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SOLUTIONS OF VARIATIONAL INEQUALITIES ON
FIXED POINTS OF NONEXPANSIVE MAPPINGS

H. PIRI

Communicated by Antony To-Ming Lau

ABSTRACT. In this paper , we propose a generalized iterative method
for finding a common element of the set of fixed points of a single
nonexpannsive mapping and the set of solutions of two variational
inequalities with inverse strongly monotone mappings and strictly
pseudo-contractive of Browder-Petryshyn type mapping. Our re-
sults improve and extend the results announced by many others.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space with
inner product and norm are denoted by (.,.) and || . ||, respectively.
Let C' be a nonempty closed convex subset of H and A: C — H be a
nonlinear mapping.

Recall the following definitions

Definition 1.1. A is called strongly positive with constant 7 if there is
a constant 5y > 0 such that

(Az,z) 27 |z |,  VzeCl.
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Definition 1.2. A is called monotone

(Az — Ay,x — y) >0, Va,y € C.

Definition 1.3. A is called n—strongly monotone if there exists a posi-
tive constant n such that
(L) (Az—Ayz—y)>nllz—yl?  Veyel

Definition 1.4. A is called k— Lipschitzian if there exist a positive con-
stant k such that

| Az — Ay <kl z—yl, VryeCl

Definition 1.5. A is called a—inverse strongly monotone if there exists

a positive real number o > 0 such that
(Ax—Ay,x—y)ZaHAx—Asz, V$7y€C~

It is obvious that any a—inverse strongly monotone mapping A is

é— Lipschitzian.

The classical variational inequality problem is to fined € C such
that

(1.2) (Az,y —z) >0, VyeC.
The set of solution of (1.2) is denoted by VI(C, A), that is,
(1.3) VI(C,A)={z e C: (Az,y—2) >0, VYyeC}.

Let T: C' — C be a mapping. In this paper, we use Fiz(T') to denote
the set of fixed point of T'. Recall the following definition

Definition 1.6. T is called a—contractive if there exists a constant
a € (0,1) such that

|Te-Tyl<alz—yl? VayeC.
Definition 1.7. T is called nonexpansive if
| Tz =Ty |<||z-y|?  Va,yeC.

Definition 1.8. T is called A-strictly pseudo-contractive of Browder and
Petryshyn type [2, 3, 4] if there exists a constant a € (0,1) such that

(1.4)
| Tz =Ty |P<|lz—y > +X|| I =T)z =T =Ty |,  Va,yeC.
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It is well-known that the last inequality is equivalent to

1-A
(Tz =Ty, z—y) <[z -y |* === | (I =Tz~ (I = D)y ||I*,Vz,y € C.

Moudafi [12] introduced the viscosity approximation method for fixed
point of nonexpansive mappings (see [16] for further developments in
both Hilbert and Banach spaces). Starting with an arbitrary initial
xo € H, define a sequence {x,} recursively by

(1.5) Tnt1 = (1 —ap)Txy + anfxn), n >0,

where, f is a contraction on H, {a,} is a sequence in (0,1). It is
proved in [12, 16] that, under appropriate conditions imposed on {a, },
the sequence {z,} generated by (1.5), converges strongly to the unique
solution z* in Fiz(T') of the variational inequality:

(I-fla*,x—a*) >0, Vze Fix(T).

Marino and Xu [13] introduced the following general iterative meth-
ods:

(1'6) Tn41 = an'Yf(xn) + (I - O‘nA)T-Tm n > 0,

where 0 < v < g . They proved that if {a,} is a sequence in (0,1)
satisfying the following conditions:

(Cl) oy — 0,
(Ca) - o = o0,
n=0

[e.¢]
(C3) either Y |opy1 — apn| < oo or lim 2o =1,
n=0 n—o0 n

Then, the sequence {z,} generated by (1.6) converges strongly to the
unique solution of the variational inequality:

(A=~f)z*,z—x*) >0, Va € Fix(T),

which is the optimality condition for minimization problem

) 1
min -

A —h
xeFix(T) 2< “ :C> (1:)’

where h is a potential function for vf (i.e., h'(z) = v f(z), for all x € H).
Further, Yao and Yao [17] introduced an iterative method for finding

a common element of the set of fixed point of a single nonexpansive map-
ping and the set of solutions of variational inequality for an a—inverse
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strongly monotone mapping. To be more precise, they introduce the
following iterative

(1 7) Yn = PC('fcn - An*A:Cn)y
‘ Tpt1 = Qe + Bnxn + T Po(I — \yA)zy, n > 1.

where Pg is a metric projection of H onto C'; A: C — H an a—inverse
strongly monotone mapping, {ay}, {8,} and {7,} are three sequences
in [0,1] and {\,} is a sequence in [0,2a]. under suitable conditions of
these parameters they proved strong convergence of the scheme (1.7) to
P,u, where F = Fiz(T)NVI(C, A).

