society.

MSC(2000): 47H10, 54H25, 55M20.

Keywords: Coincidence point, point of coincidence, common fixed point, contractive type mapping, commuting mapping, compatible mapping, cone metric space. Received: 19 August 2008, Accepted: 06 January 2009.

²⁵⁵

(*iii*)
$$P \cap (-P) = \{\mathbf{0}\}.$$

For a given cone $P \subseteq E$, we can define a partial ordering \leq on Ewith respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write x < y if $x \leq y$ and $x \neq y$, while $x \ll y$ stands for $y - x \in intP$, where intP denotes the interior of P. The cone P is called *normal* if there is a number $\kappa \geq 1$ such that for all $x, y, \in E$,

(1.1)
$$\mathbf{0} \le x \le y \implies ||x|| \le \kappa ||y||.$$

The least number $\kappa \geq 1$ satisfying (1.1) is called the *normal constant* of *P*.

In the following, we always suppose that E is a real Banach space and P is a cone in E with $intP \neq \emptyset$ and \leq is a partial ordering with respect to P.

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d: $X \times X \to E$ satisfies:

- (1) $0 \le d(x, y)$, for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x), for all $x, y \in X$;
- (3) $d(x,y) \le d(x,z) + d(z,y)$, for all $x, y, z \in X$.

Then d is called a *cone metric* on X and (X, d) is called a *cone metric space*.

Let x_n be a sequence in X and $x \in X$. If for each $\mathbf{0} \ll c$ there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d(x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent (or $\{x_n\}$ converges) to x and x is called the *limit* of $\{x_n\}$. We denote this by $\lim_n x_n = x$, or $x_n \longrightarrow x$, as $n \to \infty$. If for each $\mathbf{0} \ll c$ there is $n_0 \in \mathbb{N}$ such that for all $n, m > n_0$, $d(x_n, x_m) \ll c$, then $\{x_n\}$ is called a *Cauchy sequence* in X. If every Cauchy sequence is convergent in X, then X is called a *complete cone metric space*. Let us recall [5] that if P is a normal cone, then $x_n \in X$ converges to $x \in X$ if and only if $d(x_n, x) \to \mathbf{0}$, as $n \to \infty$. Furthermore, $x_n \in X$ is a Cauchy sequence if and only if $d(x_n, x_m) \to \mathbf{0}$, as $n, m \to \infty$.

A pair (f, T) of self-mappings on X are said to be weakly compatible if they commute at their coincidence point (i.e., fTx = Tfx, whenever fx = Tx). A point $y \in X$ is called a point of coincidence of T and f if there exists a point $x \in X$ such that y = fx = Tx.

2. Main results

We start with a lemma that will be required in the sequel.

Lemma 2.1. Let X be a non-empty set and the mappings $S, T, f : X \to X$ have a unique point of coincidence v in X. If (S, f) and (T, f) are weakly compatible, then S, T and f have a unique common fixed point.

Proof. Let v be the point of coincidence of S, T and f. Then, v = fu = Su = Tu, for some $u \in X$. By weakly compatibility of (S, f) and (T, f) we have,

$$Sv = Sfu = fSu = fv$$
 and $Tv = Tfu = fTu = fv$.

It implies that Sv = Tv = fv = w (say). Thus, w is a point of coincidence of S, T and f. Therefore, v = w by uniqueness. Hence, v is the unique common fixed point of S, T and f.

Here, by providing the next result, we state the following generalization of some recent results.

Theorem 2.2. Let (X, d) be a cone metric space, P be a normal cone with normal constant κ . Suppose the mappings $T, f : X \to X$ satisfy:

$$d(Tx, Ty) \le \alpha \left[d(fx, Ty) + d(fy, Tx) \right] + \gamma \ d(fx, fy)$$

for all $x, y \in X$, where $\alpha, \gamma \in [0, 1)$ with $2\alpha + \gamma < 1$. Also, suppose that $T(X) \subseteq f(X)$ and f(X) is a complete subspace of X. Then, T and f have a unique point of coincidence. Moreover, if (T, f) are weakly compatible, then T and f have a unique common fixed point.

