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MORE ABOUT MEASURES AND JACOBIANS OF

SINGULAR RANDOM MATRICES

J. A. DÍAZ-GARCÍA

Communicated by Teo Mora

Abstract. In this work are studied the Jacobians of certain singu-
lar transformations and the corresponding measures which support
the jacobian computations.

1. Introduction

First consider the following notation: Let Lm,N (q) be the space of all

N×m real matrices of rank q ≤ min(N,m) and L+
m,N (q) be the space of

all N ×m real matrices of rank q ≤ min(N,m), with q distinct singular
values. The set of matrices H1 ∈ Lm,N (m) such that H′1H1 = Im is a
manifold denoted by Vm,N , called Stiefel manifold. In particular, Vm,m is
the group of orthogonal matricesO(m). Denote by Sm, the homogeneous
space of m×m positive definite symmetric matrices; and by S+

m(q), the
(mq − q(q − 1)/2)-dimensional manifold of rank q positive semidefinite
m×m symmetric matrices with q distinct positive eigenvalues.

Assuming that X ∈ L+
m,N (q), [4] proposed the Jacobian of nonsin-

gular part of the singular value decomposition, X = H1DW′
1, where

H1 ∈ Vq,N , D is a diagonal matrix with D1 > D2 > · · ·Dq > 0 and
W1 ∈ Vq,m. Also, note that the Jacobian itself defines the factoriza-
tion of Hausdorff’s measure (dX) (or Lebesgue’s measure defined on the
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manifold L+
m,N (q), see [1, p. 249]). Analogous results for V ∈ S+

m(q)
considering the nonsingular part of the spectral decomposition of V were
proposed by [14] and [5]. Based on these two results, [8] and [9] com-
puted the Jacobians of the transformations Y = X+ and W = V+ (see
also [11]), where A+ denotes the Moore-Penrose inverse of A, see [12,
p.49].

In the present work, assuming that X ∈ L+
m,N (q), we propose the Ja-

cobian of nonsingular part of the singular value decomposition assuming
multiplicity in the singular values of X and the corresponding Jacobian
of Y = X+ under the same conditions. Analogous results for V ∈ S+

m(q)
and W = V+ considering the nonsingular part of the spectral decom-
position of V are proposed assuming multiplicity in the eigenvalues of
V and/or assuming that V is an indefinite singular matrix. Also we will
determine the explicit measures with respect the Jacobians are we give
computation.

2. Jacobian of symmetric matrices

Consider again A ∈ Sm, it remains to study: A as a (nonsingular)
indefinite matrix, i.e., A ∈ S±m(m1,m2), with m1 + m2 = m, where
m1 is the number of positive eigenvalues and m2 is the number of
negative eigenvalues; and A as a (singular) semi-indefinite matrix, i.e.
A ∈ S±m(q, q1, q2), with q1 + q2 = q, here q1 is the number of positive
eigenvalues and q2 is the number of negative eigenvalues.

First suppose A ∈ S±m(m1,m2) such that A = HDH′, is the spectral
decomposition (SD) of A, where H ∈ O(m), D is a diagonal matrix.
Without loss of generality, let λ1 > · · · > λm1 > 0 and 0 > −δ1 > · · · >
−δm2 , explicitly

A = H



λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · λm1 0 · · · 0
0 · · · 0 −δ1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · −δm2


H′.

Now let A ∈ S±3 (1, 2) and let A = HDH′ be its SD, then

dA = dHDH′ + HdDH′ + HDdH′,
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thus by the skew symmetry of H′dH we have, see [10, p. 105]

H′dAH = H′dHD + dD + DdH′H = H′dHD + dD−DH′dH

Moreover,

H′dAH =

 0 −h′2dh1 −h′3dh1
h′2dh1 0 −h′3dh2
h′3dh1 h′3dh2 0

 λ1 0 0
0 −δ1 0
0 0 −δ2


+

 dλ1 0 0
0 −dδ1 0
0 0 −dδ2


−

 λ1 0 0
0 −δ1 0
0 0 −δ2

 0 −h′2dh1 −h′3dh1
h′2dh1 0 −h′3dh2
h′3dh1 h′3dh2 0


=

 0 δ1h
′
2dh1 δ2h

′
3dh1

λ1h
′
2dh1 0 δ2h

′
3dh2

λ1h
′
3dh1 −δ1h′3dh2 0

+

 dλ1 0 0
0 −dδ1 0
0 0 −dδ2


−

 0 −λ1h′2dh1 −λ1h′3dh1
−δ1h′2dh1 0 δ1h

′
3dh2

−δ2h′3dh1 −δ2h′3dh2 0


=

 dλ1 (λ1 + δ1)h′2dh1 (λ1 + δ2)h′3dh1
(λ1 + δ1)h′2dh1 −dδ1 (δ2 − δ1)h′3dh2
(λ1 + δ2)h′3dh1 (−δ1 + δ2)h′3dh2 −dδ2

