SOLUTIONS OF VARIATIONAL INEQUALITIES ON FIXED POINTS OF NONEXPANSIVE MAPPINGS

H. PIRI

Communicated by Antony To-Ming Lau

ABSTRACT. In this paper , we propose a generalized iterative method for finding a common element of the set of fixed points of a single nonexpannsive mapping and the set of solutions of two variational inequalities with inverse strongly monotone mappings and strictly pseudo-contractive of Browder-Petryshyn type mapping. Our results improve and extend the results announced by many others.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space with inner product and norm are denoted by $\langle .,. \rangle$ and $\| . \|$, respectively. Let C be a nonempty closed convex subset of H and $A \colon C \to H$ be a nonlinear mapping.

Recall the following definitions

Definition 1.1. A is called strongly positive with constant $\overline{\gamma}$ if there is a constant $\overline{\gamma} > 0$ such that

$$\langle Ax, x \rangle \ge \overline{\gamma} \parallel x \parallel^2, \quad \forall x \in C.$$

MSC(2010): Primary: 47H10; Secondary: 41A50.

Keywords: Fixed point, strongly monotone, λ - strictly pseudo-contractive, strong convergence, nonexpansive mapping.

Received: 01 January 2012, Accepted: 03 March 2012.

© 2013 Iranian Mathematical Society.

Definition 1.2. A is called monotone

$$\langle Ax - Ay, x - y \rangle \ge 0, \quad \forall x, y \in C.$$

Definition 1.3. A is called η -strongly monotone if there exists a positive constant η such that

$$(1.1) \qquad \langle Ax - Ay, x - y \rangle > \eta \parallel x - y \parallel^2, \qquad \forall x, y \in C.$$

Definition 1.4. A is called k-Lipschitzian if there exist a positive constant k such that

$$||Ax - Ay|| \le k ||x - y||, \quad \forall x, y \in C.$$

Definition 1.5. A is called α -inverse strongly monotone if there exists a positive real number $\alpha > 0$ such that

$$\langle Ax - Ay, x - y \rangle \ge \alpha \parallel Ax - Ay \parallel^2, \quad \forall x, y \in C.$$

It is obvious that any α -inverse strongly monotone mapping A is $\frac{1}{\alpha}$ -Lipschitzian.

The classical variational inequality problem is to fined $x \in C$ such that

$$\langle Ax, y - x \rangle \ge 0, \quad \forall y \in C.$$

The set of solution of (1.2) is denoted by VI(C, A), that is,

$$(1.3) VI(C,A) = \{x \in C : \langle Ax, y - x \rangle \ge 0, \quad \forall y \in C \}.$$

Let $T: C \to C$ be a mapping. In this paper, we use Fix(T) to denote the set of fixed point of T. Recall the following definition

Definition 1.6. T is called α -contractive if there exists a constant $\alpha \in (0,1)$ such that

$$\parallel Tx - Ty \parallel \leq \alpha \parallel x - y \parallel^2, \qquad \forall x, y \in C.$$

Definition 1.7. T is called nonexpansive if

$$\parallel Tx - Ty \parallel \leq \parallel x - y \parallel^2, \qquad \forall x, y \in C.$$

Definition 1.8. T is called λ -strictly pseudo-contractive of Browder and Petryshyn type [2, 3, 4] if there exists a constant $\alpha \in (0, 1)$ such that (1.4)

$$\|Tx - Ty\|^2 \le \|x - y\|^2 + \lambda \|(I - T)x - (I - T)y\|^2, \quad \forall x, y \in C.$$

It is well-known that the last inequality is equivalent to

$$\langle Tx - Ty, x - y \rangle \le ||x - y||^2 - \frac{1 - \lambda}{2} ||(I - T)x - (I - T)y||^2, \forall x, y \in C.$$

Moudafi [12] introduced the viscosity approximation method for fixed point of nonexpansive mappings (see [16] for further developments in both Hilbert and Banach spaces). Starting with an arbitrary initial $x_0 \in H$, define a sequence $\{x_n\}$ recursively by

$$(1.5) x_{n+1} = (1 - \alpha_n)Tx_n + \alpha_n f(x_n), n \ge 0,$$

where, f is a contraction on H, $\{\alpha_n\}$ is a sequence in (0,1). It is proved in [12, 16] that, under appropriate conditions imposed on $\{\alpha_n\}$, the sequence $\{x_n\}$ generated by (1.5), converges strongly to the unique solution x^* in Fix(T) of the variational inequality:

$$\langle (I-f)x^*, x-x^* \rangle \ge 0, \quad \forall x \in Fix(T).$$

Marino and Xu [13] introduced the following general iterative methods:

$$(1.6) x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) Tx_n, n \ge 0$$

where $0 < \gamma < \frac{\overline{\gamma}}{\alpha}$. They proved that if $\{\alpha_n\}$ is a sequence in (0,1)satisfying the following conditions:

$$(C_1)$$
 $\alpha_n \to 0$,

$$(C_1)$$
 $\alpha_n \to 0,$
 (C_2) $\sum_{n=0}^{\infty} \alpha_n = \infty,$

$$(C_3)$$
 either $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$ or $\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = 1$.

Then, the sequence $\{x_n\}$ generated by (1.6) converges strongly to the unique solution of the variational inequality:

$$\langle (A - \gamma f)x^*, x - x^* \rangle > 0, \quad \forall x \in Fix(T),$$

which is the optimality condition for minimization problem

$$\min_{x \in Fix(T)} \frac{1}{2} \langle Ax, x \rangle - h(x),$$

where h is a potential function for γf (i.e., $h'(x) = \gamma f(x)$, for all $x \in H$).

Further, Yao and Yao [17] introduced an iterative method for finding a common element of the set of fixed point of a single nonexpansive mapping and the set of solutions of variational inequality for an α -inverse

strongly monotone mapping. To be more precise, they introduce the following iterative

(1.7)
$$\begin{cases} y_n = P_C(x_n - \lambda_n A x_n), \\ x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n T P_C(I - \lambda_n A) x_n, \ n \ge 1. \end{cases}$$

where P_C is a metric projection of H onto C, $A: C \to H$ an α -inverse strongly monotone mapping, $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are three sequences in [0,1] and $\{\lambda_n\}$ is a sequence in $[0,2\alpha]$. under suitable conditions of these parameters they proved strong convergence of the scheme (1.7) to $P_{\mathcal{F}}u$, where $\mathcal{F} = Fix(T) \cap VI(C,A)$.

