# COMMON FIXED POINTS OF GENERALIZED CONTRACTIVE MAPS IN CONE METRIC SPACES 

A. AZAM* AND M. ARSHAD

Communicated by Fraydoun Rezakhanlou


#### Abstract

We prove a coincidence and common fixed point theorems of three self mappings satisfying a generalized contractive type condition in cone metric spaces. Our results generalize some well-known recent results.


## 1. Introduction and preliminaries

Huang and Zhang [3] introduced the concept of cone metric space and established some fixed point theorems for contractive type mappings in a normal cone metric space. Subsequently, some other authors [1, $2,4-7]$ studied the existence of fixed points of self mappings satisfying a contractive type condition. Here, we obtain points of coincidence and common fixed points for three self mappings satisfying generalized contractive type condition in a complete normal cone metric space. Our results improve and generalize the results in [1, 3].

A subset $P$ of a real Banach space $E$ is called a cone if it has the following properties:
(i) $P$ is non-empty, closed and $P \neq\{\mathbf{0}\}$;
(ii) $0 \leq a, b \in R$ and $x, y \in P \Rightarrow a x+b y \in P$;

[^0](iii) $P \cap(-P)=\{\mathbf{0}\}$.

For a given cone $P \subseteq E$, we can define a partial ordering $\leq$ on $E$ with respect to $P$ by $x \leq y$ if and only if $y-x \in P$. We shall write $x<y$ if $x \leq y$ and $x \neq y$, while $x \ll y$ stands for $y-x \in \operatorname{intP}$, where int $P$ denotes the interior of $P$. The cone $P$ is called normal if there is a number $\kappa \geq 1$ such that for all $x, y, \in E$,

$$
\begin{equation*}
\mathbf{0} \leq x \leq y \Rightarrow\|x\| \leq \kappa\|y\| . \tag{1.1}
\end{equation*}
$$

The least number $\kappa \geq 1$ satisfying (1.1) is called the normal constant of $P$.

In the following, we always suppose that $E$ is a real Banach space and $P$ is a cone in $E$ with $i n t P \neq \emptyset$ and $\leq$ is a partial ordering with respect to $P$.

Definition 1.1. Let $X$ be a nonempty set. Suppose that the mapping $d$ : $X \times X \rightarrow E$ satisfies:
(1) $\mathbf{0} \leq d(x, y)$, for all $x, y \in X$ and $d(x, y)=\mathbf{0}$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$, for all $x, y \in X$;
(3) $d(x, y) \leq d(x, z)+d(z, y)$,for all $x, y, z \in X$.

Then $d$ is called a cone metric on $X$ and $(X, d)$ is called a cone metric space.

Let $x_{n}$ be a sequence in $X$ and $x \in X$. If for each $\mathbf{0} \ll c$ there is $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}, d\left(x_{n}, x\right) \ll c$, then $\left\{x_{n}\right\}$ is said to be convergent (or $\left\{x_{n}\right\}$ converges) to $x$ and $x$ is called the limit of $\left\{x_{n}\right\}$. We denote this by $\lim _{n} x_{n}=x$, or $x_{n} \longrightarrow x$, as $n \rightarrow \infty$. If for each $\mathbf{0} \ll c$ there is $n_{0} \in \mathbb{N}$ such that for all $n, m>n_{0}, d\left(x_{n}, x_{m}\right) \ll c$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence in $X$. If every Cauchy sequence is convergent in $X$, then $X$ is called a complete cone metric space. Let us recall [5] that if $P$ is a normal cone, then $x_{n} \in X$ converges to $x \in X$ if and only if $d\left(x_{n}, x\right) \rightarrow \mathbf{0}$, as $n \rightarrow \infty$. Furthermore, $x_{n} \in X$ is a Cauchy sequence if and only if $d\left(x_{n}, x_{m}\right) \rightarrow \mathbf{0}$, as $n, m \rightarrow \infty$.

A pair $(f, T)$ of self-mappings on $X$ are said to be weakly compatible if they commute at their coincidence point (i.e., $f T x=T f x$, whenever $f x=T x)$. A point $y \in X$ is called a point of coincidence of $T$ and $f$ if there exists a point $x \in X$ such that $y=f x=T x$.