In this paper, motivated and inspired by the iterative algorithms in-
troduced by Marino and Xu [13], Katchang and Kumam [9, 10], Kumam
[11] and Yao and Yao [17], we introduce the iterative below, with the
initial guess z¢ € C chosen arbitrarily,

{yn = BnPC(I - ﬁl,nAl)xn + (1 - Bn)PC’(I - 52,71142)1'717
Tn+l1l = an’yf(PC(I - ﬁl,nAl)yn) + (I - anF)TPC(I - BQ,HAQ)yTLv n>1.

where, Pg is a metric projection of H onto C, for i = 1,2, A;: C — H

a §;—inverse strongly monotone mapping, F a mapping on H which is

both - strongly accretive and A- strictly pseudo-contractive of Browder-
1+

Petryshyn type such that § > ==, f is a contraction on H with co-

efficient 0 < a < 1 and 7 is a positive real number such that v <
(1-— \/21%2)?)/04. Our purpose in this paper is to introduce this general
iterative algorithm for approximating a fixed point of a single nonex-
pansive mapping, which solves two variational inequalities. Our results

improve and extend the results of Halpern [6], Marino and Xu [13], Xu
[16], and many others.

2. Preliminaries

This section collects some prerequisites which will be used later.

Lemma 2.1. [15] Let {an} be a sequence of nonnegative real numbers
such that

Anp+1 < (1 - bn)an + bncna n > 07
where {b,} and {c,} are sequences of real numbers satisfying the follow-

ing conditions:

(i) {ba} < (0,1), i::o b = o0,
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o
(ii) either limsupc, <0 or Y |bpcy| < oo.
n—roo n=0

Then, lim a, = 0.
n—oo

Let C be a nonempty subset of a Hilbert space H and T: C' — H a
mapping. Then T is said to be demiclosed at v € H if, for any sequence
{z,} in C, the following implication holds:

Tp —~ueC and Tx, —v imply Tu =,
where — (resp. — ) denotes strong (resp. weak) convergence.

Lemma 2.2. [8] Let C' be a nonempty closed convex subset of a Hilbert
space H and suppose that T: C — H is nonexpansive. Then, the map-
ping I — T is demiclosed at zero.

Recall that the (nearest point) projection P from H into C' assigns
to x € H the unique point Pox € C satisfying the property

o= Pex = inf 2=y
The following characterizes the projection Pp.
In order to prove our main result, we need the following lemmas.
Lemma 2.3. [7] For a given x € H, y € C,
y=Pex s (y—x,z—y) >0, VzeCl.

It is well known that Po is a firmly nonexpansive mapping of H onto C
and satisfies

(2.1) || Pox — Py H2§ (Pox — Poy,x —y), Vx,ye€ H

Moreover, Pc is characterized by the following properties: Pox € C and
forallz e H, ye C,

(2.2) (x — Pocx,y — Pox) <0.
It is easy to see that (2.2) is equivalent to the following inequality
(2.3) lz—y|*>]| ¢ — Pea |” + ||y — Pex |* .

Using Lemma 2.3, one can see that the variational inequality (1.2) is
equivalent to a fixed point problem.
It is easy to see that the following is true:

(2.4) ueVI(C,A) & u= Po(u— Nu), > 0.
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A set-valued mapping U: H — 2 is called monotone if for all z,y €
H,f € Ux and g € Uy imply (x —y, f —g) > 0. A monotone map-
ping U: H — 2 is maximal if the graph of G(U) of U is not properly
contained in the graph of any other monotone mapping. It is known
that a monotone mapping U is maximal if and only if for (z,f) €
HxH, (z—y, f—g) > 0for every (y,g) € G(U) implies that f € Uz. Let
A be a monotone mapping of C' into H and let Nox be the normal cone
toCatz € C, thatis, Nox = {y € H : (y,x—=z) < 0,Vz € C'} and define

Ax+ Nex, z€C,
(2.5) Uar{ 0 2 ¢C.

Then U is the maximal monotone and 0 € Ux if and only if x €
VI(C, A); see [14].

Lemma 2.4. [1] Let H be a real Hilbert space. Then, for all x,y € H
(i) [[z—y ||§S|| x ||z +2(y, 7 +y),
(i) |z —y =] 2 [I* +2(y, z).

The following Lemma will be frequently used throughout the paper.
For the sake of completeness, we include its proof.

Lemma 2.5. Let C be a nonempty closed convex subset of a real Hilbert
space H .