In this paper, motivated and inspired by the iterative algorithms introduced by Marino and Xu [13], Katchang and Kumam [9, 10], Kumam [11] and Yao and Yao [17], we introduce the iterative below, with the initial guess $x_0 \in C$ chosen arbitrarily,

$$\begin{cases} y_n = \beta_n P_C(I - \beta_{1,n} A_1) x_n + (1 - \beta_n) P_C(I - \beta_{2,n} A_2) x_n, \\ x_{n+1} = \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_n) + (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n, n \ge 1. \end{cases}$$

where, P_C is a metric projection of H onto C, for $i=1,2, A_i\colon C\to H$ a δ_i -inverse strongly monotone mapping, F a mapping on H which is both δ - strongly accretive and λ - strictly pseudo-contractive of Browder-Petryshyn type such that $\delta > \frac{1+\lambda}{2}$, f is a contraction on H with coefficient $0 < \alpha < 1$ and γ is a positive real number such that $\gamma < (1-\sqrt{\frac{2-2\delta}{1-\lambda}})/\alpha$. Our purpose in this paper is to introduce this general iterative algorithm for approximating a fixed point of a single nonexpansive mapping, which solves two variational inequalities. Our results improve and extend the results of Halpern [6], Marino and Xu [13], Xu [16], and many others.

2. Preliminaries

This section collects some prerequisites which will be used later.

Lemma 2.1. [15] Let $\{a_n\}$ be a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - b_n)a_n + b_n c_n, \qquad n \ge 0,$$

where $\{b_n\}$ and $\{c_n\}$ are sequences of real numbers satisfying the following conditions:

(i)
$$\{b_n\} \subset (0,1), \sum_{n=0}^{\infty} b_n = \infty,$$

(ii) either
$$\limsup_{n\to\infty} c_n \leq 0$$
 or $\sum_{n=0}^{\infty} |b_n c_n| < \infty$.
Then, $\lim_{n\to\infty} a_n = 0$.

Let C be a nonempty subset of a Hilbert space H and $T: C \to H$ a mapping. Then T is said to be demiclosed at $v \in H$ if, for any sequence $\{x_n\}$ in C, the following implication holds:

$$x_n \rightharpoonup u \in C$$
 and $Tx_n \rightarrow v$ imply $Tu = v$,

where \rightarrow (resp. \rightarrow) denotes strong (resp. weak) convergence.

Lemma 2.2. [8] Let C be a nonempty closed convex subset of a Hilbert space H and suppose that $T: C \to H$ is nonexpansive. Then, the mapping I-T is demiclosed at zero.

Recall that the (nearest point) projection P_C from H into C assigns to $x \in H$ the unique point $P_C x \in C$ satisfying the property

$$\parallel x - P_C x \parallel = \inf_{y \in C} \parallel x - y \parallel.$$

The following characterizes the projection P_C .

In order to prove our main result, we need the following lemmas.

Lemma 2.3. [7] For a given $x \in H$, $y \in C$,

$$y = P_C x \Leftrightarrow \langle y - x, z - y \rangle \ge 0, \quad \forall z \in C.$$

It is well known that P_C is a firmly nonexpansive mapping of H onto C and satisfies

Moreover, P_C is characterized by the following properties: $P_C x \in C$ and for all $x \in H$, $y \in C$,

$$(2.2) \langle x - P_C x, y - P_C x \rangle \le 0.$$

It is easy to see that (2.2) is equivalent to the following inequality

Using Lemma 2.3, one can see that the variational inequality (1.2) is equivalent to a fixed point problem.

It is easy to see that the following is true:

(2.4)
$$u \in VI(C, A) \Leftrightarrow u = P_C(u - \lambda Au), \quad \lambda > 0.$$

A set-valued mapping $U: H \to 2^H$ is called monotone if for all $x, y \in$ $H, f \in Ux$ and $g \in Uy$ imply $\langle x - y, f - g \rangle \geq 0$. A monotone mapping $U: H \to 2^H$ is maximal if the graph of G(U) of U is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping U is maximal if and only if for $(x, f) \in$ $H \times H, \langle x-y, f-g \rangle \geq 0$ for every $(y,g) \in G(U)$ implies that $f \in Ux$. Let A be a monotone mapping of C into H and let $N_{C}x$ be the normal cone to C at $x \in C$, that is, $N_C x = \{y \in H : \langle y, x-z \rangle \leq 0, \forall z \in C\}$ and define

(2.5)
$$Ux = \begin{cases} Ax + N_C x, & x \in C, \\ \emptyset & x \notin C. \end{cases}$$

Then U is the maximal monotone and $0 \in Ux$ if and only if $x \in U$ VI(C, A); see [14].

Lemma 2.4. [1] Let H be a real Hilbert space. Then, for all $x, y \in H$

- (i) $||x-y||^2 \le ||x||^2 + 2\langle y, x+y\rangle$, (ii) $||x-y||^2 \ge ||x||^2 + 2\langle y, x\rangle$.

The following Lemma will be frequently used throughout the paper. For the sake of completeness, we include its proof.

Lemma 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H.

- (i) If $F: C \to C$ is a mapping which is both δ -strongly monotone and λ -strictly pseudo-contractive of Browder-Petryshyn type such that $\delta > \frac{1+\lambda}{2}$. Then, I - F is contractive with constant $\sqrt{\frac{2-2\delta}{1-\lambda}}.$ (ii) If $F\colon C\to C$ is a mapping which is both δ -strongly mono-
- tone and λ -strictly pseudo-contractive of Browder-Petryshyn type such that $\delta > \frac{1+\lambda}{2}$. Then, for any fixed number $\tau \in (0,1)$, $I-\tau F$ is contractive with constant $1 - \tau \left(1 - \sqrt{\frac{2-2\delta}{1-\lambda}}\right)$.

Proof. We will employ the same method as used by Ceng et al. [5].

(i) From (1.2) and (1.4), we obtain

$$\frac{1-\lambda}{2} \| (I-F)x - (I-F)y \|^2 \le \| x-y \|^2 - \langle Fx - Fy, J(x-y) \rangle$$

$$\le (1-\delta) \| x-y \|^2.$$

Because $\delta > \frac{1+\lambda}{2} \Leftrightarrow \delta + \frac{1-\lambda}{2} > 1 \Leftrightarrow \sqrt{\frac{2-2\delta}{1-\lambda}} \in (0,1)$, we have

$$\parallel (I - F)x - (I - F)y \parallel \leq \sqrt{\frac{2 - 2\delta}{1 - \lambda}} \parallel x - y \parallel$$

and, therefore, I - F is contractive with constant $\sqrt{\frac{2-2\delta}{1-\lambda}}$.

(ii) Because I - F is contractive with constant $\sqrt{\frac{2-2\delta}{1-\lambda}}$, for each fixed number $\tau \in (0,1)$, we have

$$||x - y - \tau(F(x) - F(y))|| = ||(1 - \tau)(x - y) + \tau[(I - F)x - (I - F)y]||$$

$$\leq (1 - \tau)||x - y|| + \tau||(I - F)x - (I - F)y||$$

$$\leq (1 - \tau)||x - y|| + \tau\sqrt{\frac{2 - 2\delta}{1 - \lambda}}||x - y||$$

$$= \left(1 - \tau\left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}}\right)\right)||x - y||.$$

This shows that $I - \tau F$ is contractive with constant $1 - \tau \left(1 - \sqrt{\frac{2-2\delta}{1-\lambda}}\right)$.

