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DISTRIBUTION OF RATIONAL POINTS: A SURVEY

RAMIN TAKLOO-BIGHASH

To Joseph Shalika, on the occasion of his retirement

Communicated by Samad Hedayat

Abstract. In this survey we discuss Manin’s conjectures about
the distribution of rational points on certain classes of algebraic
varieties.

1. Introduction

One of the most important areas of investigation in number theory is
the study of the distribution of rational or integral points on algebraic
varieties. It is not a small historical miracle that an area of investiga-
tion in mathematics that started some 2000 years ago would still be of
great interest. This field now has profound connections to various areas
of modern mathematics including algebraic geometry, complex analysis,
logic, and more recently harmonic analysis and automorphic represen-
tation theory. One of the central themes in the theory is to explore
the relationship between geometric and arithmetic properties of alge-
braic varieties. One of the guiding principles is the idea that the rough
geometric classification of algebraic varieties according to the ampleness
of the canonical (respectively anticanonical) line bundle should directly
influence the arithmetic properties. For example, a conjecture due to
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Bombieri, Lang and Vojta asserts that on a variety with ample canon-
ical class all of its rational points are contained in some Zariski closed
subset. This conjecture is valid for curves and subvarieties of abelian va-
rieties by the work of Faltings. It is largely open in general. Next there
is the class of varieties where neither the canonical nor the anticanon-
ical line bundle is ample. There has been some research to investigate
the behavior of rational points on these varieties, but the theory still
lacks a general picture of what might be true. On the opposite end of
the spectrum we have the class of varieties with ample anticanonical line
bundle, called Fano varieties. The class of Fano varieties is very rich and
includes many varieties defined by classical diophantine equations (for
example, cubic hypersurfaces). The study of the arithmetic properties
of Fano varieties motivates many interesting and concrete problems in
number theory, automorphic forms, and algebraic geometry for which I
refer the reader to the book [19] and the papers listed in the bibliogra-
phy. Here, I would also like to mention the paper [13] where the authors
have considered the distribution of integral points on homogeneous vari-
eties. In fact, their analysis involves understanding the full automorphic
spectrum, and is very close to our approach in spirit. The developments
up to 1990 along the lines of [13] are explained in Sarnak’s ICM talk
[25].

In this survey we discuss the distribution of rational points on al-
gebraic varieties with many rational points, and in particular Manin’s
conjectures for Fano varieties. The paper is organized as follows. In
section 2 we review basic properties of height functions on algebraic va-
rieties and set up the basic framework. Section 3 includes a survey of
Manin’s conjectures and a resume of known results, as well as an intro-
ductory subsection on counting zeta functions and tauberian theorems.
The last section discusses two explicit one dimensional examples in de-
tail. Here I should point out that there is nothing strictly new in this
article, except possibly for the argument presented in 4.2, which is an
adaptation of a classical argument due to Deuring. Both of the exam-
ples of the fourth Section are easy consequences of much more general
results due to Batyrev, Chambert-Loir, and Tschinkel (see Remark 6
and Remark 8 for exact references).

The bulk of these notes are based on a series of lectures delivered by
the author [35] at the Sharif University of Technology and the Institute
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for Studies in Theoretical Physics and Mathematics (IPM) in Tehran,
during the summer of 2006. These lectures were largely based on the
book of Hindry and Silverman [19]. It would be obvious to the reader
that this book has greatly influenced our presentation of the material,
although the author has also been influenced by [20] and [27]. Our
reference for the algebraic geometry material has been [17] and [28],
although here too the book of Hindry and Silverman has been quite
useful. Some of these materials were also discussed during colloquium
lectures delivered at IPM, Institute of Basic Sciences in Zanjan, and
Ahwaz University all during July of 2006, and CUNY Graduate Center
and the New York Number Theory Seminar in the Academic Year 2006-
2007.

On a personal note, it is a great pleasure to dedicate this modest
work to my PhD adviser and mentor Professor Joseph A. Shalika of
Johns Hopkins on the occasion of his retirement. I will forever be in-
debted to him for his support and guidance during my graduate study at
Hopkins. It was under his supervision that I first started thinking about
the distribution of rational points on homogeneous varieties. Professor
Shalika is an amazing human being in the truest sense of the word. He is
an influential teacher and an extraordinary mathematician whose teach-
ings, mathematical and otherwise, have changed the lives and careers of
those around him. I wish him best of luck in his retirement.

2. Height functions and metrized line bundles

2.1. Weil Height.

2.1.1. Height functions on Pn(Q). The field of rational numbers Q has
a canonical family MQ of valuations. We will denote a typical element
of MQ by v. If v = ∞, the corresponding valuation denoted by ‖.‖∞
is the ordinary absolute value. If v = p, a prime number, then the
corresponding valuation is the p-adic absolute value. It is well-known
that if r ∈ Q×, then ∏

v∈MQ

‖r‖v = 1.
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If k is a finite extension of Q it is possible to construct a canonical family
of valuations Mk in such a way that for all α ∈ k× we have

(2.1)
∏

w∈Mk

‖α‖w = 1.

For details see [27], Section 2.1. We now define a height function on
Pn(Q). Let x ∈ Pn(Q). Then x has a representative of the form
(x0, x1, . . . , xn), with xi ∈ Q, not all zero, for 0 ≤ i ≤ n. Then there is
a finite extension of Q, say K, such that xi ∈ K for all i. We set

H(x) =

 ∏
w∈MK

sup
0≤i≤n

‖xi‖w

 1
[K:Q]

.

If for example x0 6= 0, we have H(x) ≥
∏
w∈MK

‖x0‖w = 1. It fol-
lows from the product formula (2.1) that H(x) is independent of the
choice of the representative (x0, . . . , xn) and the finite extension K. As
a result we obtain a function H : Pn(Q) → R such that H(x) ≥ 1 for
all x. It should be noted that the above construction also works for
function fields. In the situation where x0, . . . , xn are rational numbers,
we may clear denominators to obtain a representative of x of the form
(y0, . . . , yn) with yi ∈ Z, 0 ≤ i ≤ n, and gcd(y0, . . . , yn) = 1. Such an
(n+ 1)-tuple is called primitive. One can show that in this case

H(x) = max(|y0|, . . . , |yn|).