## 2. Main results

We start with a lemma that will be required in the sequel.
Lemma 2.1. Let $X$ be a non-empty set and the mappings $S, T, f: X \rightarrow$ $X$ have a unique point of coincidence $v$ in $X$. If $(S, f)$ and $(T, f)$ are weakly compatible, then $S, T$ and $f$ have a unique common fixed point.

Proof. Let $v$ be the point of coincidence of $S, T$ and $f$. Then, $v=f u=$ $S u=T u$, for some $u \in X$. By weakly compatibility of $(S, f)$ and $(T, f)$ we have,

$$
S v=S f u=f S u=f v \text { and } T v=T f u=f T u=f v
$$

It implies that $S v=T v=f v=w$ (say). Thus, $w$ is a point of coincidence of $S, T$ and $f$. Therefore, $v=w$ by uniqueness. Hence, $v$ is the unique common fixed point of $S, T$ and $f$.

Here, by providing the next result, we state the following generalization of some recent results.

Theorem 2.2. Let $(X, d)$ be a cone metric space, $P$ be a normal cone with normal constant $\kappa$. Suppose the mappings $T, f: X \rightarrow X$ satisfy:

$$
d(T x, T y) \leq \alpha[d(f x, T y)+d(f y, T x)]+\gamma d(f x, f y)
$$

for all $x, y \in X$, where $\alpha, \gamma \in[0,1)$ with $2 \alpha+\gamma<1$. Also, suppose that $T(X) \subseteq f(X)$ and $f(X)$ is a complete subspace of $X$. Then, $T$ and $f$ have a unique point of coincidence. Moreover, if $(T, f)$ are weakly compatible, then $T$ and $f$ have a unique common fixed point.

Corollary 2.3. Let $(X, d)$ be a cone metric space, $P$ be a normal cone with normal constant $\kappa$. Suppose the mappings $T, f: X \rightarrow X$ satisfy:

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(f x, T y)+\beta d(f y, T x)+\gamma d(f x, f y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha, \beta, \gamma \in[0,1)$ with $\alpha+\beta+\gamma<1$. Also, suppose that $T(X) \subseteq f(X)$ and $f(X)$ is a complete subspace of $X$. Then, $T$ and $f$ have a unique point of coincidence. Moreover, if $(T, f)$ are weakly compatible, then $T$ and $f$ have a unique common fixed point.

Proof. In (2.1) interchanging the roles of $x$ and $y$ and adding the resulting inequality to (2.1), we obtain:

$$
d(T x, T y) \leq \frac{\alpha+\beta}{2}[d(f x, T y)+d(f y, T x)]+\gamma d(f x, f y)
$$

Now, by using Theorem 2.2 we obtain the required result.
Corollary 2.4. [1] Let $(X, d)$ be a cone metric space, $P$ be a normal cone with normal constant $\kappa$ and the mappings $T, f: X \rightarrow X$ satisfy:

$$
d(T x, T y) \leq \gamma d(f x, f y)
$$

for all $x, y \in X$, where $0 \leq \gamma<1$. If $T(X) \subseteq f(X)$ and $f(X)$ is a complete subspace of $X$, then $T$ and $f$ have a unique point of coincidence. Moreover, if $(T, f)$ are weakly compatible, then $T$ and $f$ have a unique common fixed point.

Corollary 2.5. [1] Let $(X, d)$ be a cone metric space, $P$ be a normal cone with normal constant $\kappa$ and the mappings $T, f: X \rightarrow X$ satisfy:

$$
d(T x, T y) \leq \alpha[d(f x, T y)+d(f y, T x)]
$$

for all $x, y \in X$, where $0 \leq \alpha<\frac{1}{2}$. Also, suppose that $T(X) \subseteq f(X)$ and $f(X)$ is a complete subspace of $X$. Then, $T$ and $f$ have a unique point of coincidence. Moreover, if $(T, f)$ are weakly compatible, then $T$ and $f$ have a unique common fixed point.