3. Strong convergence theorems

The following is our main result.

Theorem 3.1. Let $F: C \to H$ be a mapping which is both δ - strongly monotone and λ - strictly pseudo-contractive of Browder-Petryshyn type such that $\delta > (1 + \lambda)/2$, f a contraction on H with coefficient 0 < 1 $\alpha < 1$ and γ be a positive real number such that $\gamma < (1 - \sqrt{\frac{2-2\delta}{1-\lambda}})/\alpha$. Let $T: C \rightarrow C$ be a nonexpansive mapping and for each i = 1, 2,let $A_i: C \to H$ be δ_i -inverse strongly monotone mapping and $\mathcal{F} = VI(C, A_1) \cap VI(C, A_2) \cap Fix(T)) \neq \emptyset$. Let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_{i,n}\}_{i=1,n=1}^{2}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in (0,1) satisfy the following conditions:

- $\begin{array}{ll} (B_1) \ \{\beta_{i,n}\} \subset (0,\delta_i) \ for \ i=1,2. \\ (B_2) \ \lim_{n\to\infty} \alpha_n = 0, \ \sum_{n=1}^{\infty} \alpha_n = \infty \ \ and \ \lim_{n\to\infty} \beta_n = \beta \in (0,1). \\ (B_3) \ \sum_{n=1}^{\infty} \mid \beta_{n+1} \beta_n \mid <\infty, \ \sum_{n=1}^{\infty} \mid \beta_{i,n+1} \beta_{i,n} \mid <\infty, \ for \ i=1,2. \end{array}$

If $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences generated by $x_0 \in C$ and

$$\begin{cases} y_n = \beta_n P_C(I - \beta_{1,n} A_1) x_n + (1 - \beta_n) P_C(I - \beta_{2,n} A_2) x_n, \\ x_{n+1} = \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_n) + (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n, \ n \ge 1. \end{cases}$$

Then $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ converge strongly to $x^* \in \mathcal{F}$, which is the unique solution of the system of variational inequalities:

$$\begin{cases} \langle (F - \gamma f)x^*, x - x^* \rangle \ge 0, \\ \langle A_i x^*, x - x^* \rangle \ge 0, \end{cases} \forall x \in \mathcal{F}, i = 1, 2.$$

Proof. Since $\{\beta_{i,n}\}_{i=1,n=1}^{2,\infty}$ satisfies the in condition (B_1) and A_i is δ_i —inverse strongly monotone mapping, for any $x, y \in C$, we have

$$\| (I - \beta_{i,n}A_i)x - (I - \beta_{i,n}A_i)y \|^2$$

$$= \| (x - y) - \beta_{i,n}(A_ix - A_iy) \|^2$$

$$= \| x - y \|^2 - 2\beta_{i,n}\langle x - y, A_ix - A_iy \rangle + \beta_{i,n}^2 \| A_ix - A_iy \|^2$$

$$\leq \| x - y \|^2 - 2\beta_{i,n}\delta_i \| A_ix - A_iy \|^2 + \beta_{i,n}^2 \| A_ix - A_iy \|^2$$

$$= \| x - y \|^2 + \beta_{i,n}(\beta_{i,n} - 2\delta_i) \| A_ix - A_iy \|^2$$

$$\leq \| x - y \|^2$$

It follows that

(3.1)
$$\| (I - \beta_{i,n} A_i) x - (I - \beta_{i,n} A_i) y \| \le \| x - y \|, \quad i = 1, 2.$$

Let $p \in \mathcal{F}$, in the context of the variational inequality problem the characterization of projection (2.4) implies that $p = P_C(I - \beta_{i,n}A_i)p$, i = 1, 2. Using (2.4) and (3.1), we get

$$||y_{n} - p|| = ||\beta_{n} P_{C}(I - \beta_{1,n} A_{1}) x_{n} + (1 - \beta_{n}) P_{C}(I - \beta_{2,n} A_{2}) x_{n} - p||$$

$$= ||\beta_{n} [P_{C}(I - \beta_{1,n} A_{1}) x_{n} - P_{C}(I - \beta_{1,n} A_{1}) p]$$

$$+ (1 - \beta_{n}) [P_{C}(I - \beta_{2,n} A_{2}) x_{n} - P_{C}(I - \beta_{2,n} A_{2}) p] ||$$

$$\leq \beta_{n} ||P_{C}(I - \beta_{1,n} A_{1}) x_{n} - P_{C}(I - \beta_{2,n} A_{2}) p ||$$

$$+ (1 - \beta_{n}) ||P_{C}(I - \beta_{2,n} A_{2}) x_{n} - P_{C}(I - \beta_{2,n} A_{2}) p] ||$$

$$\leq \beta_{n} ||x_{n} - p|| + (1 - \beta_{n}) ||x_{n} - p|| = ||x_{n} - p||$$

$$(3.2)$$

First we show that $\{x_n\}$ is bounded. Indeed, we take $p \in \mathcal{F}$. Then using (3.2) and Lemma 2.4, we have

$$\| x_{n+1} - p \|$$

$$= \| \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_n) + (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n - p \|$$

$$= \| (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n - (I - \alpha_n F) p$$

$$+ \alpha_n [\gamma f(P_C(I - \beta_{1,n} A_1) y_n) - F(p)] \|$$

$$\leq \| (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n - (I - \alpha_n F) p \|$$

$$+ \alpha_n \| \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - F(p) \|$$

$$\leq \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} \right) \right) \| T P_C(I - \beta_{2,n} A_2) y_n - p \|$$

$$+ \alpha_n \| \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - \gamma f(p) \| + \alpha_n \| \gamma f(p) - F(p) \|$$

$$\leq \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha \right) \right) \| y_n - p \|$$

$$+ \alpha_n \| \gamma f(p) - F(p) \|$$

$$\leq \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha \right) \right) \| x_n - p \|$$

$$+ \frac{\alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha \right)}{\left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha \right)} \| \gamma f(p) - F(p) \|$$

$$\leq \max \left\{ \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha \right)^{-1} \| \gamma f(p) - F(p) \|, \| x_n - p \| \right\}.$$

By induction,

$$||x_n - p|| \le \max \left\{ \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha \right)^{-1} ||\gamma f(p) - F(p)||, ||x_0 - p|| \right\}.$$

Therefore, $\{x_n\}$ is bounded and so are the sequences $\{y_n\}$, $\{FT(y_n)\}$ and $\{f(y_n)\}$. Now we claim that