 .
We know that (H′dAH) = (dA), then a column by column computation
of the exterior product of the subdiagonal elements of H′dHD + dD−
DH′dH gives, ignoring the sign,

(dA) = (λ1+δ1)(λ1+δ2)(−δ1+δ2)

 3∧
i=1

3∧
j=i+1

h′jdhi

∧dλ1∧−dδ1∧−dδ2.

Recall that, if for example, the first element in each column of H is
nonnegative, so, A = HDH′ is one-to-one transformation. Then the
corresponding Jacobian must be divided by 2m, see [10, pp. 104-105].
Thus we have

(dA) = 2−3(λ1 + δ1)(λ1 + δ2)(δ1 − δ2)(H′dH) ∧ (dD),

where (H′dH) is the Haar measure on O(m) and

(H′dH) =
m∧
i<j

h′jdhi, (dD) = dλ1 ∧ dδ1 ∧ dδ2,
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(dD) is an exterior product of all differentials dλi and dδj ignoring the
sign.

Analogously, if A ∈ S±3 (2, 1),

(dA) = 2−3(λ1 − λ2)(λ1 + δ1)(λ2 + δ1)(H′dH) ∧ (dD).

Similarly, let A ∈ S±4 (2, 2), then

(dA) = 2−4(λ1−λ2)(δ1−δ2)(λ1+δ1)(λ1+δ2)(λ2+δ1)(λ2+δ2)(H′dH)∧(dD).

By generalization we get

Theorem 2.1. Let A ∈ S±m(m1,m2) such that A = HDH′, where
H ∈ O(m), D is a diagonal matrix with λ1 > · · · > λm1 > 0 and
0 > −δ1 > · · · > −δm2, m1 +m2 = m. Then

(dA) = 2−m
m1∏
i<j

(λi − λj)
m2∏
k<l

(δk − δl)
m1,m2∏
i,k

(λi + δk)(H
′dH) ∧ (dD).

where
m1,m2∏
i,k

(λi + δk) =

m1∏
i=1

m2∏
k=1

(λi + δk), (H′dH) =

m∧
i<j

h′jdhi,

(dD) =

m1∧
i=1

dλi

m2∧
k=1

dδk.

A similar procedure for A ∈ S±m(q, q1, q2) gives:

Theorem 2.2. Let A ∈ S±m(q, q1, q2) such that A = H1DH′1, where
H1 ∈ Vq,m, D is a diagonal matrix with λ1 > · · · > λq1 > 0 and
0 > −δ1 > · · · > −δq2, q1 + q2 = q. Then

(dA) = 2−q
q1∏
i=1

λm−qi

q2∏
k=1

δm−qk

q1∏
i<j

(λi − λj)
q2∏
k<l

(δk − δl)
q1,q2∏
i,k

(λi + δk)

∧(H′1dH1)∧(dD),

where
q1,q2∏
i,k

(λi + δk) =

q1∏
i=1

q2∏
k=1

(λi + δk), (H′1dH1) =

m∧
i=1

q∧
j=i+1

h′jdhi,

(dD) =

q1∧
i=1

dλi

q2∧
k=1

dδk.
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3. Jacobians of symmetric matrices repeated eigenvalues

As a motivation for this section, consider a general random matrix
A ∈ Rm×m, explicitly

A =

 a11 · · · a1m
...

. . .
...

am1 · · · amm

 .
Any density function of this matrix can be expressed as

dFA(A) = fA(A)(dA),

where (dA) denotes the Lebesgue measure in Rm2
, which can be written

by using the exterior product, as

(dA) =
m∧
i=1

m∧
j=1

daij ,

see [10].
However, if A ∈ Sm and it is nonsingular, then the Lebesgue measure

defined on Sm is given by

(dA) =

m∧
i≤j

daij .