Here, we further improve Theorem 2.2 as follows.
Theorem 2.6. Let $(X, d)$ be a cone metric space, $P$ be a normal cone with normal constant $\kappa$. Suppose the mappings $S, T, f: X \rightarrow X$ satisfy:

$$
\begin{equation*}
d(S x, T y) \leq \alpha d(f x, T y)+\beta d(f y, S x)+\gamma d(f x, f y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha, \beta, \gamma$ are non-negative real numbers with

$$
\alpha+\beta+\gamma<1
$$

If $S(X) \cup T(X) \subseteq f(X)$ and $f(X)$ is a complete subspace of $X$, then $S, T$ and $f$ have a unique point of coincidence. Moreover, if $(S, f)$ and $(T, f)$ are weakly compatible, then $S, T$ and $f$ have a unique common fixed point.

Proof. Let $x_{0}$ be an arbitrary point in $X$. Choose a point $x_{1}$ in $X$ such that $f x_{1}=S x_{0}$. Similarly, choose a point $x_{2}$ in X such that $f x_{2}=T x_{1}$.

Continuing this process till having chosen $x_{n}$ in $X$, we obtain $x_{n+1}$ in $X$ such that

$$
\begin{aligned}
& f x_{2 k+1}=S x_{2 k} \\
& f x_{2 k+2}=T x_{2 k+1},(k \geq 0) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
d\left(f x_{2 k+1}, f x_{2 k+2}\right)= & d\left(S x_{2 k}, T x_{2 k+1}\right) \\
\leq & \alpha d\left(f x_{2 k}, T x_{2 k+1}\right)+\beta d\left(f x_{2 k+1}, S x_{2 k}\right) \\
& +\gamma d\left(f x_{2 k}, f x_{2 k+1}\right) \\
\leq & {[\alpha+\gamma] d\left(f x_{2 k}, f x_{2 k+1}\right)+\alpha d\left(f x_{2 k+1}, f x_{2 k+2}\right) . }
\end{aligned}
$$

This implies:

$$
[1-\alpha] d\left(f x_{2 k+1}, f x_{2 k+2}\right) \leq[\alpha+\gamma] d\left(f x_{2 k}, f x_{2 k+1}\right)
$$

Thus,

$$
d\left(f x_{2 k+1}, f x_{2 k+2}\right) \leq\left[\frac{\alpha+\gamma}{1-\alpha}\right] d\left(f x_{2 k}, f x_{2 k+1}\right)
$$

Similarly,

$$
\begin{aligned}
d\left(f x_{2 k+2}, f x_{2 k+3}\right)= & d\left(S x_{2 k+2}, T x_{2 k+1}\right) \\
\leq & \alpha d\left(f x_{2 k+2}, T x_{2 k+1}\right)+\beta d\left(f x_{2 k+1}, S x_{2 k+2}\right) \\
& +\gamma d\left(f x_{2 k+2}, f x_{2 k+1}\right) \\
\leq & \alpha d\left(f x_{2 k+2}, f x_{2 k+2}\right)+\beta d\left(f x_{2 k+1}, f x_{2 k+3}\right) \\
& +\gamma d\left(f x_{2 k+2}, f x_{2 k+1}\right) \\
\leq & {[\beta+\gamma] d\left(f x_{2 k+1}, f x_{2 k+2}\right)+\beta d\left(f x_{2 k+2}, f x_{2 k+3}\right) . }
\end{aligned}
$$

Hence,

$$
d\left(f x_{2 k+2}, f x_{2 k+3}\right) \leq\left[\frac{\beta+\gamma}{1-\beta}\right] d\left(f x_{2 k+1}, f x_{2 k+2}\right)
$$

Now, by induction, we obtain:

$$
\begin{aligned}
d\left(f x_{2 k+1}, f x_{2 k+2}\right) & \leq\left[\frac{\alpha+\gamma}{1-\alpha}\right] d\left(f x_{2 k}, f x_{2 k+1}\right) \\
& \leq\left[\frac{\alpha+\gamma}{1-\alpha}\right]\left[\frac{\beta+\gamma}{1-\beta}\right] d\left(f x_{2 k-1}, f x_{2 k}\right) \\
& \leq\left[\frac{\alpha+\gamma}{1-\alpha}\right]\left[\frac{\beta+\gamma}{1-\beta}\right]\left[\frac{\alpha+\gamma}{1-\alpha}\right] d\left(f x_{2 k-2}, f x_{2 k-1}\right) \\
& \leq \ldots \leq\left[\frac{\alpha+\gamma}{1-\alpha}\right]\left(\left[\frac{\beta+\gamma}{1-\beta}\right]\left[\frac{\alpha+\gamma}{1-\alpha}\right]\right)^{k} d\left(f x_{0}, f x_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(f x_{2 k+2}, f x_{2 k+3}\right) & \leq\left[\frac{\beta+\gamma}{1-\beta}\right] d\left(f x_{2 k+1}, f x_{2 k+2}\right) \\
& \leq \cdots \leq\left(\left[\frac{\beta+\gamma}{1-\beta}\right]\left[\frac{\alpha+\gamma}{1-\alpha}\right]\right)^{k+1} d\left(f x_{0}, f x_{1}\right)
\end{aligned}
$$

for each $k \geq 0$. Let

$$
\lambda=\left[\frac{\alpha+\gamma}{1-\alpha}\right], \mu=\left[\frac{\beta+\gamma}{1-\beta}\right]
$$

Then, $\lambda \mu<1$. Now, for $p<q$ we have,

$$
\begin{aligned}
& d\left(f x_{2 p+1}, f x_{2 q+1}\right) \leq d\left(f x_{2 p+1}, f x_{2 p+2}\right)+d\left(f x_{2 p+2}, f x_{2 p+3}\right) \\
& \quad+d\left(f x_{2 p+3}, f x_{2 p+4}\right)+\ldots+d\left(f x_{2 q}, f x_{2 q+1}\right) \\
& \leq\left[\lambda \sum_{i=p}^{q-1}(\lambda \mu)^{i}+\sum_{i=p+1}^{q}(\lambda \mu)^{i}\right] d\left(f x_{0}, f x_{1}\right) \\
& \leq\left[\frac{\lambda(\lambda \mu)^{p}\left[1-(\lambda \mu)^{q-p}\right]}{1-\lambda \mu}+\frac{(\lambda \mu)^{p+1}\left[1-(\lambda \mu)^{q-p}\right]}{1-\lambda \mu}\right] d\left(f x_{0}, f x_{1}\right) \\
& \leq\left[\frac{\lambda(\lambda \mu)^{p}}{1-\lambda \mu}+\frac{(\lambda \mu)^{p+1}}{1-\lambda \mu}\right] d\left(f x_{0}, f x_{1}\right) \\
& \leq(1+\mu)\left[\frac{\lambda(\lambda \mu)^{p}}{1-\lambda \mu}\right] d\left(f x_{0}, f x_{1}\right) \\
& d\left(f x_{2 p}, f x_{2 q+1}\right) \leq(1+\lambda)\left[\frac{(\lambda \mu)^{p}}{1-\lambda \mu}\right] d\left(f x_{0}, f x_{1}\right) \\
& d\left(f x_{2 p}, f x_{2 q}\right) \leq(1+\lambda)\left[\frac{(\lambda \mu)^{p}}{1-\lambda \mu}\right] d\left(f x_{0}, f x_{1}\right)
\end{aligned}
$$

and

$$
d\left(f x_{2 p+1}, f x_{2 q}\right) \leq(1+\mu)\left[\frac{\lambda(\lambda \mu)^{p}}{1-\lambda \mu}\right] d\left(f x_{0}, f x_{1}\right)
$$

Hence, for $0<n<m$, there exists $p<n<m$ such that $p \rightarrow \infty$ as $n \rightarrow \infty$, and
$d\left(f x_{n}, f x_{m}\right) \leq \operatorname{Max}\left\{(1+\mu)\left[\frac{\lambda(\lambda \mu)^{p}}{1-\lambda \mu}\right],(1+\lambda)\left[\frac{(\lambda \mu)^{p}}{1-\lambda \mu}\right]\right\} d\left(f x_{0}, f x_{1}\right)$.
Since $P$ is a normal cone with normal constant $\kappa$, we have,

$$
\begin{gathered}
\left\|d\left(f x_{n}, f x_{m}\right)\right\| \leq \\
\kappa\left[\operatorname{Max}\left\{(1+\mu)\left[\frac{\lambda(\lambda \mu)^{p}}{1-\lambda \mu}\right],(1+\lambda)\left[\frac{(\lambda \mu)^{p}}{1-\lambda \mu}\right]\right\}\right]\left\|d\left(f x_{0}, f x_{1}\right)\right\| .
\end{gathered}
$$