(3.3)
$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0.$$

Indeed, we have (for some approximation constant $M_1 > 0$)

$$\begin{split} & \| x_{n+1} - x_n \| \\ & = \| \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_n) + (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n \\ & - \alpha_{n-1} \gamma f(P_C(I - \beta_{1,n-1} A_1) y_{n-1}) \\ & - (I - \alpha_{n-1} F) T P_C(I - \beta_{2,n-1} A_2) y_{n-1} \| \\ & \leq \| (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n \\ & - (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_{n-1} \| \\ & + \| (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_{n-1} \| \\ & + \| (I - \alpha_n F) T P_C(I - \beta_{2,n-1} A_2) y_{n-1} \| \\ & + \| (I - \alpha_n F) T P_C(I - \beta_{2,n-1} A_2) y_{n-1} \| \\ & + \| (I - \alpha_n F) T P_C(I - \beta_{2,n-1} A_2) y_{n-1} \| \\ & + \| \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_{n-1}) \| \\ & + \| \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_{n-1}) - \alpha_n \gamma f(P_C(I - \beta_{1,n-1} A_1) y_{n-1}) \| \\ & + \| \alpha_n \gamma f(P_C(I - \beta_{1,n-1} A_1) y_{n-1}) - \alpha_{n-1} \gamma f(P_C(I - \beta_{1,n-1} A_1) y_{n-1}) \| \\ & \leq \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}}\right)\right) \| y_n - y_{n-1} \| \\ & + \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}}\right)\right) \| \beta_{2,n} - \beta_{2,n-1} \| \| A_2 y_{n-1} \| \\ & + | \alpha_{n-1} - \alpha_n \| \| F T P_C(I - \beta_{2,n-1} A_2) y_{n-1} \| + \alpha_n \gamma \alpha \| y_n - y_{n-1} \| \\ & + \alpha_n \gamma \alpha \| \beta_{1,n} - \beta_{1,n-1} \| \| A y_{n-1} \| \\ & + | \alpha_{n-1} - \alpha_n \| \| f(P_C(I - \beta_{1,n-1} A_1) y_{n-1}) \| \\ & \leq \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha\right)\right) \| y_n - y_{n-1} \| \\ & + \| \alpha_{n-1} - \alpha_n \| + \beta_{1,n} - \beta_{1,n-1} \| + \beta_{2,n} - \beta_{2,n-1} \| M_1. \end{split}$$

On the other hand, by taking $v_{i,n} = P_C(I - \beta_{i,n}A_i)x_n$ for i = 1, 2 and definition of $\{y_n\}$, we have (for some approximation constant $M_2 > 0$)

$$|| y_n - y_{n-1} ||$$

$$= || \beta_n v_{1,n} + (1 - \beta_n) v_{2,n} - \beta_{n-1} v_{1,n-1} - (1 - \beta_{n-1}) v_{2,n-1} ||$$

$$= || \beta_n (v_{1,n} - v_{1,n-1}) + (\beta_n - \beta_{n-1}) v_{1,n-1} + (1 - \beta_n) v_{2,n}$$

$$\begin{split} &-(1-\beta_n)v_{2,n-1} + (\beta_{n-1}-\beta_n)v_{2,n-1} \parallel \\ &\leq \beta_n \parallel v_{1,n} - v_{1,n-1} \parallel + \parallel \beta_n - \beta_{n-1} \mid (\parallel v_{1,n-1} \parallel + \parallel v_{2,n-1} \parallel) \\ &+ (1-\beta_n) \parallel v_{2,n} - v_{2,n-1} \parallel \\ &= \beta_n \parallel P_C(I-\beta_{1,n}A_1)x_n - P_C(I-\beta_{1,n-1}A_1)x_{n-1} \parallel \\ &+ \parallel \beta_n - \beta_{n-1} \mid (\parallel v_{1,n-1} \parallel + \parallel v_{2,n-1} \parallel) \\ &+ (1-\beta_n) \parallel P_C(I-\beta_{2,n}A_2)x_n - P_C(I-\beta_{2,n-1}A_2)x_{n-1} \parallel \\ &= \beta_n \parallel P_C(I-\beta_{1,n}A_1)x_n - P_C(I-\beta_{1,n}A_1)x_{n-1} \\ &+ P_C(I-\beta_{1,n}A_1)x_{n-1} - P_C(I-\beta_{1,n-1}A_1)x_{n-1} \parallel \\ &+ \parallel \beta_n - \beta_{n-1} \mid (\parallel v_{1,n-1} \parallel + \parallel v_{2,n-1} \parallel) \\ &+ (1-\beta_n) \parallel P_C(I-\beta_{2,n}A_2)x_n - P_C(I-\beta_{2,n}A_2)x_{n-1} \\ &+ P_C(I-\beta_{2,n}A_2)x_{n-1} - P_C(I-\beta_{2,n-1}A_2)x_{n-1} \parallel \\ &\leq \beta_n \parallel x_n - x_{n+1} \parallel + \beta_n \mid \beta_{1,n} - \beta_{1,n-1} \mid \parallel A_1x_{n-1} \parallel \\ &+ \parallel \beta_n - \beta_{n-1} \mid (\parallel v_{1,n-1} \parallel + \parallel v_{2,n-1} \parallel) + (1-\beta_n) \parallel x_n - x_{n-1} \parallel \\ &+ (1-\beta_n) \mid \beta_{2,n} - \beta_{2,n-1} \mid \parallel A_2x_{n-1} \parallel \\ &\leq \parallel x_n - x_{n-1} \parallel + (\parallel \beta_{1,n} - \beta_{1,n-1} \mid + \parallel \beta_n - \beta_{n-1} \mid + \parallel \beta_{2,n} - \beta_{2,n-1} \mid) M_2. \end{split}$$

Therefore, we have (for some approximation constant M > 0)

$$||x_{n+1} - x_n|| \le \left(1 - \alpha_n \left(1 - \sqrt{\frac{2 - 2\delta}{1 - \lambda}} - \gamma \alpha\right)\right) ||x_n - x_{n-1}|| + (|\beta_{1,n} - \beta_{1,n-1}| + |\beta_{2,n} - \beta_{2,n-1}| + |\beta_n - \beta_{n-1}| + |\alpha_n - \alpha_{n-1}|)M.$$
(3.4)

Thus, using conditions (B_2) and (B_3) and Lemma 2.1 to (3.4), we conclude that $||x_{n+1} - x_n|| \to 0$ as $n \to \infty$. In this stage we well show that