Corollary 2.3. Let (X, d) be a cone metric space, P be a normal cone with normal constant κ . Suppose the mappings T, $f : X \to X$ satisfy:

(2.1)
$$d(Tx, Ty) \le \alpha d(fx, Ty) + \beta d(fy, Tx) + \gamma d(fx, fy),$$

for all $x, y \in X$, where $\alpha, \beta, \gamma \in [0, 1)$ with $\alpha + \beta + \gamma < 1$. Also, suppose that $T(X) \subseteq f(X)$ and f(X) is a complete subspace of X. Then, T and f have a unique point of coincidence. Moreover, if (T, f) are weakly compatible, then T and f have a unique common fixed point.

Proof. In (2.1) interchanging the roles of x and y and adding the resulting inequality to (2.1), we obtain:

$$d(Tx,Ty) \le \frac{\alpha+\beta}{2} \left[d(fx,Ty) + d(fy,Tx) \right] + \gamma \ d(fx,\ fy).$$

Now, by using Theorem 2.2 we obtain the required result.

Corollary 2.4. [1] Let (X, d) be a cone metric space, P be a normal cone with normal constant κ and the mappings T, $f : X \to X$ satisfy:

$$d(Tx, Ty) \le \gamma \ d(fx, fy),$$

for all $x, y \in X$, where $0 \leq \gamma < 1$. If $T(X) \subseteq f(X)$ and f(X) is a complete subspace of X, then T and f have a unique point of coincidence. Moreover, if (T, f) are weakly compatible, then T and f have a unique common fixed point.

Corollary 2.5. [1] Let (X, d) be a cone metric space, P be a normal cone with normal constant κ and the mappings $T, f : X \to X$ satisfy:

$$d(Tx, Ty) \le \alpha \left[d(fx, Ty) + d(fy, Tx) \right],$$

for all $x, y \in X$, where $0 \le \alpha < \frac{1}{2}$. Also, suppose that $T(X) \subseteq f(X)$ and f(X) is a complete subspace of X. Then, T and f have a unique point of coincidence. Moreover, if (T, f) are weakly compatible, then T and f have a unique common fixed point.

Here, we further improve Theorem 2.2 as follows.

Theorem 2.6. Let (X, d) be a cone metric space, P be a normal cone with normal constant κ . Suppose the mappings $S, T, f : X \to X$ satisfy:

(2.2)
$$d(Sx,Ty) \le \alpha d(fx,Ty) + \beta d(fy,Sx) + \gamma d(fx,fy),$$

for all $x, y \in X$, where α, β, γ are non-negative real numbers with

$$\alpha + \beta + \gamma < 1.$$

If $S(X) \cup T(X) \subseteq f(X)$ and f(X) is a complete subspace of X, then S, T and f have a unique point of coincidence. Moreover, if (S, f) and (T, f) are weakly compatible, then S, T and f have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. Choose a point x_1 in X such that $fx_1 = Sx_0$. Similarly, choose a point x_2 in X such that $fx_2 = Tx_1$.

258

Common fixed points

Continuing this process till having chosen x_n in X, we obtain x_{n+1} in X such that

$$fx_{2k+1} = Sx_{2k}$$

$$fx_{2k+2} = Tx_{2k+1}, \ (k \ge 0).$$

Then,

$$d(fx_{2k+1}, fx_{2k+2}) = d(Sx_{2k}, Tx_{2k+1})$$

$$\leq \alpha d(fx_{2k}, Tx_{2k+1}) + \beta d(fx_{2k+1}, Sx_{2k})$$

$$+ \gamma d(fx_{2k}, fx_{2k+1})$$

$$\leq [\alpha + \gamma] d(fx_{2k}, fx_{2k+1}) + \alpha d(fx_{2k+1}, fx_{2k+2}).$$

This implies:

$$[1 - \alpha]d(fx_{2k+1}, fx_{2k+2}) \le [\alpha + \gamma] \ d(fx_{2k}, fx_{2k+1}).$$

Thus,

$$d(fx_{2k+1}, fx_{2k+2}) \le \left[\frac{\alpha+\gamma}{1-\alpha}\right] d(fx_{2k}, fx_{2k+1}).$$