Remark 3.1. Note that the above product is the Hausdorff measure on

Rm2
defined on the homogeneous space of positive definite symmetric

matrices, see [1].

In general, we can consider any factorization of the Lebesgue measure
(dA) on S+

m as an alternative definition of (dA) with respect to the cor-
responding coordinate system. For example, if we consider the spectral
decomposition (SD), A = HDH′, where H ∈ O(m), and D is a diagonal
matrix with D1 > · · · > Dm > 0 or we consider the Cholesky decom-
position A = T′T, where T is upper-triangular with positive diagonal
entries, then we have respectively

(dA) =


2−m

m∏
i<j

(Di −Dj)(H
′dH) ∧ (dD), Spectral decomposition;

2m
m∏
i=1

tm+1−i
ii (dT), Cholesky decomposition,
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see [6], where

(H′dH) =
m∧
i<j

h′jdhi, (dD) =
m∧
i=1

dDi and (dT) =
m∧
i≤j

dtij .

Given a matrix A ∈ S+
m(q), sometimes it is difficult to establish an

explicit form of the Hausdorff measure in the original coordinate system,
that is, to define (dA) in terms of daij . In particular, if A ∈ S+

m(q) some
unsuccessful efforts have been trailed, see [13] and [2]. A definition of
such measure in terms of the SD is given by [14]:

(dA) = 2−q
q∏
i=1

Dm−q
i

q∏
i<j

(Di −Dj)(H1dH1) ∧ (dD),

where H1 ∈ Vq,m, D is a diagonal matrix with D1 > · · · > Dq > 0 and

(H′1dH1) =

m∧
i=1

q∧
j=i+1

h′jdhi, (dD) =

q∧
i=1

dDi;

for alternative expressions of (dA) in terms of other factorizations see
[6] and [7].

Now suppose that one (or more) eigenvalue(s) of A ∈ Sm has (have)
multiplicity greater than one. Then consider A = HDH′, where H ∈
O(m), D is a diagonal matrix with D1 ≥ · · · ≥ Dm > 0. Moreover, let
Dk1 , . . . Dkl be the l distinct eigenvalues of A, i.e., Dk1 > · · · > Dkl > 0,
where mj denotes the repetitions of the eigenvalue Dkj , j = 1, 2, . . . , l,
and of course m1 + · · ·ml = m; finally denote the corresponding set of
matrices by A ∈ S+

m(m, l). It is clear that A exists in the m(m+ 1)/2-
dimensional homogeneous subspace of the symmetric matrices of rank
m; more accurately, when there exist multiplicity in the eigenvalues,
A exists in the manifold of dimension ml − l(l − 1)/2, even exactly
for computations we say that A ∈ S+

m(l). For proving it, consider the
matrix A ∈ S+

2 (2, 1), such that A = HDH′, here H ∈ O(2), and D is
a diagonal matrix with D1 ≥ D2 > 0 where D1 = D2 = κ, then the
measure

(dA) = 2−2
2∏
i<j

(Di −Dj)(H
′dH) ∧ dD = 2−2(κ− κ)(H′dH) ∧ dD = 0.

Also note that, in fact the measure (dD) = dD1∧dD2 = dκ∧dκ is zero.
This is analogous to the following situation, to propose for a curve in
the space (R3) the Lebesgue measure defined by dx1 ∧ dx2.
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Now, when we consider the factorization of the Lebesgue measure in
terms of the spectral decomposition, we do not have 2(2 + 1)/2 = 3 but
only 2(1)−1(1+1)/2+1 = 2 mathematically independent elements in A,
because in D, D1 = D2 = κ and then there is only one mathematically
independent element.

Also, observe that the space of positive definite m×m matrices is a
subset of the Euclidian space of symmetric m×m matrices of dimension
m(m+1)/2, and in fact it forms an open cone described by the following
system of inequalities, see [10, p. 61 and p. 77 Problem 2.6]:

(3.1) A > 0⇔ a11 > 0,det

[
a11 a12

a21 a22

]
> 0, · · · , det(A) > 0.

In particular, let m = 2, after factorizing the Lebesgue measure in Sm
by the spectral decomposition, the inequalities (3.1) are as follows

(3.2) A > 0⇔ D1 > 0, D2 > 0, D1D2 > 0.

But if D1 = D2 = κ, (3.2) it reduces to

A > 0⇔ κ > 0, κ2 > 0.