Thus, if $m, n \rightarrow \infty$, then

$$
\operatorname{Max}\left\{(1+\mu)\left[\frac{\lambda(\lambda \mu)^{p}}{1-\lambda \mu}\right],(1+\lambda)\left[\frac{(\lambda \mu)^{p}}{1-\lambda \mu}\right]\right\} \rightarrow 0
$$

and so $d\left(f x_{n}, f x_{m}\right) \rightarrow 0$. Hence, $\left\{f x_{n}\right\}$ is a Cauchy sequence. Since $f(X)$ is complete, there exist $u, v \in X$ such that $f x_{n} \rightarrow v=f u$. Since

$$
\begin{aligned}
d(f u, S u) & \leq d\left(f u, f x_{2 n}\right)+d\left(f x_{2 n} S u\right) \\
& \leq d\left(v f x_{2 n}\right)+d\left(T x_{2 n-1}, S u\right) \\
& \leq d\left(v, f x_{2 n}\right)+\alpha d\left(f u, T x_{2 n-1}\right) \\
& +\beta\left[d\left(f x_{2 n-1}, f u\right)+d(f u, S u)\right]+\gamma d\left(f u, f x_{2 n-1}\right),
\end{aligned}
$$

it implies that

$$
\begin{aligned}
d(f u, S u) \leq & \frac{1}{1-\beta}\left[d\left(v, f x_{2 n}\right)+\alpha d\left(v, f x_{2 n}\right)+\beta d\left(f x_{2 n-1}, v\right)\right. \\
& \left.\quad+\gamma d\left(v, f x_{2 n-1}\right)\right] \\
\leq & \frac{1}{1-\beta}\left[(1+\alpha) d\left(v, f x_{2 n}\right)+\beta d\left(f x_{2 n-1}, v\right)+\gamma d\left(v, f x_{2 n-1}\right)\right]
\end{aligned}
$$

Hence,

$$
\|d(f u, S u)\| \leq \frac{\kappa}{1-\beta}\left\|(1+\alpha) d\left(v, f x_{2 n}\right)+(\beta+\gamma) d\left(v, f x_{2 n-1}\right)\right\|
$$

If $n \rightarrow \infty$, then we obtain $\|d(f u, S u)\|=0$. Hence, $f u=S u$. Similarly, by using the inequality, we have,

$$
d(f u, T u) \leq d\left(f u, f x_{2 n+1}\right)+d\left(f x_{2 n+1}, T u\right)
$$

We can show that $f u=T u$, implying that $v$ is a common point of coincidence of $S, T$ and $f$; that is,

$$
v=f u=S u=T u
$$

Now, we show that $f, S$ and $T$ have unique point of coincidence. For this, assume that there exists another point $v^{*}$ in X such that $v^{*}=$ $f u^{*}=S u^{*}=T u^{*}$, for some $u^{*}$ in $X$. Now,

$$
\begin{aligned}
d\left(v, v^{*}\right) & =d\left(S u, T u^{*}\right) \\
& \leq \alpha d\left(f u, T u^{*}\right)+\beta d\left(f u^{*}, S u\right)+\gamma d\left(f u, f u^{*}\right) \\
& \leq(\alpha+\beta+\gamma) d\left(v, v^{*}\right)
\end{aligned}
$$

Hence, $v=v^{*}$. If $(S, f)$ and $(T, f)$ are weakly compatible, then

$$
S v=S f u=f S u=f v \text { and } T v=T f u=f T u=f v
$$

It implies that $S v=T v=f v=w$ (say). Hence, $w$ is a point of coincidence of $S, T$ and $f$, and so $v=w$ by uniqueness. Thus, $v$ is the unique common fixed point of $S, T$ and $f$.