(3.5)
$$\lim_{n \to \infty} \| v_{i,n} - x_n \| = 0 \qquad i = 1, 2.$$

Let $p \in \mathcal{F}$, from definition of $\{x_n\}$, we have

$$\| x_{n+1} - p \|^{2}$$

$$= \| \alpha_{n} \gamma f(P_{C}(I - \beta_{1,n} A_{1}) y_{n}) + (I - \alpha_{n} F) T P_{C}(I - \beta_{2,n} A_{2}) y_{n} - p \|^{2}$$

$$= \| \alpha_{n} [\gamma f(P_{C}(I - \beta_{1,n} A_{1}) y_{n}) - F T P_{C}(I - \beta_{2,n} A_{2}) y_{n}]$$

$$+ [T P_{C}(I - \beta_{2,n} A_{2}) y_{n} - p] \|^{2}$$

$$\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}
+ \| TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \|^{2} + 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})
- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle
\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}
+ \| y_{n} - p \|^{2} + 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})
- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle
= \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}
+ \| \beta_{n}P_{C}(I - \beta_{1,n}A_{1})y_{n})
- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle
\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}
+ \beta_{n} \| P_{C}(I - \beta_{1,n}A_{1})x_{n} - p \|^{2} + (1 - \beta_{n}) \| P_{C}(I - \beta_{2,n}A_{2})x_{n} - p \|^{2}
+ 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})
- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$
(3.6)

Using (2.4) and (3.6), we have

$$\| x_{n+1} - p \|^{2}$$

$$\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}$$

$$+ \beta_{n} \| (x_{n} - p) - \beta_{1,n}(A_{1}x_{n} - A_{1}p) \|^{2} + (1 - \beta_{n}) \| x_{n} - p \|^{2}$$

$$+ 2\alpha_{n} \langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$

$$= \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}$$

$$+ \beta_{n} \| x_{n} - p \|^{2} + \beta_{n}\beta_{1,n}^{2} \| A_{1}x_{n} - A_{1}p \|^{2}$$

$$- 2\beta_{n}\beta_{1,n}\langle A_{1}x_{n} - A_{1}p, x_{n} - p \rangle + (1 - \beta_{n}) \| x_{n} - p \|^{2}$$

$$+ 2\alpha_{n} \langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$

$$\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}$$

$$+ \beta_{n} \| x_{n} - p \|^{2} + \beta_{n}\beta_{1,n}^{2} \| A_{1}x_{n} - A_{2}p \|^{2} - 2\beta_{n}\beta_{1,n}\delta_{1} \| A_{1}x_{n} - A_{1}p \|^{2}$$

+
$$(1 - \beta_n) \| x_n - p \|^2 + 2\alpha_n \langle \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - FTP_C(I - \beta_{2,n} A_2) y_n, TP_C(I - \beta_{2,n} A_2) y_n - p \rangle$$

and

$$\| x_{n+1} - p \|^{2}$$

$$\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}$$

$$+ \beta_{n} \| x_{n} - p \|^{2} + (1 - \beta_{n}) \| (x_{n} - p) - \beta_{2,n}(A_{2}x - n - A_{2}p \|^{2}$$

$$+ 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$

$$= \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}$$

$$+ \beta_{n} \| x_{n} - p \|^{2}$$

$$+ (1 - \beta_{n}) \| x_{n} - p \|^{2} + (1 - \beta_{n})\beta_{2,n}^{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\langle A_{2}x_{n} - A_{2}p, x_{n} - p \rangle + 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$

$$\leq \alpha_{n}^{2} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|^{2}$$

$$+ \beta_{n} \| x_{n} - p \|^{2} + (1 - \beta_{n}) \| x_{n} - p \|^{2}$$

$$+ (1 - \beta_{n})\beta_{2,n}^{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{2}$$

$$- 2(1 - \beta_{n})\beta_{2,n}\delta_{2} \| A_{2}x_{n} - A_{2}p \|^{$$

It follows that

$$-\beta_{n}\beta_{1,n}(\beta_{1,n}-2\delta_{1}) \parallel A_{1}x_{n}-A_{1}p\parallel^{2}$$

$$\leq \alpha_{n}^{2} \parallel \gamma f(P_{C}(I-\beta_{1,n}A_{1})y_{n}) - FTP_{C}(I-\beta_{2,n}A_{2})y_{n} \parallel^{2}$$

$$+ [\parallel x_{n}-p\parallel+\parallel x_{n+1}-p\parallel] \parallel x_{n+1}-x_{n}\parallel$$

$$+ 2\alpha_{n}\langle \gamma f(P_{C}(I-\beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I-\beta_{2,n}A_{2})y_{n}, TP_{C}(I-\beta_{2,n}A_{2})y_{n}-p\rangle$$

and

$$-(1 - \beta_{n})\beta_{2,n}(\beta_{2,n} - 2\delta_{2}) \parallel A_{2}x_{n} - A_{2}p, x_{n} - p \parallel^{2}$$

$$\leq \alpha_{n}^{2} \parallel \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \parallel^{2}$$

$$+ [\parallel x_{n} - p \parallel + \parallel x_{n+1} - p \parallel] \parallel x_{n+1} - x_{n} \parallel$$

$$+ 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$

Therefore, from condition B_1 and B_2 , we get

(3.7)
$$\lim_{n \to \infty} ||A_i x_n - A_i p|| = 0 \qquad i = 1, 2.$$

From (2.1), we have

$$\| v_{i,n} - p \|^{2}$$

$$= \| P_{C}(I - \beta_{i,n}A_{i})x_{n} - P_{C}(I - \beta_{i,n}A_{i}p) \|^{2}$$

$$\leq \langle (I - \beta_{i,n}A_{i})x_{n} - (I - \beta_{i,n}A_{i})p, v_{i,n} - p \rangle$$

$$= \frac{1}{2} [\| (I - \beta_{i,n}A_{i})x_{n} - (I - \beta_{i,n}A_{i})p \|^{2} + \| v_{i,n} - p \|^{2}$$

$$- \| (I - \beta_{i,n}A_{i})x_{n} - (I - \beta_{i,n}A_{i})p - (v_{i,n} - p) \|^{2}]$$

$$\leq \frac{1}{2} [\| x_{n} - p \|^{2} + \| v_{i,n} - p \|^{2}$$

$$- \| (I - \beta_{i,n}A_{i})x_{n} - (I - \beta_{i,n}A_{i})p - (v_{i,n} - p) \|^{2}]$$

$$= \frac{1}{2} [\| x_{n} - p \|^{2} + \| v_{i,n} - p \|^{2} - \| x_{n} - v_{i,n} \|^{2}$$

$$+ 2\beta_{i,n} \langle x_{n} - v_{i,n}, A_{i}x_{n} - A_{i}p \rangle - \beta_{i,n}^{2} \| A_{i}x_{n} - A_{i}p \|^{2}].$$