This identity shows that this definition of the height function agrees
with that considered in 3.4.1.

2.1.2. The pull-back of the height function. Here we follow [19]. Let V
be a projective variety defined over Q, and suppose φ : V → Pn is a
morphism. We define the height with respect to φ to be the function
Hφ : V (Q) → [1,∞) given by Hφ(P ) = H(φ(P )). Given a variety
V , we define an equivalence relation ∼V on the collection of functions
on V (Q) with values in the positive real numbers: We say f ∼V g if
log f(P ) = log g(P ) +O(1) for all P ∈ V (Q).

Theorem 2.1. Let V be a projective variety defined over Q, and let
φ : V → Pn and ψ : V → Pm be morphisms again defined over Q.
Suppose φ∗L0 and ψ∗L′0, L0 and L′0 hyperplane sections in Pn and Pm
respectively, are linearly equivalent. Then Hφ ∼V Hψ.
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2.1.3. Weil’s height machine. We have the following theorem:

Theorem 2.2. Let k be a number field. For every smooth projective
variety V/k there exists a map

HV : Div(V ) → { real valued functions on V (k)},

Div(V ) the divisor group of V , with the following properties:
(1) Let L0 ⊂ Pn be a hyperplane section. Then HPn,L0 ∼Pn H.
(2) Let φ : V → W be a morphism, and D ∈ Div(W ). Then

HV,φ∗D ∼V HW,D ◦ φ.
(3) Let D,E ∈ Div(V ). Then HV,D+E ∼V HV,D.HV,E.
(4) If D ∈ Div(V ) is principal, then HV,D ∼V 1.
(5) Let D ∈ Div(V ) be an effective divisor, and let B be the base

locus of the linear system |D|. Then there is c > 0 such that
HV,D(P ) ≥ c for all P ∈ (V \B)(Q).

(6) Let D,E ∈ Div(V ). Suppose D is ample and E is algebraically
equivalent to 0. Then

lim
HV,D(P )→∞

logHV,E(P )
logHV,D(P )

= 0.

(7) Let D ∈ Div(V ) be ample. then for every finite extension k′/k
and every constant B, the set

{P ∈ V (k′);HV,D(P ) ≤ B}

is finite.
(8) The function HV is unique up to ∼V .

The function HV descends to a function on the Picard group of the vari-
ety V , which we will denote by Pic(V ), to {real functions on V (Q)}/ ∼V .

For the notion of algebraic equivalence mentioned above see [28], Book
1, Chapter III, 4.4. Briefly, a family of divisors on a variety X with base
T , is any map f : T → DivX. We say the family f is algebraic if there
exists a divisor C ∈ Div(X × T ), T an algebraic variety, such that for
each t ∈ T , (X × {t}) ∩ C = f(t)× {t}. Divisors D1, D2 are said to be
algebraically equivalent if there is an algebraic family f : T → DivX and
t1, t2 ∈ T such that D1 = f(t1) and D2 = f(t2).

The construction of the function HV is as follows. If D is very ample,
we choose a morphism φD : V → Pn associated to D and we define

HV,D(P ) = H(φD(P ))
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for all P ∈ V (Q). Next if D is an arbitrary divisor, we write D as
D1 −D2, with D1, D2 very ample. We then define

HV,D(P ) =
HV,D1(P )
HV,D2(P )

.

If [D] ∈ Pic(V ) is a class, we obtain a class of functions HV,[D] :
V (Q) → R, determined up to ∼V . We typically work with a specific
function f ∈ HV,[D]. We will explain a more general way to define
height functions in 2.2.

2.1.4. Counting points. The finiteness statement of the last theorem
leads us to the following question. Let k be a number field and let
[D] ∈ Pic(V ) be such that for all B and all f ∈ HV,[D] we have

Nf (B) = |{P ∈ V (k); f(P ) ≤ B}|
is finite. We often suppress the subscript f . We know that every ample
class satisfies this requirement. The question that we are going to con-
sider in this paper is how the number N(B) changes as B → ∞. The
general feeling is that the geometry of V should determine the growth of
N(B) if one desensitizes the arithmetic by passing to a sufficiently large
ground field (via finite extensions of k), and perhaps deleting certain
exceptional subvarieties the growth of the number of rational points of
which dominates the behavior of the whole set V (k). We will see in-
stances of these exceptional subvarieties in 3.4.3 and 3.4.4.

We believe that the distribution of rational points on an algebraic
variety is tightly related to its geometry. An invariant of a smooth
variety V that is expected to play an important role is its anti-canonical
class −KV ; here KV is the canonical class of the variety V defined by
top degree differential forms. In order to illustrate this expectation we
examine a heuristic for hypersurfaces [20]. Suppose F is a homogeneous
form with integral coefficients of degree d on Pn. We have already seen
that there are about Bn+1 rational points of heights less than B in
Pn(Q); we will think of these points as primitive (n+1)-tuples of integers.
Since F is of degree d, it takes about Bd values on the set of primitive
integral points of height less than B. Let us assume that the values
taken by F are equally likely so that the probability of getting 0 is
about B−d. This means that F (X0, . . . , Xn) should be zero for about
Bn+1−d of the rational points of height less than B. Recall that if
V = (F = 0), then −KV = (n+1−d)H. The basic principle is that the
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occurrence of n+ 1− d is more than a mere accident! When n+ 1 > d
one expects an abundance of rational points, and otherwise scarcity. In
geometric terms, when n + 1 > d the resulting hypersurface is Fano;
a non-singular projective variety the negative of whose canonical class
is ample is called Fano. Manin [14] has formulated certain conjectures
describing the behavior ofN(B) for Fano varieties; for non-Fano varieties
one expects that rational points should be rare; see however Remark 2.3.
We survey Manin’s original conjectures in 3.3 below. For curves this is
completely worked out, and the results can be described in terms of the
genus of the curve. So let C be a non-singular projective curve of genus
g defined over a number field k. Then

• When g = 0, the curve C is Fano. Such a curve will have a
Zariski dense set of rational points if we go over a finite exten-
sion of k; over such extension, the number of rational points
of height less than B grows at least like a positive power of B.
The Pythagorean and Pellean curves considered below are in fact
examples of this situation.