Similarly,

$$\begin{aligned} d(fx_{2k+2}, \ fx_{2k+3}) &= d(Sx_{2k+2}, Tx_{2k+1}) \\ &\leq \alpha d(fx_{2k+2}, Tx_{2k+1}) + \beta d(fx_{2k+1}, Sx_{2k+2}) \\ &+ \gamma d(fx_{2k+2}, fx_{2k+1}) \\ &\leq \alpha d(fx_{2k+2}, fx_{2k+2}) + \beta d(fx_{2k+1}, fx_{2k+3}) \\ &+ \gamma d(fx_{2k+2}, fx_{2k+1}) \\ &\leq [\beta + \gamma] d(fx_{2k+1}, fx_{2k+2}) + \beta d(fx_{2k+2}, fx_{2k+3}). \end{aligned}$$

Hence,

$$d(fx_{2k+2}, fx_{2k+3}) \le \left[\frac{\beta + \gamma}{1 - \beta}\right] d(fx_{2k+1}, fx_{2k+2}).$$

Now, by induction, we obtain:

$$d(fx_{2k+1}, fx_{2k+2}) \leq \left[\frac{\alpha + \gamma}{1 - \alpha}\right] d(fx_{2k}, fx_{2k+1})$$

$$\leq \left[\frac{\alpha + \gamma}{1 - \alpha}\right] \left[\frac{\beta + \gamma}{1 - \beta}\right] d(fx_{2k-1}, fx_{2k})$$

$$\leq \left[\frac{\alpha + \gamma}{1 - \alpha}\right] \left[\frac{\beta + \gamma}{1 - \beta}\right] \left[\frac{\alpha + \gamma}{1 - \alpha}\right] d(fx_{2k-2}, fx_{2k-1})$$

$$\leq \ldots \leq \left[\frac{\alpha + \gamma}{1 - \alpha}\right] \left(\left[\frac{\beta + \gamma}{1 - \beta}\right] \left[\frac{\alpha + \gamma}{1 - \alpha}\right]\right)^k d(fx_0, fx_1)$$

and

$$d(fx_{2k+2}, fx_{2k+3}) \leq \left[\frac{\beta + \gamma}{1 - \beta}\right] d(fx_{2k+1}, fx_{2k+2})$$
$$\leq \dots \leq \left(\left[\frac{\beta + \gamma}{1 - \beta}\right] \left[\frac{\alpha + \gamma}{1 - \alpha}\right]\right)^{k+1} d(fx_0, fx_1),$$

for each $k \ge 0$. Let

$$\lambda = \left[\frac{\alpha + \gamma}{1 - \alpha}\right], \ \mu = \left[\frac{\beta + \gamma}{1 - \beta}\right].$$
for $\alpha < \alpha$ we have

Then, $\lambda \mu < 1$. Now, for p < q we have,

$$\begin{aligned} d(fx_{2p+1}, fx_{2q+1}) &\leq d(fx_{2p+1}, fx_{2p+2}) + d(fx_{2p+2}, fx_{2p+3}) \\ &+ d(fx_{2p+3}, fx_{2p+4}) + \ldots + d(fx_{2q}, fx_{2q+1}) \\ &\leq \left[\lambda \sum_{i=p}^{q-1} (\lambda \mu)^i + \sum_{i=p+1}^q (\lambda \mu)^i\right] d(fx_0, fx_1) \\ &\leq \left[\frac{\lambda(\lambda \mu)^p [1 - (\lambda \mu)^{q-p}]}{1 - \lambda \mu} + \frac{(\lambda \mu)^{p+1} [1 - (\lambda \mu)^{q-p}]}{1 - \lambda \mu}\right] d(fx_0, fx_1) \\ &\leq \left[\frac{\lambda(\lambda \mu)^p}{1 - \lambda \mu} + \frac{(\lambda \mu)^{p+1}}{1 - \lambda \mu}\right] d(fx_0, fx_1) \\ &\leq (1 + \mu) \left[\frac{\lambda(\lambda \mu)^p}{1 - \lambda \mu}\right] d(fx_0, fx_1) \\ &\leq (1 + \mu) \left[\frac{\lambda(\lambda \mu)^p}{1 - \lambda \mu}\right] d(fx_0, fx_1) \\ d(fx_{2p}, fx_{2q+1}) &\leq (1 + \lambda) \left[\frac{(\lambda \mu)^p}{1 - \lambda \mu}\right] d(fx_0, fx_1), \\ d(fx_{2p}, fx_{2q}) &\leq (1 + \lambda) \left[\frac{(\lambda \mu)^p}{1 - \lambda \mu}\right] d(fx_0, fx_1), \end{aligned}$$