(i) If F: C — C is a mapping which is both §-strongly mono-

tone and A-strictly pseudo-contractive of Browder-Petryshyn type

such that § > 2. Then, I — F is contractive with constant

2
2-2§
1-X -

(ii) If F: C — C is a mapping which is both §-strongly mono-
tone and \-strictly pseudo-contractive of Browder-Petryshyn type
such that § > % Then, for any fized number T € (0,1), [ —7F
s contractive with constant 1 — 7 (1 — % )

Proof. We will employ the same method as used by Ceng et al. [5].
(i) From (1.2) and (1.4), we obtain

1—A

——U=Fz-I-FylP<|z—y|*—(Fz—Fy,J(x—y))

2
<S@=0)flz—yl*.
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Because 6 > 1+/\<:>5+1 A>1e /22 ¢ (0,1), we have
20
(I = F)z—(-Fyl< Y e =yl
and, therefore, I — F' is contractive with constant Z)f.
(ii) Because I — F' is contractive with constant , for each fixed

number 7 € (0,1), we have

Iz —y—7(F(z) = Fy) | =l A =7)(x—y) +7[I - Flz = (I = F)y] |
(1—T)Hx—yH+THI Fx—(f Fy|l

<A-7)lz—yl +r IIw*yII

_ <1_7<1- 1‘_?) ) eyl

This shows that I —7F' is contractive with constant 1 —7 <1 — 21%2/\5 )

3. Strong convergence theorems

The following is our main result.

Theorem 3.1. Let F: C — H be a mapping which is both 6- strongly
monotone and A- strictly pseudo-contractive of Browder-Petryshyn type
such that § > (1 4+ X)/2, f a contraction on H with coefficient 0 <

. —20
a < 1 and v be a positive real number such that v < (1 — \/%)/a.

Let T: C — C be a nonexpansive mapping and for each i = 1,2,
let A;: C — H be d;—inverse strongly monotone ma,ppmg and F =
VI(C, A1) NVI(C, Ag) N Fia(T)) # 0. Let {an}ply, {Bintimioney and
{Bn}2, are sequences in (0,1) satisfy the following conditions:

(B1) {Bin} C (0,0;) fori=1,2.
(Ba) limyp o0 @ = 0, 300 g = 00 and limy o0 B = B € (0, 1).
(Bs) > _n=1 | Brar = Bn [< 00, 2205 | Bimgr — Bi [< 00, fori=1,2.

If {xn}00 and {yn}22 be sequences generated by xo € C and
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{ Yn = BnPC’(I - Bl,nAl)xn + (1 - Bn)PC'<I - /BQ,nAQ)xna
Tn+1 = an’Yf(PC'([ - Bl,nAl)yn) + (I - anF)TPC(I - B?,nA2)yn7 n > 1.

Then {x,}o2, and {yn}22, converge strongly to x* € F, which is the
unique solution of the system of variational inequalities:

<(F—’Yf)fL'*,[E—l’*> > 07
(Ajx*,x —2*) >0 , Ve e F,i=1,2.

Proof. Since { 5¢7n}?’:12’:1 satisfies the in condition (B) and A; is ;—inverse
strongly monotone mapping, for any z,y € C, we have
I (I = BinAi)z — (I = BinAdy |12
=|| (z = y) = Bin(Aiw — Aiy) ||
=z =y [I> —28inlz -y, Aix — Ay) + 87, | Aw — Aiy ||?
<z =y I” =28i00; || Aix — Ay I +587, || A — Ay |12
=z =y > +Bin(Bin — 26:) || Aix — Asy ||
<Jz—yl?

It follows that
(3.1) | (I = BinAi)r — (I = BinAdy <[z —y|l, i=1,2.

Let p € F, in the context of the variational inequality problem the
characterization of projection (2.4) implies that p = Po(I—p; ,Ai)p, i =
1,2. Using (2.4) and (3.1), we get

| yn —p |l =l BaPe(I — BinAr)xn + (1 — Bn)Po(I — BanA2)zn —p ||
=|| Bu[Pc(I — BrpAr)xn — Po(I — BinA1)p)]
+ (1 = Bn)[Po(I — BonA2)ry, — Po(I — B2 A2)p] ||
< Bn || Pc(I — P1nAr)xn — Po(I — BanA2)p ||
+ (1= Bn) | Po(I = BanAz)xy — Po(I — BanA2)p] ||
(3.2) SBallzn—p || +1=50) |20 —p [|=[ 20 —p ||
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First we show that {x,} is bounded. Indeed, we take p € F. Then
using (3.2) and Lemma 2.4, we have

| Zn41 —p ||
=l anvf(Po(I = BinA1)yn) + (I — anF)TPo(I — BanA2)yn —p ||
=[| (I —anF)TPc(I — 52,nA2)yn — (I —anF)p
+ an[yf(Po(I = BirnAr)yn) — F(p)] ||
< (I = anF)TPo(I = BonA2)yn — (I = F)p |
+ an | vf(Po(I = BrnA1)yn) — F(p) |

<<1—an<1 \/725>>||TPCI B2nA2)yn —p ||

+an [ 7f(Po( = BranAr)yn) — v f(p) | +an | vf(p) — F(p)

26
<<1—an 1-— \/21 )\_'704>>Hyn_ |
+an || vf(p) = F(p) |
))Hxn—pu

20
< (1—an<1— 21_)\ — Yo
ap (1 - 2%26_704
(1o yE >H7f@%—F@)H

(1= ~0)

-1
<mm{0 ﬁ‘?—wa vﬂmea%p}

_l’_

Therefore, {z,} is bounded and so are the sequences {y,}, {FT(yn)}
and {f(yn)}. Now we claim that