• When g = 1, then neither the canonical class, nor its negative is
ample; this is the so-called intermediate type. In this case, if the
curve has a rational point, it will be an elliptic curve. For any
number field k, by the celebrated Mordell-Weil theorem, the set
C(k) is a finitely-generated abelian group. The logarithm of any
height function is equivalent, in the sense of ∼C , to a quadratic
form on C(k). It is then easily seen that N(B) grows at most
like a power of logB. This is the scarcity alluded to above.

• When g > 1, then the curve is of general type. In this case,
by Mordell’s conjecture, proved by Faltings and Vojta, for any
number field k, the set C(k) is finite. These are clearly quite
rare!

So clearly even for curves the problem of understanding the distribu-
tion of rational points is not trivial! Next, following [20], we make some
comments on surfaces. In this discussion we assume familiarity with the
conjectures of 3.3. Let V be a non-singular projective surface defined
over a number field k. Then

• −KV ample. Such a surface is called a del Pezzo surface. The
study of such surfaces poses some serious arithmetical problems.
There is a classification of del Pezzo surfaces over C; there is a
P2 and P1×P1, and the remaining classes all can be obtained as
blow-ups of P2 at at most eight points in general position. This
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classification is not valid over a non-algebraically closed field as
one has to account for non-trivial Gal(k/k) actions. At any rate,
such surfaces can have subvarieties isomorphic to P1 embedded
in such a way that (−KV )|P1 = 1

2(−KP1), so that if we do the
counting with respect to the height function given by the anti-
canonical class, then there will be B2 points of height less than
B on the P1 subvariety alone (see 3.4.1 for the computation of
the number of rational points on Pn for n ≥ 2 – the case of P1 is
similar). After throwing out such an embedded subvariety one
would only have B1+ε rational points of bounded height for any
ε > 0. These are the exceptional subvarieties mentioned at the
end of the first paragraph of 2.1.4.

• Intermediate cases: There are various interesting class of such
surfaces, e.g. abelian surfaces, K3 surfaces, etc. Some of these
are easy to study and some others are hard.

• General type: There are the conjectures of Bombieri and Lang
which are higher dimensional analogues of the Mordell’s conjec-
ture, i.e. one expects that over any number field k, the collection
of rational points V (k) should be contained in a proper Zariski
closed set. In general, there is very little known about this. See
[19], F.5.2 for more details.

Remark 2.3. While this is in principle expected to be valid, there are
varieties which are “almost Fano” (e.g. toric varieties that are not Fano)
for which Manin’s conjectures hold and therefore rational points on them
are not “rare”; see [5, 3].

2.2. Heights for metrized line bundles. The definition of Nf (B) in
2.1.4 depended on the choice of a function f ∈ HV,[D]. In this paragraph,
we make the choice of the function f geometric. Our reference here is
[20].

2.2.1. Metrizations. Let us start with a very general definition. For
a moment, Let L be a one-dimensional space over a number field k.
An adèlic metrization of L is a choice at each place v of k of a norm
‖.‖v : L→ R with the following properties

(1) ‖aλ‖v = |a|v.‖λ‖v for all a ∈ k and λ ∈ L; and
(2) For each λ ∈ L\{0}, ‖λ‖v = 1 for all except finitely many v.

It is clear that (k, {|.|v}v) is an adèlic metrization.
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Now let V be an algebraic variety, and L an invertible sheaf on V .
We proceed to define the notion of an L-height on V (k). First let L be a
very ample sheaf, and let s = (s0, . . . , sn) be a basis for Γ(L). For every
x ∈ V (k), there is j such that sj(x) 6= 0. Set

HL,s(x) =
∏
v

max
i

{∣∣∣∣ si(x)sj(x)

∣∣∣∣
v

}
.

This is clearly independent of the chosen j. If L is not very ample, we
fix an isomorphism σ : L → L1 ⊗ L−1

2 and bases s and t of Γ(L1) and
Γ(L2), respectively, and put

HL,σ,s(x) = HL1,s(x)HL2,t(x)
−1.

Example 1. For k = Q, V = Pn, L = O(1), and s a homogeneous
coordinate system on V , then

HO(1),s(x) = max
i

(|xi|)

where (x0, . . . , xn) ∈ Zn+1 is a primitive representative for x.

Now we explain the relation between these height functions and
adèlizations. Given an invertible sheaf L on V , we call a family ‖.‖v,x :
Lx → R of v-adic norms, one for each x ∈ V (kv), a v-adic metric on L
if for every Zariski open U ⊂ V and every section s ∈ Γ(U,L) the map
x 7→ ‖s(x)‖x,v is a continuous function U(kv) → R. What we did earlier
is in fact a v-adic metric in disguise: If L is very ample, it is generated
by global sections, and we can choose a basis s = (s0, . . . , sn) of Γ(L)
defined over k. If s is a section such that s(x) 6= 0, we set

‖s(x)‖x,v := max
i

{∣∣∣∣si(x)s(x)

∣∣∣∣−1

v

}
,

otherwise ‖s(x)‖x,v = 0. It is easy to see that this depends only on
the point s(x) ∈ Lx and not on the choice of the section s, and thus
we obtain a function Lx → R. We call this the metrization defined by
means of the basis s = (s0, . . . , sn).

We can now define what we mean by an arbitrary adèlic metric on
an invertible sheaf. Again we assume that L is very ample. An adèlic
metric on L is a collection of v-adic metrics such that for all but finitely
many v the v-adic metric on L is defined by means of some fixed basis
s = (s0, . . . , sn) of Γ(L). We call the data L = (L, {‖.‖v}v) an adèlically
metrized line bundle. To extend the construction to arbitrary invertible
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sheaves, as before we represent an arbitrary sheaf L as L1 ⊗ L−1
2 with

L1, L2 very ample. If L1 and L2 are adèlically metrized, then their
v-adic metrizations naturally extend to the tensor product. An adèlic
metrizations of L is any metrization which for all but finitely many v is
induced from the metrizations of L1, L2.