Common fixed points

$$d(fx_{2p+1}, fx_{2q}) \le (1+\mu) \left[\frac{\lambda(\lambda\mu)^p}{1-\lambda\mu}\right] d(fx_0, fx_1).$$

Hence, for 0 < n < m, there exists $\vec{p} < n < m$ such that $p \to \infty$ as $n \to \infty$, and

$$d(fx_n, fx_m) \le Max \left\{ (1+\mu) \left[\frac{\lambda(\lambda\mu)^p}{1-\lambda\mu} \right], (1+\lambda) \left[\frac{(\lambda\mu)^p}{1-\lambda\mu} \right] \right\} d(fx_0, fx_1).$$

Since P is a normal cone with normal constant κ , we have,

$$\|d(fx_n, fx_m)\| \leq \\ \kappa \left[Max \left\{ (1+\mu) \left[\frac{\lambda(\lambda\mu)^p}{1-\lambda\mu} \right], (1+\lambda) \left[\frac{(\lambda\mu)^p}{1-\lambda\mu} \right] \right\} \right] \|d(fx_0, fx_1)\|.$$
us if $m, n \to \infty$ then

Thus, if $m, n \to \infty$, then

$$Max\left\{(1+\mu)\left[\frac{\lambda(\lambda\mu)^p}{1-\lambda\mu}\right],(1+\lambda)\left[\frac{(\lambda\mu)^p}{1-\lambda\mu}\right]\right\}\to 0,$$

and so $d(fx_n, fx_m) \to 0$. Hence, $\{fx_n\}$ is a Cauchy sequence. Since f(X) is complete, there exist $u, v \in X$ such that $fx_n \to v = fu$. Since

$$\begin{aligned} d(fu, \ Su) &\leq d(fu, fx_{2n}) + d(fx_{2n} \ Su) \\ &\leq d(vfx_{2n}) + d(Tx_{2n-1}, Su) \\ &\leq d(v, fx_{2n}) + \alpha d(fu, Tx_{2n-1}) \\ &+ \beta \left[d(fx_{2n-1}, fu) + d(fu, Su) \right] + \gamma d(fu, fx_{2n-1}), \end{aligned}$$

it implies that

$$\begin{aligned} d(fu, Su) &\leq \frac{1}{1 - \beta} [d(v, fx_{2n}) + \alpha d(v, fx_{2n}) + \beta d(fx_{2n-1}, v) \\ &+ \gamma d(v, fx_{2n-1})] \\ &\leq \frac{1}{1 - \beta} \left[(1 + \alpha) \, d(v, fx_{2n}) + \beta d(fx_{2n-1}, v) + \gamma d(v, fx_{2n-1}) \right]. \end{aligned}$$

Hence,

$$\|d(fu, Su)\| \le \frac{\kappa}{1-\beta} \|(1+\alpha) \, d(v, fx_{2n}) + (\beta+\gamma) \, d(v, fx_{2n-1})\|.$$

If $n \to \infty$, then we obtain ||d(fu, Su)|| = 0. Hence, fu = Su. Similarly, by using the inequality, we have,

$$d(fu, Tu) \le d(fu, fx_{2n+1}) + d(fx_{2n+1}, Tu).$$

We can show that fu = Tu, implying that v is a common point of coincidence of S, T and f; that is,

$$v = fu = Su = Tu.$$

Now, we show that f, S and T have unique point of coincidence. For this, assume that there exists another point v^* in X such that $v^* = fu^* = Su^* = Tu^*$, for some u^* in X. Now,

$$d(v, v^*) = d(Su, Tu^*)$$

$$\leq \alpha d(fu, Tu^*) + \beta d(fu^*, Su) + \gamma d(fu, fu^*)$$

$$\leq (\alpha + \beta + \gamma) d(v, v^*).$$

Hence, $v = v^*$. If (S, f) and (T, f) are weakly compatible, then

$$Sv = Sfu = fSu = fv$$
 and $Tv = Tfu = fTu = fv$.