(3.3) nh_{go | Znt1 — zn ||=0.
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Indeed, we have (for some approximation constant M; > 0)

| Tri1 — zn ||
=l anvf(Pe(I = BinA1)yn) + (I — anF)TPc(I — BanA2)yn
—ap—17f(Pe(I = Brn-141)Yn-1)
— (I = ap 1 F)TPc(I — B2n-142)yn—1 ||
< (I = anFYTPc(I — B2,nA2)yn
— (I — anF)TPc(I — BanA2)yn—1 |
+ || (I — anF)TPc(I — BonA2)Yn—1
— (I — an,F)TPc(I — Bapn—142)Yn—1 |
+ || (I = anF)TPo(I — B2,n-142)Yn—1
— (I = ap 1 F)TPc(I — B2n-142)yn—1 ||
+ || anyf(Pe(I = BinA)yn) — anyf(Pe(l = BindA1)yn—1) ||
+ || envf(Pe(I = BiaA)yn-1) — anvf(Po(l = Bra-141)yn-1) ||
+ || anvf(Pe(I = Bin—141)Yn—1) — an17f(Pe(I — Bin—141)Yn-1) ||

< (1 222 ) = |
> — Qp - 1 _ )\ yn ynfl
2—20
+ (1 — Qp <1 — - ) > | 52,71 - ﬁQ,nfl H| A2yn*1 H

+ ‘ Qp—1 — Qp |H FTPC([ - B2,n—1A2)yn—1 H +an7a H Yn — Yn—1 H
+ oy | Bin — Bin—1 |l Ayn—1 ||
+ | an—1 —an ||| fF(Pc(I = Brn-14A1)yn-1) ||

< (1 Y Ll || ||
S — Qp - 1_)\_’704 Yn — Yn—1

+ | an—1—on |+ | Bin— Bin-1 |+ | Bon— Pon1 || M.

On the other hand, by taking v;, = Pc(l — BinAi)xy, for i = 1,2 and
definition of {y,}, we have (for some approximation constant My > 0)

|| Yn — Yn—1 ||
=|| Bnvin + (1 = Bu)vapn — Bn—1vin—1 — (1 = Br—1)v2,n-1 ||
=|| Bn(vin — V1in—1) + (Bn — Bn=1)Vin—1 + (1 — Bn)von
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— (1= Bn)van—1+ (Bu-1 — Bn)van—1 ||
< Bnllvin —vin—1 [l + 1 B0 = Bo-1 | (Il vip—1 | + | v20-1 1)
+ (1= 8n) | V2,n — U2n—1 |
= Bu || Pc(I = P1nAr)zn — Po(I — Brn—1A1)Tn—1 ||
+ [ Brn = Br—1 | (Il vin—1 | + [ van—1 )
+ (1= Bn) | PcI = B2nA2)zn — Po(I — Bopn—142)n—1 ||
= Bn | Po(I = BrnA1)zn — Po(I — BrnA1)Tn—
+ Po(I — BrnA1)rn—1 — Po(l — Brn-141)Tn—1 ||
+ [ Brn = Br—1 | (Il vin—1 | + [ va—1 )
+ (1= Bn) | Po(I — BonA2)xn — Po(I — BonA2)Tn—1
+ Po(I — PonA2)rn1 — Po(l — Bon-1A2)Tn1 ||
<Ball Tn — 2ot || +6n | B — Bin—1 [l Arzn—1 ||
+ [ Brn = Br—1 | (| vip—1 [ + [T von—1 ) + (1 = Bn) [ 20 — zn—1 |
+ (1= 8n) | Bon — B2n—1 I A2zn—1 ||
< wn — zn—1 || +( Bin — Bin—1 | + | B — Bn—1 | + | Bon — Bo,n—1 |) Mo.

Therefore, we have(for some approximation constant M > 0)

2—26
Hxn—i-l—l”nHﬁ(l_an(l_ 1)\—’yoz>>||xn—xn_1H

+ (| Bl,n - /Bl,n—l ’ + | BQ,n — ,82,n_1 ’
(3.4) + | B = Ba1 |+ | an — an_1 |)M.

Thus, using conditions (B2) and (Bsz) and Lemma 2.1 to (3.4), we
conclude that || 41 — 2 || 0 as n — oco. In this stage we well show
that

(3.5) lim || vy —2,||=0 i=1,2.
n—oo

Let p € F, from definition of {x,}, we have

| 21 —p |7
=l anyf(Pe(I = BinA1)yn) + (I — anF)TPo(I = BanA2)yn —p |2
=[| an[vf(Pc(I — B1,nA1)Yn) — FTPo(I — B2,nA2)yn]
+ [TPo(I — BanAs)yn — 1) |2
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< ap |7 (Pe(I = BinAt)yn) — FTFPo(I = BonA2)yn |I°
+ | TPo(I = BapnAz)yn — p |I* +2an (v f(Po(I — B1,nA1)Yn)
— FTPc(I — BanA2)yn, TPo(I — B2nA2)yn — p)