Given an adèlically metrized line bundle L = (L, {‖.‖v}v), we define
local and global height functions as follows. Let s be a local section of L.
Let U ⊂ X be the maximal Zariski open subset of X where s is defined
and is non-zero. For x = (xv)v ∈ U(A), A the ring of adèles, we define
the local height

HL,s,v(xv) := ‖s(xv)‖−1
xv ,v

and the global height function

HL,s(x) :=
∏
v

HL,s,v(xv).

It is important to note that by the product formula the restriction of
global height to U(k) does not depend on the choice of s. We then
obtain a function

HL : V (k) → R.
To complete the circle, suppose we are given a class [D] ∈ Pic(V ), V

a smooth variety over a number field k. There is a standard procedure
to associate to [D] a line bundle L[D]. Let L be any adèlic metrization
of L[D]. Then HL ∈ HV,[D].

3. Conjectures

In this section, we state Manin’s conjectures on the distribution of
rational points on Fano varieties. First we need some preparation on
zeta functions.

3.1. Zeta functions and counting. Let S be any countable, possibly
finite, set, and let H : S → R+ be a function such that

NS(H,B) = |{x ∈ S;H(x) ≤ B}|

is finite for all B. Put for s ∈ C, at first formally,

ZS(H; s) =
∑
x∈S

H(x)−s,
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and set βH = inf{σ ∈ R;ZS(H; s) converges for <s > σ}. It is im-
portant to note that if H,H ′ are two functions such that logH =
logH ′ + O(1), then βH = βH′ . Also, βH is non-negative unless S is
finite, in which case it is −∞. When βH ≥ 0, we have

βH = lim sup
B→∞

logNS(H,B)
logB

.

This implies that for βH ≥ 0 we have NS(H,B) = O(BβH+ε), and
NS(H,B) = Ω(BβH−ε) for all ε > 0. Finer growth properties ofNS(H,B)
can be obtained from the analytic properties of ZS as the following the-
orem shows:

Theorem 3.1 (Ikehara’s Tauberian theorem). Suppose for some t > 0
we have ZS(H, s) = (s − βH)−tG(s) where G(βH) 6= 0 and G(s) is
holomorphic for <s ≥ βH . Then if βH > 0

NS(H,B) =
G(βH)
βHΓ(t)

BβH (logB)t−1(1 + o(1))

as B →∞.

Better understanding of the analytic properties ofG, e.g. holomorphic
continuation to a larger domain with growth conditions, usually leads
to better error estimate in the asymptotic formula for NS .

Remark 3.2. It was pointed out that if H,H ′ satisfy logH = logH ′ +
O(1) then βH = βH′ . The same is not true of the analytic properties of
ZS . Here is an example taken from [20]. Choose a sequence of positive
integers di such that di → ∞ and di+1

di
→ ∞. Set S = N and let H be

any function satisfying the finiteness condition for NS(B,H) for all B.
Set

H ′(x) =

{
2H(x) d2i ≤ H(x) < d2i+1;
H(x)

2 d2i+1 ≤ H(x) < d2i+2.

Then one can show that NS(H ′;B)/BβH′ (logB)t−1 does not tend to a
limit as B → ∞, so that Z(H ′, s)(s − βH′)t cannot be holomorphic for
<s ≥ βH′ .
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3.2. Height zeta function.

3.2.1. Néron-Severi group. Let V be an algebraic variety defined over
a number field k. We define the Néron-Severi group NS(V ) to be the
quotient of Pic(V ) by algebraic equivalence. For any field F we set
NS(V )F = NS(V )⊗ F . Given a divisor D in Div(V ), we denote by L
its class in any of the Néron-Severi groups. Ample classes form a semi-
group in Pic(V ) (Think about the Veronese map!); this semi-group will
generate a convex open cone N◦

+(V ) in NS(V )R. The closure of N◦
+(V ),

denoted byN+(V ), is the collection of nef (numerically effective) classes.
Now let L be an ample sheaf on V , and L an adèlic metrization. Let
HL be the associated height function. Let U be a subset in V (k), and
let βU (L) be the abscissa of convergence of ZU (HL, s). One can show
that βU (L) depends only on L in NS(V )Q. We will then denote βU (L)
by βU (L). Also if βU (L) ≥ 0 for one ample class L, then the same holds
for all ample classes. In general, βU extends uniquely to a continuous
function on N◦

+(V ) which is inverse linear on each half-line. For a subset
U ⊂ V (k), we let NU (B,L), or when convenient NU (B,HL), denote the
number of points P ∈ U such that HL(P ) ≤ B.

3.2.2. Accumulating subvarieties. A subset X ⊂ U (U ⊂ V (k)) is called
accumulating if

βU (L) = βX(L) > βU\X(L),
and weakly accumulating if

βU (L) = βX(L) = βU\X(L).

Example 2. Let V be P2 blown up at a point. For any height function
associated to the anti-canonical class, the exceptional divisor is accumu-
lating.

3.3. Manin’s Conjectures. In the following conjectures V is a Fano
variety defined over a number field k.

Conjecture 1. There is a finite extension k′ of k such that V (k′) is
Zariski dense in V .

Conjecture 2. Let k′ be as in the previous conjecture. Then for suffi-
ciently small Zariski open U ⊂ V we have βU(k′)(−KV ) = 1.
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Conjecture 3. Let U, k′ be as above. Then if −KV is a metrization of
−KV , there is a constant C > 0 such that

NU(k′)(B,−KV ) = CB(logB)t−1(1 + o(1))

as B →∞, where t = rankNS(V ).

There is a conjectural description of the constant C in the last con-
jecture due to Peyre [24].

Remark 3.3. If a variety V has a rational curve on it, then clearly it
will have an infinite number of rational points over some extension. The
Rational Curve Conjecture says that if for a quasi-projective variety V
and an open subset U ⊂ V we have βU(k)(L) > 0, then U contains a
rational curve.