It implies that Sv = Tv = fv = w (say). Hence, w is a point of coincidence of S, T and f, and so v = w by uniqueness. Thus, v is the unique common fixed point of S, T and f.

Example 2.7. Let $X = \{1, 2, 3\}, E = R^2$ and $P = \{(x, y) \in E : x, y \ge 0\}$. Define $d : X \times X \to E$ as follows:

$$d(x,y) = \begin{cases} (0,0) & \text{if } x = y\\ (\frac{5}{7},5) & \text{if } x \neq y \text{ and } x, y \in X - \{2\}\\ (1,7) & \text{if } x \neq y \text{ and } x, y \in X - \{3\}\\ (\frac{4}{7},4) & \text{if } x \neq y \text{ and } x, y \in X - \{1\}. \end{cases}$$

Define the mappings $T, f: X \to X$ as follows:

$$T(x) = \begin{cases} 1 & \text{if } x \neq 2\\ 3 & \text{if } x = 2 \end{cases} \text{ and } fx = x.$$

Then, $d(T(3), T(2)) = (\frac{5}{7}, 5)$. Now, for $2\alpha + \gamma < 1$, we have,

$$\begin{split} \alpha \left[d(f(3), T(2)) + d(f(2), T(3)) \right] + \gamma d(f(3), f(2)) \\ &= \alpha \left[d(3, T(2)) + d(2, T(3)) \right] + \gamma d(3, 2) \\ &= \gamma (\frac{4}{7}, 4) + \alpha \left[d(3, 3) + d(2, 1) \right] \\ &= \alpha \left[0 + (1, 7) \right] + \gamma (\frac{4}{7}, 4) = \left(\frac{7\alpha + 4\gamma}{7}, 7\alpha + 4\gamma \right) \\ &< \left(\frac{8\alpha + 4\gamma}{7}, 8\alpha + 4\gamma \right) = \left(\frac{4\left(2\alpha + \gamma \right)}{7}, 4\left(2\alpha + \gamma \right) \right) \\ &< \left(\frac{4}{7}, 4 \right) < \left(\frac{5}{7}, 5 \right) = d(T(3), T(2)). \end{split}$$

It follows that the mappings T and f do not satisfy the conditions of Theorem 2.2. Hence, Theorem 2.2 and its corellaries 2.3, 2.4 and 2.5 are

Common fixed points

not applicable here. Now, define the mapping $S: X \to X$ by Sx = 1 for all $x \in X$. Then,

$$d(Sx,Ty) = \begin{cases} (0,0) & \text{if } y \neq 2\\ (\frac{5}{7},5) & \text{if } y = 2 \end{cases}$$

and

$$\alpha d(fx, Ty) + \beta d(fy, Sx) + \gamma d(fx, fy) = (\frac{5}{7}, 5)$$

if y = 2, $\alpha = \gamma = 0$ and $\beta = \frac{5}{7}$. It follows that all conditions of Theorem 2.6 are satisfied for $\alpha = \gamma = 0$, $\beta = \frac{5}{7}$ and one can obtain the unique common fixed point 1 for S, T and f.

3. Conclusion

Our results generalized theorems 1 and 4 in [2] and theorems 2.3 and 2.7 in [1].

Acknowledgments

The present version owes much to the precise and kind remarks of an anonymous referee.

References

- M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416-420.
- [2] M. Abbas and B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett., in press.
- [3] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. **332** (2007) 1468-1476.
- [4] D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008) 876-882.
- [5] P. Raja and S. M. Vaezpour, Some extensions of Banach's contraction principle in complete cone metric spaces, Fixed Point and Theory Appl. (2008), Article ID 768294, 11 pages.
- [6] Sh. Rezapour and R. Hamlbarani, Some notes on paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719–724.
- [7] P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo (2) 56 (3) (2007) 464–468.

A. Azam

Department of Mathematics, COMSATS Institute of Information Technology, Chak Shazd, 44000, Islamabad, Pakistan.

Email: akbarazam@yahoo.com

M. Arshad

Department of Mathematics, International Islamic University, H-10, Islamabad, Pakistan.

Email: marshadzia@iiu.edu.pk