< ap | 7f(Pe( = BunAi)yn) = FTPo(I = B2 A2)yn |I°
+ | g —p I +20n (v f (Po(I = BrnAL)yn)
— FTPc(I — B2,nA2)yn, TPc(I — BonA2)yn — p)

= aj, | 7f(Po(l = BraAi)yn) = FTPe(I = B2 A2)yn ||
+ || BnPc(l — BrnAr)Tn + (1 — Bn)Po(I — ﬁ2,nA2)xn -p H2
+ 200 (vf(Pe(I = BrnA1)yn)
— FTPc(I — B2,nA2)yn, TPc(I — BonA2)yn — p)

< ap || 7f(Po(I = BinA1)yn) — FTPo(I — B2.nA2)yn ||°
+ B || Po(I — /Bl,nAl)xn -p H2 +(1 = Bn) || Po(I — 52,71142)5671 -p H2
+ 20 (v f (Pe(I = BrnA1)yn)
— FTPc(I — BanA2)yn, TPo(I — B2nA2)yn — p)

(3.6)

Using (2.4) and (3.6), we have

| Zns1—p |7

< aj, | 7f(Pe(I = BinA1)ya) — FTPo(I = Ba.nAz)yn ||°
+ Bn || (20 —p) — ﬂl,n(Alxn — A1p) ||2 +(1=Bn) | zn—p H2
+ 2an (v f(Pc(I = B1,nA1)yn)
— FTPc(I = BanA2)yn, TPo(I — BonA2)yn — p)

= o | 7f(Pe(I = BunAr)yn) = FTPo(I = BrnA2)yn |I?
+ Bn || 20 —p 1P +8uB7 . | Arzn — Asp [
— 280 B1,n (A1 — Arp,xn —p) + (1= Bn) | 20 —p |I?
+ 200 (v f(Po(I = Bi,nA1)Yn)
= FTPc(I = BanA2)yn, TPo(I — BanA2)yn — p)

< ap | (Pl = BrnAr)yn) = FTPo(I = BanAz)yn ||
+ B | o= |I* +BuBi 0 || Arzn — A2p || —2B8,B1061 || A1z — Arp |2
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+(L=8n) | zn—p I* +2a0(vf(Po(I = BrndA1)yn)
— FTPc(I — BonA2)yn, TPc(I — 2,0 A2)yn — )

and

| Zns1 —p |

< ap | vf(Pe(I = BrnAr)yn) — FTPo(I = BanAz)yn ||
+ B | @0 = p |2 +(1 = Ba) || (@0 — p) = Bon(Asz —n — Agp ||
+ 20, (v f(Po (1 — Bl,nAl)yn)
— FTPc(I — BanA2)yn, TPc(I — B2.nA2)yn — p)

= ap | 7 (Pe(I = BinAr)yn) — FTPo(I = B2 A2)yn |
+ Bl 2n —p |7
+ (1= 50) 2 —p I? +(1 = Ba)B3,, || Agwn — Azp ||
—2(1— 5n)ﬁ2,n<A2xn — Aop, 2 — p) + 20, (v f (Po(I — Bl,nAl)yn)
— FTPc(I — BonA2)yn, TPc(I — B2.nA2)yn — D)

< ap | 7f(PoI = BradAr)yn) — FTPc(I = BonA2)yn |I?
+Bn | T —p ||2 +(1=Bn) | zn —p ”2
+ (1= Bn) B3, || Aszn — Aop |2
—2(1 = ) Banb2 || Agwn — Ag |?
+ 200, (v f(Po (I — B1,nA1)Yn)
— FTPc(I — BanA2)yn, TPo(I — BanA2)yn — p)

It follows that

— BuBin(Brn — 261) || Arwy — Arp |2
< ap | vf(PoI = BinAr)yn) — FTPo(I — BonAs)yn |I”
+llzn—p I+ [l 2o —p ] | Znar — 20 ||
+ 200 (7 (Po(I = BrnA1)yn)
— FTPo(I — BonA2)yn, TPc(I — BanA2)yn — D)
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and
— (1= Bn)Bon(Boyn — 262) || Ao, — Asp, 2y —p ||
< ap | vf(Pe(I = BinAi)yn) — FTPo(I = BanA2)yn ||*
+lzn—p I+ | zns1 =P ll] | o1 — 20 |
+ 200 (v f (P (I = B1,nA1)Yn)
— FTPc(I = B2,nA2)yn, TP (I — B2,nA2)Yn — p)

Therefore, from condition B; and Bs, we get
(3.7) 1i_>m | Aizp, — Aip [|=0 i=1,2.
From (2.1), we have
I Vin — P H2
=|| Po(I = BinAi)n — Po(I — Bindip) ||
<A = BinAi)xn — (I = BinAi)p, Vin — D)
1
= 5[” (I - /Bz,nAl)xn - (I - Bi,nAi)p ”2 + || Vinm — D H2
— | (I = BinAid)zn — (I = BinAi)p — (vim — p) |I%]
1
<gllzn—p 1>+ 1| vim —p |7
— | (I = BinAd)zn — (I = BinAi)p — (vim — p) |I%]
1
= 5[” Ln — P H2 + |l Vin — P H2 — || zn — Vi,n HQ

+ 25i,n<xn — Vin, Ay — A1p> - 12,n ” Ajzn — Aip H2]

So we obtain

| vig —p|I”
<l wn=p 12 = | 20— vin |17
+ 2Bin(Tn — Vip, Aixp — AiD)
(3.8) — B2, | A — Aip |2, i=1,2.