So we obtain

$$||v_{i,n} - p||^{2}$$

$$\leq ||x_{n} - p||^{2} - ||x_{n} - v_{i,n}||^{2}$$

$$+ 2\beta_{i,n}\langle x_{n} - v_{i,n}, A_{i}x_{n} - A_{i}p\rangle$$

$$- \beta_{i,n}^{2} ||A_{i}x_{n} - A_{i}p||^{2}, \qquad i = 1, 2.$$

From (2.4), (3.8) and definition of $\{y_n\}$, we have $\|y_n - p\|^2$

$$\leq \beta_{n} \| v_{2,n}x_{n} - p \|^{2} + (1 - \beta_{n}) \| v_{2,n}x_{n} - p \|^{2}
\leq \beta_{n} [\| x_{n} - p \|^{2} - \| x_{n} - v_{1,n} \|^{2} + 2\beta_{1,n} \langle x_{n} - v_{1,n}, A_{1}x_{n} - A_{1}p \rangle
- \beta_{1,n}^{2} \| A_{1}x_{n} - A_{1}p \|^{2}] + (1 - \beta_{n}) [\| x_{n} - p \|^{2} - \| x_{n} - v_{2,n} \|^{2}
+ 2\beta_{2,n} \langle x_{n} - v_{2,n}, A_{2}x_{n} - A_{2}p \rangle - \beta_{2,n}^{2} \| A_{2}x_{n} - A_{2}p \|^{2}]
= \| x_{n} - p \|^{2} + \beta_{n} [- \| x_{n} - v_{1,n} \|^{2} + 2\beta_{1,n} \langle x_{n} - v_{1,n}, A_{1}x_{n} - A_{1}p \rangle
- \beta_{1,n}^{2} \| A_{1}x_{n} - A_{1}p \|^{2}] + (1 - \beta_{n}) [- \| x_{n} - v_{2,n} \|^{2}$$

$$(3.9)$$

$$+ 2\beta_{2,n} \langle x_{n} - v_{2,n}, A_{2}x_{n} - A_{2}p \rangle - \beta_{2,n}^{2} \| A_{2}x_{n} - A_{2}p \|^{2}]$$

From (2.4), (3.9) and definition of $\{x_n\}$, we have

Which implies that

$$\begin{split} \beta_n \parallel x_n - v_{1,n} \parallel^2 \\ & \leq \alpha_n^2 \parallel \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - FTP_C(I - \beta_{2,n} A_2) y_n \parallel^2 \\ & + [\parallel x_n - p \parallel + \parallel x_{n+1} - p \parallel] \parallel x_{n+1} - x_n \parallel \\ & + \beta_n [2\beta_{1,n} \langle x_n - v_{1,n}, A_2 x_n - A_2 p \rangle \\ & - \beta_{1,n}^2 \parallel A_1 x_n - A_1 p \parallel^2] + (1 - \beta_n) [- \parallel x_n - v_{2,n} \parallel^2 \\ & + 2\beta_{2,n} \langle x_n - v_{2,n}, A_2 x_n - A_2 p \rangle - \beta_{2,n}^2 \parallel A_2 x_n - A_2 p \parallel^2] \\ & + 2\alpha_n \langle \gamma f(P_C(I - \beta_{1,n} A_1) y_n) \end{split}$$

$$-FTP_C(I-\beta_{2,n}A_2)y_n, TP_C(I-\beta_{2,n}A_2)y_n - p\rangle$$

and

$$(1 - \beta_{n}) \parallel x_{n} - v_{2,n} \parallel^{2}$$

$$\leq \alpha_{n}^{2} \parallel \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \parallel^{2}$$

$$+ [\parallel x_{n} - p \parallel + \parallel x_{n+1} - p \parallel] \parallel x_{n+1} - x_{n} \parallel + \beta_{n}[-\parallel x_{n} - v_{1,n} \parallel^{2}$$

$$+ 2\beta_{1,n}\langle x_{n} - v_{1,n}, A_{1}x_{n} - A_{1}p \rangle - \beta_{1,n}^{2} \parallel A_{1}x_{n} - A_{1}p \parallel^{2}]$$

$$+ (1 - \beta_{n})[2\beta_{2,n}\langle x_{n} - v_{2,n}, A_{2}x_{n} - A_{2}p \rangle - \beta_{2,n}^{2} \parallel A_{2}x_{n} - A_{2}p \parallel^{2}]$$

$$+ 2\alpha_{n}\langle \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n})$$

$$- FTP_{C}(I - \beta_{2,n}A_{2})y_{n}, TP_{C}(I - \beta_{2,n}A_{2})y_{n} - p \rangle$$

Therefore using condition B_2 , (3.3) and (3.7), we get

$$\lim_{n \to \infty} \parallel x_n - v_{i,n} \parallel = 0 \qquad i = 1, 2$$

We now show that

$$\lim_{n \to \infty} \parallel x_n - Tx_n \parallel = 0.$$

Since T is nonexpansive, we get

$$\| x_{n} - Tx_{n} \|$$

$$\leq \| x_{n} - x_{n+1} \| + \| x_{n+1} - TP_{C}(I - \beta_{2,n-1}A_{2})y_{n-1} \|$$

$$+ \| TP_{C}(I - \beta_{2,n-1}A_{2})y_{n-1} - Tx_{n} \|$$

$$\leq \| x_{n} - x_{n+1} \| + \alpha_{n} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|$$

$$+ \| TP_{C}(I - \beta_{2,n}A_{2})y_{n} - Tx_{n} \|$$

$$= \| x_{n} - x_{n+1} \| + \alpha_{n} \| \gamma f(P_{C}(I - \beta_{1,n}A_{1})y_{n}) - FTP_{C}(I - \beta_{2,n}A_{2})y_{n} \|$$

$$= \| v_{2,n} - x_{n} \|$$

$$(3.11)$$

Since $\{\alpha_n\}$ satisfies in B_2 . From (3.3), (3.5) and (3.11), we get (3.10). Next, let us show that, there exists a unique $x^* \in \mathcal{F}$ such that

(3.12)
$$\limsup_{n \to \infty} \langle (F - \gamma f) x^*, x^* - x_n \rangle \le 0,$$

Let $Q = P_{\mathcal{F}}$. Then $Q(I - F + \gamma f)$ is a contraction of H into itself. In fact, we see that

$$\begin{split} \parallel Q(I - F + \gamma f)x - Q(I - F + \gamma f)y \parallel \\ & \leq \parallel (I - F + \gamma f)x - (I - F + \gamma f)y \parallel \\ & \leq \parallel (I - F)x - (I - F)y \parallel + \gamma \parallel f(x) - f(y) \parallel \\ & = \lim_{n \to \infty} \parallel (I - (1 - \frac{1}{n})F)x - (I - (1 - \frac{1}{n})F)y \parallel + \gamma \parallel f(x) - f(y) \parallel \\ & \leq \lim_{n \to \infty} (1 - (1 - \frac{1}{n})\tau) \parallel x - y \parallel + \gamma \alpha \parallel x - y \parallel \\ & = (1 - \tau) \parallel x - y \parallel + \gamma \alpha \parallel x - y \parallel, \end{split}$$

and hence $Q(I - F + \gamma f)$ is a contraction due to $(1 - (\tau - \gamma \alpha)) \in (0, 1)$. Therefore, by Banach's contraction principal, $P_{\mathcal{F}}(I - F + \gamma f)$ has a unique fixed point x^* . Then using Lemma (2.3), x^* is the unique solution of the variational inequality:

$$(3.13) \qquad \langle (\gamma f - F)x^*, x - x^* \rangle \le 0, \qquad \forall x \in \mathcal{F}.$$

We can choose a a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that

(3.14)

$$\lim_{n \to \infty} \sup \langle \gamma f(x^*) - \mu F x^*, x_n - x^* \rangle = \lim_{j \to \infty} \langle \gamma f(x^*) - \mu F x^*, x_{n_j} - x^* \rangle.$$

Because $\{x_{n_j}\}$ is bounded, therefore $\{x_{n_j}\}$ has subsequence $\{x_{n_{j_k}}\}$ such that $x_{n_{j_k}} \rightharpoonup z$. With no loss of generality, we may assume that $x_{n_j} \rightharpoonup z$. it follows from (3.10) and Lemma 2.2 that $z \in Fix(T)$.