Remark 3.4. Batyrev and Tschinkel [3] have introduced conjectures
for arbitrary metrized line bundles refining the conjectures of [1]. These
conjectures aim to describe the behavior of NU (B,L) for any metrized
line bundle L = (L, ‖.‖) whose underlying invertible sheaf L is in the
interior of the cone of effective divisors. They have introduced notions
of L-saturation, L-primitiveness, etc. (See [3], sections 2.3 and 3.2).
In the situation where V is a strongly L-saturated (and L-primitive)
smooth quasi-projective variety according to Step 4 of section 3.4 of [3]
the expectation is that

NU (B,L) ∼ CBa(logB)b−1

with C ≥ 0, a ∈ N, b ∈ 1
2N. Indeed one expects the following to hold.

First off, N+(V ) is believed to be a polyhedral cone, so for a point in the
boundary of N+(V ) it would make sense to talk about the codimension
of the face containing it. Given L as above, we set

a = inf{a ∈ R; a[L] + [KV ] ∈ N+(V )}

and b will be the codimension of the face containing a(L)[L]+ [KV ]. We
note that a and b are independent of the metrization and depend only
on the underlying geometric data. The constant C however depends on
the metrization. In the situation where V is not L-primitive or strongly
L-saturated one needs to use a fiber-by-fiber analysis of L-primitive
fibrations (See section 3.5 of the [3] for some details).
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3.4. Examples. In this paragraph we collect several explicit examples
of various degrees of difficulty. Two more examples are worked out in
4.1 and 4.2.

3.4.1. Projective spaces. We start by defining the standard height func-
tion on Pn(Q). If x ∈ Pn(Q), there is a representative of x of the form
(x0, . . . , xn) with xi ∈ Z, and gcd(x0, . . . , xn) = 1. We then define

H(x) = max
i
|xi|.

The choice of the max norm is fairly arbitrary, and we could have instead
used any other Banach norm on Rn+1 restricted to Zn+1. Here we will
consider the following quantity:

NPn(B) =
∣∣∣{x ∈ Pn(Q)

∣∣H(x) ≤ B}
∣∣∣.

Problem 1. Determine the asymptotic behavior of N(B) as B →∞.

For simplicity we assume n ≥ 2. Let us start by setting

Z(s) =
∑

γ∈Pn(Q)

1
H(γ)s

=
∑

(x0,...,xn)∈Zn+1
prim\{(0,...,0)}

1
max(|x0|, . . . , |xn|)s

.

Now

ζ(s)Z(s) =
∑

(x0,...,xn)∈Zn+1\{(0,...,0)}

1
max(|x0|, . . . , |xn|)s

=
∞∑
k=1

(2k + 1)n+1 − (2k − 1)n+1

ks
.

Consequently

Z(s) =

( ∞∑
r=1

µ(r)
rs

)
.

( ∞∑
k=1

(2k + 1)n+1 − (2k − 1)n+1

ks

)

=
∞∑
m=1

1
ms

∑
rk=m

µ(r)
{
(2k + 1)n+1 − (2k − 1)n+1

}
.
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So we need to determine the asymptotic behavior of∑
m≤B

∑
rk=m

µ(r)
{
(2k + 1)n+1 − (2k − 1)n+1

}
as B →∞. After applying the binomial theorem to the inner expression,
this is seen to be equal to

n+1∑
j=0

(
n+ 1
j

)
2j
[
1− (−1)n+1−j] ∑

m≤B

∑
rk=m

µ(r)kj

=
2n

ζ(n+ 1)
Bn+1 +O(Bn).

Remark 3.5. There is a theorem of Schanuel [26] that generalizes this
to Pn(k) for any number field k.

3.4.2. Products of varieties. If V = V1 × V2 and Hi : Vi(k) → R+,
Ui ⊂ Vi open subsets, then we have a function H : V → R+ defined
by H(x1, x2) = H1(x1)H2(x2) corresponding to the Segre embedding.
Assume that

NUi(B,Hi) = CiB(logB)ti−1 +O(B(logB)ti−2).

Then by a proposition in §1 of [14] (also see [23])

NU1×U2(B,H) =
(t1 − 1)!(t2 − 1)!

(t1 + t2 − 1)!
C1C2B(logB)t1+t2−1(1 + o(1)).

3.4.3. Blowup of P2 at one point. This example is [19], F.5.4.3 (originally
[27] 2.12; also [20] for generalizations). Let X → P2 be the blowup at
one point. Let L be the pullback to X of a generic line on P2, and
E the exceptional divisor. Then one shows [27] that Pic(X) is freely
generated by L,E. The canonical divisor is KX = −3L + E. It is seen
using the Nakai-Moishezon Criterion ([17], Chapter V, Theorem 1.10)
that a divisor D = aL− bE is ample if a > b > 0. For an ample divisor
D = aL− bE set

α(D) = max
{

3
a
,

2
a− b

}
.
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Let U = X\E. Then if L is a metrization of a line bundle associated to
D

NU(k)(B,L) =

{
cBα(D) if D is not proportional to−KX

cBα(D) logB if D is proportional to−KX .

3.4.4. Blow-up of P2 at three points. This is example 2.4 of [23]. Let
V → P2 be the blowup of P2 at P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), and
P3 = (0 : 0 : 1). Then V is a hypersurface in P1 × P1 × P1 given by the
equation x1x2x3 = y1y2y3. Let’s set

H(P1, P2, P3) = HP1(P1)HP1(P2)HP1(P3)

whereHP1 is the standard height on P1. This will define a height function
on V (Q). There are six exceptional lines on V defined by Eij = (xi =
0, yj = 0) for i 6= j. Let U = V \

⋃
i6=j Eij . We have

NEij (B,H) ∼ CB2

and

NU (B,H) ∼ 1
6

(∏
p

(
1− 1

p

)4(
1 +

4
p

+
1
p2

))
B(logB)3.