Example 2.7. Let $X=\{1,2,3\}, E=R^{2}$ and $P=\{(x, y) \in E: x, y \geq$ $0\}$. Define $d: X \times X \rightarrow E$ as follows:

$$
d(x, y)=\left\{\begin{array}{cc}
(0,0) & \text { if } x=y \\
\left(\frac{5}{7}, 5\right) & \text { if } x \neq y \text { and } x, y \in X-\{2\} \\
(1,7) & \text { if } x \neq y \text { and } x, y \in X-\{3\} \\
\left(\frac{4}{7}, 4\right) & \text { if } x \neq y \text { and } x, y \in X-\{1\}
\end{array}\right.
$$

Define the mappings $T, f: X \rightarrow X$ as follows:

$$
T(x)=\left\{\begin{array}{lr}
1 & \text { if } x \neq 2 \\
3 & \text { if } x=2
\end{array} \text { and } \quad f x=x\right.
$$

Then, $d(T(3), T(2))=\left(\frac{5}{7}, 5\right)$. Now, for $2 \alpha+\gamma<1$, we have,

$$
\begin{aligned}
& \alpha[d(f(3), T(2))+d(f(2), T(3))]+\gamma d(f(3), f(2)) \\
& =\alpha[d(3, T(2))+d(2, T(3))]+\gamma d(3,2) \\
& =\gamma\left(\frac{4}{7}, 4\right)+\alpha[d(3,3)+d(2,1)] \\
& =\alpha[0+(1,7)]+\gamma\left(\frac{4}{7}, 4\right)=\left(\frac{7 \alpha+4 \gamma}{7}, 7 \alpha+4 \gamma\right) \\
& <\left(\frac{8 \alpha+4 \gamma}{7}, 8 \alpha+4 \gamma\right)=\left(\frac{4(2 \alpha+\gamma)}{7}, 4(2 \alpha+\gamma)\right) \\
& <\left(\frac{4}{7}, 4\right)<\left(\frac{5}{7}, 5\right)=d(T(3), T(2))
\end{aligned}
$$

It follows that the mappings $T$ and $f$ do not satisfy the conditions of Theorem 2.2. Hence, Theorem 2.2 and its corellaries 2.3, 2.4 and 2.5 are
not applicable here. Now, define the mapping $S: X \rightarrow X$ by $S x=1$ for all $x \in X$. Then,

$$
d(S x, T y)= \begin{cases}(0,0) & \text { if } y \neq 2 \\ \left(\frac{5}{7}, 5\right) & \text { if } y=2\end{cases}
$$

and

$$
\alpha d(f x, T y)+\beta d(f y, S x)+\gamma d(f x, f y)=\left(\frac{5}{7}, 5\right)
$$

if $y=2, \alpha=\gamma=0$ and $\beta=\frac{5}{7}$. It follows that all conditions of Theorem 2.6 are satisfied for $\alpha=\gamma=0, \beta=\frac{5}{7}$ and one can obtain the unique common fixed point 1 for $S, T$ and $f$.

## 3. Conclusion

Our results generalized theorems 1 and 4 in [2] and theorems 2.3 and 2.7 in [1].

## Acknowledgments

The present version owes much to the precise and kind remarks of an anonymous referee.

## References

[1] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416-420.
[2] M. Abbas and B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett., in press.
[3] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007) 1468-1476.
[4] D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008) 876-882.
[5] P. Raja and S. M. Vaezpour, Some extensions of Banach's contraction principle in complete cone metric spaces, Fixed Point and Theory Appl. (2008), Article ID 768294, 11 pages.
[6] Sh. Rezapour and R. Hamlbarani, Some notes on paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719-724.
[7] P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo (2) 56 (3) (2007) 464-468.

## A. Azam

Department of Mathematics, COMSATS Institute of Information Technology, Chak Shazd, 44000, Islamabad, Pakistan.
Email: akbarazam@yahoo.com
M. Arshad

Department of Mathematics, International Islamic University, H-10, Islamabad, Pakistan.
Email: marshadzia@iiu.edu.pk


[^0]:    MSC(2000): 47H10, 54H25, 55M20.
    Keywords: Coincidence point, point of coincidence, common fixed point, contractive type mapping, commuting mapping, compatible mapping, cone metric space.
    Received: 19 August 2008, Accepted: 06 January 2009.
    *Corresponding author.
    (C) 2009 Iranian Mathematical Society.