From (2.4), (3.8) and definition of {y,}, we have
Iy =2

Piri
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< B | vam@n —p 1P +(1 = Bn) || veman —p |

< Bulll zn —p H2 — [l zn — Vi H2 +2B1,n(Tn — V10, A125 — A1p)
— 87 Il Ay — Aip |1+ (1= Bu) [l zn —p I* = || o0 — van |1?
+ 282, (Tn — Vo, Aswy — Aop) — B3, || Aown — Asp ||?]

=l 2o —p > +Bnl— | 20 — vin |I* +2B10 (20 — V10, Ay — A1p)
= Bt | Avwn = Aip [P+ (1 = Bo)[= || n — v2n ||

(3.9)

+ 2820 (Tn — Vo, Az — Agp) — B3, || Agn — Agp ||°]

From (2.4), (3.9) and definition of {z,}, we have

| Zn1—p |7

< ap [ vf(Pe(I = BinAi)yn) — FTPo(I = BanA2)yn I + | yn —p |I?
+ 20, (v f(Pe(I = B1,nA1)Yn)
— FTPc(I — BanA2)yn, TPo(I — B2nA2)yn — D)

< ap [ v (Pe(I = BinAi)yn) — FTPo(I = BanA2)y, ||
@ —p I* +8ul= | 20 — v > 42810 (20 — V10, A1z, — A1p)
=Bt | Az — Aip [P+ (1= Bo)[= || 0 — v2n |7
+ 2B, (Tn — Vo, Agzn — Asp) — B3, || Azay — Asp ||?]
+ 200, (v f (P (I = B1,nA1)yn)
— FTPc(I — BanA2)yn, TPc(I — B2nA2)yn — p)

Which implies that

Br || Tn — U1n H2
< ap | vf(Pe( = BrnAr)yn) — FTPo(I = BanAz)yn |I?
Ml zn =p I+ | Zns1 =2 (] [| Tt — 20 |
+ Bn2B1m(xn — v1,n, Aoy, — Aap)
— B | Az = Awp |P) + (1= Ba)[= || @0 — v, |
+ 2820 (Tn — Vo, Aoty — Aop) — B3, || Azzn — Asp 7]
+ 200 (vf(Pe(I — Bi,nA1)yn)
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— FTPc(I — BonA2)yn, TPc(I — BanA2)yn — p)

and
(1—=58n) [ 2n —vom H2
<oy | 7f(Pe(l = BraAv)yn) = FTPo(I = BanA2)yn |
[z —=p |+ | Znd1 =P ] | Tt — 2z | +8n[= || 20 — V10 H2
+ 261 n(@n — Vi, A1y, — A1p) — ﬂin | Aixy, — Aip HQ]
+ (1 = Bn)[2B2,m(@n — Von, Az — Asp) — B3, || Az — Asp ||?]
+ 2an (v (Pe(I = B1,nA1)yn)
— FTPc(I = BanA2)yn, TPc(I — B2nA2)yn — p)

Therefore using condition Bs, (3.3) and (3.7), we get

lim ||z, —vin [|=0 i=1,2.
n—oo

We now show that

(3.10) nh_)rrolo | x, — Ty ||= 0.
Since T is nonexpansive, we get
| @ — Ty ||
<l @n = 2ngr | + [ Znr = TPo(I = Ban—1A2)yn—1 ||
+ [| TPc(I = B2n-142)yn—1 — Ty ||
<@ = @pt || +om | v (Po(I = Bindi)yn) — FTPo(I — B2nA2)yn ||
+ | TPc(I — BonA2)yn — Ty |
= 2n — zns1 || tan | vf(Pol = BinA)yn) — FTPo(I — B2nA2)yn ||
=[| von — oy ||

(3.11)

Since {a,, } satisfies in Bs. From (3.3), (3.5) and (3.11), we get (3.10).
Next, let us show that, there exists a unique z* € F such that

(3.12) limsup((F —~vf)z*, 2" —x,) <0,
n—oo
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Let @ = Pr. Then Q(I — F +~f) is a contraction of H into itself. In
fact, we see that

| QU ~F +4f) QU ~ F 47y
<[|T-F+yfle—IT-F+~f)yll
<IN~ Fye— (L= Py || 4+ || /@) ~ )|
= lim || (1= (= D)F)e — (T (1= F)y |+ ]| @)~ 1) |

n—0o0

1
< i —(1-= — —
< lm(1-(1=2)7) o=y +ralz—y]

=(1-71)lz—yl|+ralz—yl|,

and hence Q(I — F 4+ f) is a contraction due to (1 — (7 —vya)) € (0,1).
Therefore, by Banach’s contraction principal, Pr(I — F + ~f) has a
unique fixed point z*. Then using Lemma (2.3), x* is the unique solution
of the variational inequality:

(3.13) (vf—F)x*,xz —x%) <0, Vo e F.
We can choose a a subsequence {z,,} of {z,} such that

(3.14)
limsup(yf(2*) — pFa®, 2, — 2%) = lim (vf(2%) — pFa*, 2y, - a°),

n—00 Jj—oo
Because {zn,} is bounded, therefore {zn,} has subsequence {x,, } such
that Tp;, — 2. With no loss of generality, we may assume that z;,,;, — z.
it follows from (3.10) and Lemma 2.2 that z € Fix(T).