Which defines a curve (a parabola) in the space, over the line D1 =
D2(= κ) in the subspace of points (D1, D2).

A similar situation appears in the following cases:

i): When we consider multiplicity of the singular values in the sin-
gular value decomposition (SVD); such set of matrices will be
denoted by X ∈ L+

m,N (q, l) q ≥ l;
ii): If we consider multiplicity of the eigenvalues; the corresponding

set of matrices will be denoted by A ∈ S+
m(q, l), q ≥ l;

iii): And if A is nonpositive definite.

As a summary we have the next results, which collect the main con-
clusions of Section 2 and the present section, the proofs are similar to
the proof of Theorem 1 in [9]:

Theorem 3.2. Consider Y ∈ L+
m,N (q) and Y = X+, then

(dY) =
k∏
i=1

σ
−2(N+m−k)
i (dX)

where X = H1DσP
′
1 is the nonsingular part of SVD of X, with H1 ∈

Vk,N , P1 ∈ Vk,m, Dσ = diag(σ1, . . . , σk), σ1 ≥ · · · ≥ σk > 0, the measure
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(dX) is

(dX) = 2−k
k∏
i=1

σ
(N+m−2k)
i

k∏
i<j

(σ2
i − σ2

j )(H
′
1dH1) ∧ (P′1dP1) ∧ (dDσ),

and

k =

{
q, X ∈ L+

m,N (q);

l, X ∈ L+
m,N (q, l).

Similarly, for symmetric matrices we have,

Theorem 3.3. Let V ∈ Rm×m be a symmetric matrix and let W = V+,
then

(1)

(dW) =

β∏
i=1

|λi|−2m+β−1(dV),

where V = H1DλH
′
1 is the nonsingular part of SD of V, with

H1 ∈ Vβ,N , Dλ = diag(λ1, . . . , λβ), |λ1| ≥ · · · ≥ |λβ| > 0, the
measure (dV) is

(dV) = 2−β
β∏
i=1

|λi|m−β
β∏
i<j

(|λi| − |λj |)(H1dH1) ∧ (dDλ),

and

β =


m, V or −V ∈ S+

m;
l, V or −V ∈ S+

m(m, l);
q, V or −V ∈ S+

m(q);
k, V or −V ∈ S+

m(q, k).

(2)

(dW) =

α1∏
i=1

λ
−2(m−α1/2−α2+1)
i

α2∏
j=1

δ
−2(m−(α−1)/2)
j (dV),

where α = α1 + α2, V = H1DH′1 is the nonsingular part of SD
of V, with H1 ∈ Vα,N , D = diag(λ1, . . . , λα1 ,−δ1, . . . ,−δα1),
λ1 ≥ · · · ≥ λα1 > 0; |δ1| ≥ · · · ≥ |δα2 | > 0, the measure (dV) is

(dV) = 2−α
α1∏
i=1

λm−αi

α2∏
r=1

δm−αr

α1∏
i<j

(λi − λj)
α2∏
r<l

(δr − δl)
α1,α2∏
i,r

(λi + δr)

∧(H′1dH1)∧(dD).
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and

α =


m, V ∈ S±m(m1,m2);
l, V ∈ S±m(l1, l2);
q, V ∈ S±m(q, q1, q2);
k, V ∈ S±m(q, k1, k2),

and V ∈ S±m(l1, l2), l1 + l2 = l ≤ m denotes a nonsingular in-
definite matrix with repeated eigenvalues and V ∈ S±m(q, k1, k2),
k1 + k2 = k ≤ q ≤ m denotes a singular indefinite matrix with
repeated eigenvalues.

4. Conclusions

This work determines the Jacobians of the SVD and the SD under
multiplicity of the singular values and eigenvalues, respectively. For the
SD case, we compute the Jacobian for nonsingular and singular indefinite
matrices with and without repeated eigenvalues. Also, we calculate the
Jacobians for a general matrix and its Moore-Penrose inverse, and for
a symmetric matrix with all its variants (nonpositive, nonnegative and
indefinite). In every case we specify the measures of Hausdorff which
support the Jacobian computations. We highlight that the results of
the paper is the foundations of an explored problem in literature: the
test criteria in MANOVA when there exist multiplicities in: the matrix
of sum of squares and sum of products, due to the hypothesis SH ; the
matrix of sum of square and sum of products, due to the error SE ; the
matrices SHS

−1
E ; (SH + SE)−1SH ; see [3].
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