3.5. Results and methods.

3.5.1. Some bad news. Before we get our hopes too high let us point
out that of these conjectures at least the Conjecture 3 is wrong! Let us
explain a family of counter-examples due to Batyrev and Tschinkel [2].
Let Xn+2 be a hypersurface in Pn × P3 (n ≥ 1) defined by the equation

3∑
i=0

li(x)y3
i = 0

where x = (x0, . . . , xn), and l0(x), . . . , l3(x) are homogeneous linear
forms in x0, . . . , xn. We will assume that any min(n+1, 4) forms among
the li’s are linearly independent. Then one can check that Xn+2 is a
smooth Fano variety containing a Zariski open subset Un+2 which is iso-
morphic to An+2, and that the Picard group of Xn+2 over an arbitrary
field containing Q is isomorphic to Z ⊕ Z. Then the blow comes from
the fact that for any open subset U ⊂ Xn+2 there exists a number field
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k0 containing Q(
√
−3) which may depend on U such that for any field

k containing k0 one has

NU(k0)(B,−KXn+2) ≥ cB(logB)3

for all B > 0 and some positive constant c. This clearly contradicts the
conjecture.

3.5.2. But it’s not all bad news... There are many cases where the con-
jectures of Manin and their refinements and generalizations are proved.
Here is an incomplete list:

• smooth complete intersections of small degree in Pn (circle method,
e.g. [6]);

• generalized flag varieties [14];
• toric varieties [4], [5];
• horospherical varieties [33];
• equivariant compactifications of Gn

a [8];
• bi-equivariant compactifications of unipotent groups [32];
• wonderful compactifications of semi-simple groups of adjoint type

[15, 31].

We expect that Manin’s conjecture (and its refinements) should hold
for equivariant compactifications of all linear algebraic groups G and
their homogeneous spaces G/H.

3.5.3. Methods. There are a number of methods that have been em-
ployed to treat special cases of the conjectures 1, 2, and 3. This is a
summary of the basic ideas:

Elementary methods: Sometimes elementary tricks can be used to
treat some special examples, e.g. our treatment of Pn(Q).

Circle method: This method, invented by Hardy and Ramanujan,
first appeared in connection with classical problems in number theory
[36, 21, 6]: Waring’s problems, Vinogradov’s work on writing numbers
as sums of three primes, partitions, etc. The idea is indeed quite simple:
Suppose we have a finite set A = {am} of positive integers and we want
to know whether or in how many ways a given integer n can be written
as a sum of s integers from the set A. In order to do this one forms the
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generating function f(x) =
∑

m e
2πiamx, and considers

f(x)s =
∑
n

Rs(n)e2πinx

where Rs(n) is the number of ways of writing n as a sum of s elements
of A. It is then clear that

Rs(n) =
∫ 1

0
f(x)se−2πinx dx.

This is called the circle method as e2πix traces a circle in C when x is in
[0, 1]. One then writes [0, 1] as a union M∪m. M is where the function
f is supposed to be large, i.e. small neighborhoods of rational numbers,
and m is the left-over. In a successful application of the circle method
one expects the main term of Rs(n) to come from

∫
M and the rest

∫
m

to be error term.

Harmonic analysis: This method is most successful when the variety
in question has a large group of automorphisms, and in this situation
the harmonic analysis of the group of automorphisms enters the picture.
This has been the case in applications to toric varieties, additive group
compactifications, wonderful compactifications, and flag varieties stated
above. For example in [31] the idea is to consider the height zeta function
ZL(s) for a given metrized line bundle L and interpret it as a special
value of an appropriately defined automorphic form. Then one uses the
spectral theory of automorphic forms to derive the desired results.

Dynamics and ergodic theory: This is one of the emerging ideologies
of the subject and number theory in general. The method has already
yielded a major theorem [15] and is expected to produce more results.
The basic idea in [15] is to first prove the equidistribution of rational
points of bounded height using mixing techniques of ergodic theory.
Then the asymptotics of the number of rational points follow from vol-
ume computations. See [34] for a motivated description of the method,
and [16] for a spectacular new development.

Universal torsors: The idea is to relate the rational points on a projec-
tive variety to the integral points of the universal torsor of the variety.
For example, the points of Pn(Q) are in one to one correspondence with
primitive (n + 1)-tuples of integers. This is clearly an oversimplified
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example! See [18, 10] for some computations and [7, 11, 23] and the
references therein for a list of applications to various counting problems.

4. Two more examples

4.1. The Pythagorean Equation. In this section, we will study the
Pythagorean equation

x2 + y2 = z2

with x, y, z ∈ Z. After dividing by any common factors that x, y, and
z might have we can assume that gcd(x, y, z) = 1. We call such a
triple Pythagorean. Note that if (x, y, z) is a Pythagorean triple, then
max(|x|, |y|, |z|) = |z|. We define

Npyt(B) =
∣∣{(x, y, z) ∈ Z3; (x, y, z) Pythagorean, |z| ≤ B}

∣∣.
Here we will solve the following problem:

Problem 2 (Exercise 4.3.5 of [21]). Determine the asymptotic behavior
of Npyt(B) as B →∞.

This is nothing but counting the number of points of bounded height
in P2 lying on the particular curve. We set

Zpyt(s) =
∑

(x,y,z) Pythagorean

1
|z|s

.

We now proceed to find an expression of this zeta function in terms
of the standard zeta functions of arithmetic. The desired analytic prop-
erties of ZH will then follow from standard results in analytic number
theory. If a, b ∈ Z with ab 6= 0 and gcd(a, b) = 1, we define

δ(a, b) =

{
2 a ≡ b ≡ 1 mod 2;
1 otherwise.

Then it is well-known that a parametrization of the rational points on
the Pythagorean conic x2 + y2 = z2 in P2 is given by

x = a2−b2
δ(a,b)

y = 2ab
δ(a,b)

z = a2+b2

δ(a,b)

where (a, b) runs over co-prime pairs of integers with ab 6= 0. Here
the pairs (a, b) and (−a,−b) give the same points on the conic. This
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parametrization misses two points on the conic: (−1 : 0 : 1) and (1 : 0 :
1). We equip P2 with the maximum height, i.e. the height of a primitive
triple of integers (A,B,C) is defined to be max(|A|, |B|, |C|). The height
zeta function is

Zpyt(s) = 2 +
1
2

∑
ab6=0,

gcd(a,b)=1

1
((a2 + b2)/δ(a, b))s

= 2 +
1
2
S1 +

1
2
S2.