Now, let us show that z € VI(C, A1) N VI(C, Az). Let for i = 1,2,
U;: H — 29 be a set-valued mapping is defined by
) Aix+ Nex, wzeC,
va={ 4 50
where Ngx is the normal cone to C' at x € C. Since A; is monotone.
Thus U is maximal monotone see [14]. Let (x,y) € G(U;), hence y —
Ajx € Nex and since v;,, = Po(I — BinAi)zy therefore, (x — v,y —
Ajz) > 0. On the other hand from v;,, = Po(z, — BinAiry), we have

(z — Vimns Vin — (2 — 6i,nAixn)> > 0,
that is

(x — vin, U”ILBJ + Aizn)) >0
i,n



760 Piri

Therefore, we have

<Z‘ - /Ui,nj y y)
Z <£U - Ui,nj7Aix>
Ui,nj - xnj

62'771,]-
- Ai$nj >

> (T — Vi, Air) — (T — Vi, + Aizn;)

Vin; — T2n,
IB’i,TLj

= <£U - Ui,nj7Aix - Aivi,’nj> + <'/1: - Ui,njy A’iv’i,’nj - A’anj>

= (x — Vjp,, Aix —

Ui,nj - x’n]‘ >

62'771,]-

> (T = Ving, AiVin; — AiTn;) — (T — Vip,,

- <$ - 'Ui,njv

vi,nj - xnj >

Bz,n]
Vin. — Ly
> (@ = vy, Aivin, = Aiaeny)= | @ = vigny I =Z— 1
/Bi,nj
Noting that lim; o || Vi, — In; |= o, Tn;, — 2z and A; is 5%_ Lips-

chitzian, we obtain

<$_Z>y> > 0.

Since U is maximal monotone, we have z € U~!0, and hence for = 1,2,
z € VI(C, A;). Therefore z € F and applying (3.13) and (3.14), we have

limsup((vf — F)z*, z, —x*) <O0.
n—oo

Finally, we prove that z,, — x* as n — oo. Takeing 7 =1 — 21%2)?

and using (2.4), (3.2) and Lemma 2.5, we have
| 21 — 2™ |7
=|| anyf(Po(I = BrnAr)yn) + (I — anF)TPo(I = BrnA2)yn — 2™ ||
=l en[y F(Pe(I = PrnAr)yn)) — Fz*] + [(I — anF)TFo(I = BanA2)yn
— (I = anF)a"]|?
<Il (I = anF)TPo(I = fonA2)yn — (I = anF)a™ |2
+ 200 (Vf (Pl = BipA1)yn) — Fa™, xpiq — 27)
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<(1—anr)® [y — " |?
+ 20 (Vf(Pc(I = B1nA1)yn) — F2*, 0p 1 — 27)
< (1= an)? | g — 2" |
+ 20, (Vf(Po(I = BinA1)yn) — 7 (27), 2pi1 — 27)
+ 20, (vf(2") — Fa*  xpy1 — z°).
< (L= an)? || yn — 2 |> oyl yn — 2" > + | @1 — 2 ||?)
+ 20, (v f(2") = pFa*, xpyr — x¥).
< (1= anr)® || 2n — & || +anyal| zn — 2 > + || 2ngr — 2™ ||?]
+ 9001 f (%) — HF2*, Tnps — )

So we reach the following

241 — 2™ |7
< 14+ a272 — 20,7 + Qap Yo | 2 — 2* H2
1 —apya
2a * k k
+m<7f@ ) — Fa*,xnq1 —2")
2(r — ya) — a2
< (10, 2T 0T e
— apya
2(1 — ya) — a2 2
* _ F * o *
+om 1 — apvya 2(1 — ya) — @, T2 (vf () &7, Tyt = 27)
It follows that
(3.15) | Zn1 — 2" HQS (1 =0n) || 2n — 2" ”2 +bncn,
where
b, — an2(T —ya) — apT?
1 — apya
and
)~ Far )
e = ) — Fa* xpy1 — @
n 2(7_ — ’YOZ) — an7_2 Y y bn+41
o0
Since {a,} satisfies in condition Bz, we have ) b, = oo and by

n=0
condition B; and (3.12), we get limsup,,_,. ¢, < 0. Consequently,
applying Lemma 2.1, to (3.15), we conclude that z,, — z*. Since
| yn — 2 ||| @ — 2" ||, we have y, — 2™
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Corollary 3.2. (See H. K. Xu [16]) Let T: C — H be a nonexpansive

mapping such that Fix(T) # 0 and f: C — C be a contraction with

coefficient o € (0,1). Let {x,,} be generated by the following algorithm:
Tnt1 = (1 — an)Txpy + anfxn), n > 0.