Now, let us show that $z \in VI(C, A_1) \cap VI(C, A_2)$. Let for $i = 1, 2, U_i : H \to 2^H$ be a set-valued mapping is defined by

$$U_i x = \begin{cases} A_i x + N_C x, & x \in C, \\ \emptyset, & x \notin C. \end{cases}$$

where $N_C x$ is the normal cone to C at $x \in C$. Since A_i is monotone. Thus U is maximal monotone see [14]. Let $(x,y) \in G(U_i)$, hence $y - A_i x \in N_C x$ and since $v_{i,n} = P_C (I - \beta_{i,n} A_i) x_n$ therefore, $\langle x - v_{i,n}, y - A_i x \rangle \geq 0$. On the other hand from $v_{i,n} = P_C (x_n - \beta_{i,n} A_i x_n)$, we have

$$\langle x - v_{i,n}, v_{i,n} - (x_n - \beta_{i,n} A_i x_n) \rangle \ge 0,$$

that is

$$\langle x - v_{i,n}, \frac{v_{i,n} - x_n}{\beta_{i,n}} + A_i x_n \rangle \geq 0$$

Therefore, we have

$$\begin{split} &\langle x-v_{i,n_j},y\rangle\\ &\geq \langle x-v_{i,n_j},A_ix\rangle\\ &\geq \langle x-v_{i,n_j},A_ix\rangle - \langle x-v_{i,n_j},\frac{v_{i,n_j}-x_{n_j}}{\beta_{i,n_j}} + A_ix_{n_j}\rangle\\ &= \langle x-v_{i,n_i},A_ix-\frac{v_{i,n_j}-xz_{n_j}}{\beta_{i,n_j}} - A_ix_{n_j}\rangle\\ &= \langle x-v_{i,n_i},A_ix-A_iv_{i,n_j}\rangle + \langle x-v_{i,n_j},A_iv_{i,n_j}-A_ix_{n_j}\rangle\\ &- \langle x-v_{i,n_j},\frac{v_{i,n_j}-x_{n_j}}{\beta_{i,n_j}}\rangle\\ &\geq \langle x-v_{i,n_j},A_iv_{i,n_j}-A_ix_{n_j}\rangle - \langle x-v_{i,n_j},\frac{v_{i,n_j}-x_{n_j}}{\beta_{i,n_j}}\rangle\\ &\geq \langle x-v_{i,n_j},A_iv_{i,n_j}-A_ix_{n_j}\rangle - \parallel x-v_{i,n_j}\parallel \parallel \frac{v_{i,n_j}-x_{n_j}}{\beta_{i,n_j}}\parallel . \end{split}$$

Noting that $\lim_{i\to\infty} \|v_{i,n_j} - x_{n_j}\| = 0$, $x_{n_j} \rightharpoonup z$ and A_i is $\frac{1}{\delta_i}$ — Lipschitzian, we obtain

$$\langle x - z, y \rangle \ge 0.$$

Since U is maximal monotone, we have $z \in U^{-1}0$, and hence for = 1, 2, $z \in VI(C, A_i)$. Therefore $z \in \mathcal{F}$ and applying (3.13) and (3.14), we have

$$\limsup_{n \to \infty} \langle (\gamma f - F) x^*, x_n - x^* \rangle \le 0.$$

Finally, we prove that $x_n \to x^*$ as $n \to \infty$. Takeing $\tau = 1 - \sqrt{\frac{2-2\delta}{1-\lambda}}$ and using (2.4), (3.2) and Lemma 2.5, we have

$$|| x_{n+1} - x^* ||^2$$

$$= || \alpha_n \gamma f(P_C(I - \beta_{1,n} A_1) y_n) + (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n - x^* ||^2$$

$$= || \alpha_n [\gamma f((P_C(I - \beta_{1,n} A_1) y_n)) - F x^*] + [(I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n - (I - \alpha_n F) x^*] ||^2$$

$$\leq || (I - \alpha_n F) T P_C(I - \beta_{2,n} A_2) y_n - (I - \alpha_n F) x^* ||^2$$

$$+ 2\alpha_n \langle \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - F x^*, x_{n+1} - x^* \rangle$$

$$\leq (1 - \alpha_n \tau)^2 \| y_n - x^* \|^2
+ 2\alpha_n \langle \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - F x^*, x_{n+1} - x^* \rangle
\leq (1 - \alpha_n \tau)^2 \| y_n - x^* \|^2
+ 2\alpha_n \langle \gamma f(P_C(I - \beta_{1,n} A_1) y_n) - \gamma f(x^*), x_{n+1} - x^* \rangle
+ 2\alpha_n \langle \gamma f(x^*) - F x^*, x_{n+1} - x^* \rangle.
\leq (1 - \alpha_n \tau)^2 \| y_n - x^* \|^2 + \alpha_n \gamma \alpha [\| y_n - x^* \|^2 + \| x_{n+1} - x^* \|^2]
+ 2\alpha_n \langle \gamma f(x^*) - \mu F x^*, x_{n+1} - x^* \rangle.
\leq (1 - \alpha_n \tau)^2 \| x_n - x^* \|^2 + \alpha_n \gamma \alpha [\| x_n - x^* \|^2 + \| x_{n+1} - x^* \|^2]
+ 2\alpha_n \langle \gamma f(x^*) - \mu F x^*, x_{n+1} - x^* \rangle.$$

So we reach the following

$$||x_{n+1} - x^*||^2 \le \frac{1 + \alpha^2 \tau^2 - 2\alpha_n \tau + \alpha_n \gamma \alpha}{1 - \alpha_n \gamma \alpha} ||x_n - x^*||^2 + \frac{2\alpha_n}{1 - \alpha_n \gamma \alpha} \langle \gamma f(x^*) - Fx^*, x_{n+1} - x^* \rangle$$

$$\le (1 - \alpha_n \frac{2(\tau - \gamma \alpha) - \alpha_n \tau^2}{1 - \alpha_n \gamma \alpha}) ||x_n - x^*||^2 + \alpha_n \frac{2(\tau - \gamma \alpha) - \alpha_n \tau^2}{1 - \alpha_n \gamma \alpha} \frac{2}{2(\tau - \gamma \alpha) - \alpha_n \tau^2} \langle \gamma f(x^*) - Fx^*, x_{n+1} - x^* \rangle$$