Here S1 is the sum over those (a, b) with different parity, and S2 is the
sum over those (a, b) which are both odd. I claim that S1 = S2. This
follows from the following trivial lemma:

Lemma 4.1. If (a, b) is such that gcd(a, b) = 1 and a ≡ b ≡ 1 mod 2,
then

a+ bi

1 + i
=
b+ a

2
+ i

b− a

2
∈ Z[i].

Furthermore, gcd( b+a2 , b−a2 ) = 1, and the two numbers have different
parity.

It is also directly seen that

a2 + b2

2
=
(
b− a

2

)2

+
(
b+ a

2

)2

.

Consequently
Zpyt(s) = 2 + S1.

Now we observe that the lemma also implies the following identity

(1 + 2−s)S1 =
∑
ab6=0,

gcd(a,b)=1

1
(a2 + b2)s

.

This means

Zpyt(s) = 2 +
1

1 + 2−s
∑
ab6=0,

gcd(a,b)=1

1
(a2 + b2)s

= 2 +
1

(1 + 2−s)ζ(2s)

∑
ab6=0

1
(a2 + b2)s

.

We now relate the sum on the right hand side of this last expression to
the Dedekind zeta function of the quadratic extension Q(i). Fortunately,
Q(i) has class number one, and every ideal in Z[i] is principal. Also
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(a+ bi) = (c+ di) if and only if a+ bi = ε(c+ di) with ε ∈ {±1,±i}. It
is then seen that

ζQ(i)(s) = ζ(2s) +
1
4

∑
ab6=0

1
(a2 + b2)s

.

Combining everything we obtain

Zpyt(s) =
4

(1 + 2−s)ζ(2s)
ζQ(i)(s)− 2

1− 2−s

1 + 2−s
.

This has a simple pole at s = 1 with computable residue. Also we
observe that

1
(1 + 2−s)ζ(2s)

ζQ(i)(s) =
(1− 2−s)ζQ(i)(s)
(1− 2−2s)ζ(2s)

is the ratio of “2-adically corrected” zeta functions. We leave it to the
reader to determine the exact asymptotic behavior of Npyt(B).

Remark 4.2. We note that the above computations remain valid for
height function

H ′(x, y, z) =
√
x2 + y2 + z2

whenever (x, y, z) is a primitive integral triple. In fact if (x, y, z) is
Pythagorean, then

H ′(x, y, z) =
√

2H(x, y, z).

For other choices of the height function it is not obvious to me how
one can adapt the above method to obtain the asymptotic behavior of
rational points. For these more general height functions the desired
result follows from [4, 5] as well as [8].

4.2. Homogeneous Pell’s equation. Let D be a positive odd square-
free integer, and consider the equation X2 − DY 2 = 1. Here we will
consider the rational solutions of the homogenization of this equation:

x2 +Dy2 = z2.

Again we will be interested in integral solutions (x, y, z), not all zero,
satisfying gcd(x, y, z) = 1. We will call a triple of this type Pellean. As
before, we define

Npel(B) =
∣∣{(x, y, z) ∈ Z3; (x, y, z) Pellean, |z| ≤ B}

∣∣,
and we pose the following problem:
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Problem 3. Determine the asymptotic behavior of Npel(B) as B →∞.

A parametrization for primitive solutions of this equations is given by
the following:

(4.1)


x = (u2 −Dv2)/δ(u, v)
y = 2uv/δ(u, v)
z = (u2 +Dv2)/δ(u, v).

Here we may take gcd(u, v) = 1, and δ(u, v) = gcd(u2 −Dv2, 2uv, u2 +
Dv2). It is easy to see that whenever gcd(u, v) = 1 and uv 6= 0 we have

δ(u, v) =

{
2 gcd(u,D) u ≡ v ≡ 1 mod 2;
gcd(u,D) otherwise.

As in the last section we use the Tauberian theorem. The height zeta
function obtained is given by

ZD(s) =2 +
∑

gcd(u,v)=1
uv 6=0

1(
u2+Dv2

δ(u,v)

)s
=2 + 2s

∑
d|D

ds
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,u≡v(2)

1
(u2 +Dv2)s

+
∑
d|D

ds
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,u 6≡v(2)

1
(u2 +Dv2)s

.

We will treat this expression by modifying Deuring’s argument to treat
the Epstein zeta function from [12].

4.2.1. First series. Set

Z1(s) =
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,u≡v(2)

1
(u2 +Dv2)s

.
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Then

(1− 2−2s)
∏
p|D

d

(1− p−2s)ζ(2s)Z1(s)

=
∑

uv 6=0,gcd(u,D)=d,
u≡v≡1(2)

1
(u2 +Dv2)s

=
∑

u 6=0,gcd(u,D)=d,
u≡1(2)

∑
l∈Z

1
(4Dl2 + 4Dl +D + u2)s

.

For reasons that will soon become apparent treating this modified ex-
pression is simpler. We now follow Deuring. We start with the following
identity

b∑
n=a

f(n) =
∫ b

a
f(x) dx+

∞∑
ν=1

∫ b

a
f(x)(e2πiνx + e−2πiνx) dx

valid for f with continuous second derivative. As in [12], this formula
implies∑
l∈Z

1
(4Dl2 + 4Dl +D + u2)s

=
∫ ∞

−∞

1
(4Dx2 + 4Dx+D + u2)s

dx

+
∞∑
ν=1

∫ ∞

−∞

(e2πiνx + e−2πiνx)
(4Dx2 + 4Dx+D + u2)s

dx.