Assume the sequence {au,} satisfies conditions (Bg). Then, {x,} con-
verges strongly, as n — 0o, to x* € Fix(T) which is the solution of the
variational inequality:

(I—fz",x—2z%) >0, Vo € Fix(T).

Proof. 1t suffices to take A; = 0, for i = 1,2, F =1 and v = 1 in
Theorem 3.1.

Corollary 3.3. (See B. Halpern [6]) Let T: C — H be a nonexpansive

mapping such that Fix(T) # 0 and f: C — C be a contraction with

coefficient a € (0,1). Let {x,,} be generated by the following algorithm:
Tnt1 = (1 —ap)Txy + anu, n >0,

where w € H is arbitrary (but fixed) and the sequence {cu,} satisfies
conditions (Bz2). Then, {x,} converges strongly, as n — oo, to z* €
Fix(T) which is the solution of the variational inequality:

(I-flz*,x—2a") <0, Vo € Fix(T).
Proof. Tt suffices to take A; = 0 for ¢ = 1,2, F = I and f = %u in
Theorem 3.1.

Corollary 3.4. Let X\ be a positive real number such that A < 1. Suppose
A be a strongly positive linear operator on H with coefficient % such that

1-./2=2
5> % and || A|I< 1. Let 0 < ( < @ and {x,} be generated by
the following algorithm:
Tyl = (I — anA)Txy + anlf(zn), n > 0.

Assume the sequence {cu,} satisfies conditions (Bg). Then, {z,} con-
verges strongly, as n — oo, to x* which is the solution of the variational
inequality:

(A—~f)z*,x —a*) >0, Ve Fiz(T).
Proof. Because A is 57— strongly monotone and A—strictly pseudo-contractive

of Browder-Petryshyn type such that 7 > (1 + \)/2, by taking A; = 0,
for ¢ = 1,2, in Theorem 3.1 the proof is complete.



Solutions of variational inequalities 763

(1]

2]

3]

(4]

[5]

[6]

[7]

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

REFERENCES

R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed point theory for Lipschitzian
type mappings with applications, Topological Fixed Point Theory and Its Ap-
plications, 6, Springer, New York, 2009.

F. E. Browder, fixed point theorem for noncompact mapping in Hilbert spaces,
Proc. Natl. Acad. Sci. U.S.A. 53 (1965) 1272-1276.

F. E. Browder, Convergence of approximants to fixed points of nonexpansive
non-linear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967)
82-90.

F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear
mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967) 197—-22.

L. C. Ceng, Q. H. Ansari and J. C. Yao, Mann-Type Steepest-Descent and Mod-
ified Hybrid Steepest-Descent Methods for Variational Inequalities in Banach
Spaces, Numer. Funct. Anal. Optim. 29 (2008), no. 9-10, 987-1033.

B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73
(1967) 957-961.

T. Jitpeera and P. Kumam, An extragradient type method for a system of equi-
librium problems, variational inequality problems and fixed point of finitely many
nonexpansive mappings, J. Nonlinear Anal. Optim. 1 (2010), no. 1, 71-91.

J. S. Jung, Iterative approaches to common fixed points of nonexpansive map-
pings in Banach spaces, J. Math. Anal. Appl. 302 (2005), no. 2, 509-520.

P. Katchang and P. Kumam, An iterative algorithm for finding a common so-
lution of fixed points and a general system of variational inequalities for two
inverse strongly accretive operators, Positivity 15 (1997), no. 2, 281-295.

P. Katchang and P. Kumam, A composite explicit iterative process with a viscos-
ity method for Lipschitzian semigroup in a smooth Banach space, Bull. Iranian
Math. Soc. 37 (2011), no. 1, 143-159.

P. Kumam, A relaxed extragradient approximation method of two inverse-
strongly monotone mappings for a general system of variational inequalities,
fixed point and equilibrium problems, Bull. Iranian Math. Soc. 36 (2010), no. 1,
227-250.

A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math.
Anal. Appl. 241 (2000) 46-55.

G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings
in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52.

R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators,
Trans. Amer. Math. Soc. 149 (1970) 75-88.

H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory
Appl. 116 (2003), no. 3, 659-678.

H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math.
Anal. Appl. 298 (2004), no. 1, 279-291.

Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings
and monotone mappings, Appl. Math. comput. 186 (2007), no. 2, 1552-1558.



764 Piri

Hossein Piri

Department of Mathematics, University of Bonab, P.O. Box 55517-61167, Bonab,
Iran

Email: h.piri@bonabu.ac.ir



	1. Introduction
	2. Preliminaries
	3. Strong convergence theorems
	References