It follows that

$$(3.15) || x_{n+1} - x^* ||^2 \le (1 - b_n) || x_n - x^* ||^2 + b_n c_n,$$

where

$$b_n = \alpha_n \frac{2(\tau - \gamma \alpha) - \alpha_n \tau^2}{1 - \alpha_n \gamma \alpha}$$

and

$$c_n = \frac{2}{2(\tau - \gamma \alpha) - \alpha_n \tau^2} \langle \gamma f(x^*) - Fx^*, x_{n+1} - x^* \rangle$$

Since $\{\alpha_n\}$ satisfies in condition B_3 , we have $\sum_{n=0}^{\infty} b_n = \infty$ and by condition B_1 and (3.12), we get $\limsup_{n\to\infty} c_n \leq 0$. Consequently, applying Lemma 2.1, to (3.15), we conclude that $x_n \to x^*$. Since $\|y_n - x^*\| \leq \|x_n - x^*\|$, we have $y_n \to x^*$.

Corollary 3.2. (See H. K. Xu [16]) Let $T: C \to H$ be a nonexpansive mapping such that $Fix(T) \neq \emptyset$ and $f: C \to C$ be a contraction with coefficient $\alpha \in (0,1)$. Let $\{x_n\}$ be generated by the following algorithm:

$$x_{n+1} = (1 - \alpha_n)Tx_n + \alpha_n f(x_n), \qquad n \ge 0.$$

Assume the sequence $\{\alpha_n\}$ satisfies conditions (B_2) . Then, $\{x_n\}$ converges strongly, as $n \to \infty$, to $x^* \in Fix(T)$ which is the solution of the variational inequality:

$$\langle (I-f)x^*, x-x^* \rangle \ge 0, \quad \forall x \in Fix(T).$$

Proof. It suffices to take $A_i=0$, for $i=1,2,\,F=I$ and $\gamma=1$ in Theorem 3.1.

Corollary 3.3. (See B. Halpern [6]) Let $T: C \to H$ be a nonexpansive mapping such that $Fix(T) \neq \emptyset$ and $f: C \to C$ be a contraction with coefficient $\alpha \in (0,1)$. Let $\{x_n\}$ be generated by the following algorithm:

$$x_{n+1} = (1 - \alpha_n)Tx_n + \alpha_n u, \qquad n \ge 0,$$

where $u \in H$ is arbitrary (but fixed) and the sequence $\{\alpha_n\}$ satisfies conditions (B_2) . Then, $\{x_n\}$ converges strongly, as $n \to \infty$, to $x^* \in Fix(T)$ which is the solution of the variational inequality:

$$\langle (I-f)x^*, x-x^* \rangle \le 0, \quad \forall x \in Fix(T).$$

Proof. It suffices to take $A_i=0$ for $i=1,2,\ F=I$ and $f=\frac{1}{\gamma}u$ in Theorem 3.1.

Corollary 3.4. Let λ be a positive real number such that $\lambda < 1$. Suppose A be a strongly positive linear operator on $\underline{\underline{H}}$ with coefficient $\overline{\gamma}$ such that

 $\overline{\gamma} > \frac{1+\lambda}{2}$ and $||A|| \le 1$. Let $0 < \zeta < \frac{1-\sqrt{\frac{2-2\overline{\gamma}}{1-\lambda}}}{\alpha}$ and $\{x_n\}$ be generated by the following algorithm:

$$x_{n+1} = (I - \alpha_n A)Tx_n + \alpha_n \zeta f(x_n), \qquad n \ge 0.$$

Assume the sequence $\{\alpha_n\}$ satisfies conditions (B_2) . Then, $\{x_n\}$ converges strongly, as $n \to \infty$, to x^* which is the solution of the variational inequality:

$$\langle (A - \gamma f)x^*, x - x^* \rangle \ge 0, \quad \forall x \in Fix(T).$$

Proof. Because A is $\overline{\gamma}$ - strongly monotone and λ -strictly pseudo-contractive of Browder-Petryshyn type such that $\overline{\gamma} > (1 + \lambda)/2$, by taking $A_i = 0$, for i = 1, 2, in Theorem 3.1 the proof is complete.

References

- [1] R. P. Agarwal, D. O'Regan and D. R. Sahu, Fixed point theory for Lipschitzian type mappings with applications, Topological Fixed Point Theory and Its Applications, 6, Springer, New York, 2009.
- [2] F. E. Browder, fixed point theorem for noncompact mapping in Hilbert spaces, Proc. Natl. Acad. Sci. U.S.A. 53 (1965) 1272–1276.
- [3] F. E. Browder, Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, *Arch. Rational Mech. Anal.* **24** (1967) 82–90.
- [4] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967) 197–22.
- [5] L. C. Ceng, Q. H. Ansari and J. C. Yao, Mann-Type Steepest-Descent and Modified Hybrid Steepest-Descent Methods for Variational Inequalities in Banach Spaces, Numer. Funct. Anal. Optim. 29 (2008), no. 9-10, 987-1033.
- [6] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967) 957–961.
- [7] T. Jitpeera and P. Kumam, An extragradient type method for a system of equilibrium problems, variational inequality problems and fixed point of finitely many nonexpansive mappings, J. Nonlinear Anal. Optim. 1 (2010), no. 1, 71–91.
- [8] J. S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005), no. 2, 509–520.
- [9] P. Katchang and P. Kumam, An iterative algorithm for finding a common solution of fixed points and a general system of variational inequalities for two inverse strongly accretive operators, *Positivity* **15** (1997), no. 2, 281–295.
- [10] P. Katchang and P. Kumam, A composite explicit iterative process with a viscosity method for Lipschitzian semigroup in a smooth Banach space, *Bull. Iranian Math. Soc.* 37 (2011), no. 1, 143–159.
- [11] P. Kumam, A relaxed extragradient approximation method of two inverse-strongly monotone mappings for a general system of variational inequalities, fixed point and equilibrium problems, *Bull. Iranian Math. Soc.* **36** (2010), no. 1, 227–250.
- [12] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55.
- [13] G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, *J. Math. Anal. Appl.* **318** (2006), no. 1, 43–52.
- [14] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970) 75–88.
- [15] H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), no. 3, 659–678.
- [16] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279–291.
- [17] Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. comput. 186 (2007), no. 2, 1552–1558.

Hossein Piri

Department of Mathematics, University of Bonab, P.O. Box 55517-61167, Bonab, Iran

Email: h.piri@bonabu.ac.ir