Now we have the following integral formula∫ ∞

−∞

dx

(ax2 + bx+ c)s
= π

1
2

(
∆
4

)−s+ 1
2

as−1 Γ(s− 1
2)

Γ(s)

with ∆ = 4ac− b2 > 0 and a > 0. We consequently get∑
l∈Z

1
(4Dl2 + 4Dl +D + u2)s

=
( π

4D

) 1
2 Γ(s− 1

2)
Γ(s)

1
|u|2s−1

+
∞∑
ν=1

[ω(s, ν, u) + ω(s,−ν, u)]

where ω(s, ν, u) is defined by

ω(s, ν, u) =
∫ ∞

−∞

e2πiνx

(4Dx2 + 4Dx+D + u2)s
dx, <s > 0.
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By section 4 of [12], the series

R1(s) =
∑

u 6=0,gcd(u,D)=d,
u≡1(2)

∞∑
ν=1

[ω(s, ν, u) + ω(s,−ν, u)]

is absolutely and uniformly convergent in any bounded s-region, and
therefore represents an entire function. Consequently,

(1− 2−2s)
∏
p|D

d

(1− p−2s)ζ(2s)Z1(s)

=
( π

4D

) 1
2 Γ(s− 1

2)
Γ(s)

∑
u 6=0,gcd(u,D)=d,

u≡1(2)

1
|u|2s−1

+R1(s).

We now observe that since D is square-free, gcd(u,D) = d means
u = dw with gcd(w, Dd ) = 1. This then implies

∑
u 6=0,gcd(u,D)=d,

u≡1(2)

1
|u|σ

= 2(1− 2−σ)
∏
q|D

d

(1− q−σ)
ζ(σ)
dσ

for <σ > 1. We get

Z1(s) =
( π
D

) 1
2
d1−2s

(
1− 21−2s

1− 2−2s

)∏
p|D

d

(
1− p1−2s

1− p−2s

)
Γ(s− 1

2)
Γ(s)

ζ(2s− 1)
ζ(2s)

+
R1(s)

(1− 2−2s)
∏
p|D

d
(1− p−2s)ζ(2s)

.

4.2.2. Second series. We now consider

Z2(s) =
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,2|u,v odd

1
(u2 +Dv2)s

.
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We have

(1− 2−2s)
∏
p|D

d

(1− p−2s)ζ(2s)Z2(s)

=
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,2|u,v odd

1
(u2 +Dv2)s

=
∑
u 6=0,

gcd(u,D)=d,2|u

∑
l

1
(4Dl2 + 4Dl +D + u2)s

.

The same argument as before gives

(1− 2−2s)
∏
p|D

d

(1− p−2s)ζ(2s)Z2(s)

=
( π

4D

) 1
2 Γ(s− 1

2)
Γ(s)

∑
u 6=0,gcd(u,D)=d,

2|u

1
|u|2s−1

+R2(s)

where now

R2(s) =
∑

u 6=0,gcd(u,D)=d,
2|u

∞∑
ν=1

[ω(s, ν, u) + ω(s,−ν, u)].

This gives

Z2(s) =
( π
D

) 1
2 21−2sd1−2s

(
1

1− 2−2s

)∏
p|D

d

(
1− p1−2s

1− p−2s

)
Γ(s− 1

2)
Γ(s)

ζ(2s− 1)
ζ(2s)

+
R2(s)

(1− 2−2s)
∏
p|D

d
(1− p−2s)ζ(2s)

.

4.2.3. Third series. Finally we consider

Z3(s) =
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,u odd,2|v

1
(u2 +Dv2)s

.

We have

(1− 2−2s)
∏
p|D

d

(1− p−2s)ζ(2s)Z3(s) =
∑
u 6=0,

gcd(u,D)=d,u odd

∑
l

1
(4Dl2 + u2)s

.
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An identical argument gives

(1− 2−2s)
∏
p|D

d

(1− p−2s)ζ(2s)Z3(s)

=
( π

4D

) 1
2 Γ(s− 1

2)
Γ(s)

∑
u 6=0,gcd(u,D)=d,

u≡1(2)

1
|u|2s−1

+R3(s).

Here

R3(s) =
∑
ν

[ω1(s, ν, u) + ω1(s,−ν, u)]

with

ω1(s, ν, u) =
∫ ∞

−∞

e2πiνx

(4Dx2 + u2)s
dx.

This gives

Z3(s) =
( π
D

) 1
2
d1−2s

(
1− 21−2s

1− 2−2s

)∏
p|D

d

(
1− p1−2s

1− p−2s

)
Γ(s− 1

2)
Γ(s)

ζ(2s− 1)
ζ(2s)

+
R3(s)

(1− 2−2s)
∏
p|D

d
(1− p−2s)ζ(2s)

.

4.2.4. Going back to ZD(s). Recall that

ZD(s) =2 + 2s
∑
d|D

ds
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,u≡v(2)

1
(u2 +Dv2)s

+
∑
d|D

ds
∑

gcd(u,v)=1,uv 6=0,
gcd(u,D)=d,u 6≡v(2)

1
(u2 +Dv2)s

.

What we have established so far says

ZD(s) =
( π
D

) 1
2

(
2s − 21−s + 1

1− 2−2s

)
Γ(s− 1

2)
Γ(s)

ζ(2s− 1)
ζ(2s)

×
∑
d|D

d1−s
∏
p|D

d

(
1− p1−2s

1− p−2s

)
+R(s)
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with R(s) analytic in <s ≥ 1
2 . The rest of the expression has a simple

pole at s = 1 with residue equal to
8

π
√
D

∑
d|D

∏
p|D

d

1
1 + p−1

=
8

π
√
D

∑
d|D

∏
p|d

1
1 + p−1

=
8

π
√
D

∏
p|D

(1 +
1

1 + p−1
)

=
8

π
√
D

∏
p|D

2 + p−1

1 + p−1
.

We have then established the following theorem:

Theorem 4.3. Let D be a positive odd square-free integer. Then

Npel(B) =

 8
π
√
D

∏
p|D

2 + p−1

1 + p−1

B + o(B)

as B →∞.

Remark 4.4. By using the estimates obtained in Deuring’s paper one
can also give pretty sharp error estimates for the asymptotic formula
obtained above.

Remark 4.5. It is not obvious to me how one can use the above method
to deduce the asymptotic behavior of rational points for other choices
of the height function. Again Theorem 4.3 and its variants for other
choices of the height function follow from [4, 5] and [8].
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