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POS-GROUPS WITH SOME CYCLIC SYLOW
SUBGROUPS
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ABSTRACT. A finite group G is said to be a POS-group if for each
z in G the cardinality of the set {y € G| o(y) = o(x)} is a divisor of
the order of G. In this paper we study the structure of POS-groups
with some cyclic Sylow subgroups.

1. Introduction

Throughout the paper G denotes a finite group, o(z) the order of
a group element x, and |X| the cardinality of a set X. Denote by
7(G) = {p|p is a prime divisor of |G|}. As in [4], the order subset
(or, order class) of G determined by an element z € G is defined to
be the set OS(z) = {y € G|o(y) = o(z)}. Clearly, for every z € G,
OS(x) is a disjoint union of some conjugacy classes in G. The group G
is said to have perfect order subsets (in short, G is called a POS-group)
if |OS(x)| is a divisor of |G| for all z € G. In [4], Finch and Jones first
classified abelian POS-groups. Afterwards they continued the study of
nonabelian POS-groups and gave some non-solvable POS-groups (see
[5],[6]). Recently, Das gave some properties of POS-groups in [2], and
Shen classified POS-groups of order 2m with (2,m) = 1 (see [14]). In
this note we study POS-groups with some cyclic Sylow subgroups. In
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section 2, POS-groups with cyclic Sylow 2-subgroups are studied. It is
proved that if Sylow 2-subgroups of a POS-group G are cyclic, then 3
divides |G| or G has a self-centralized Sylow 2-subgroup. In the next
section, we investigate the structure of POS-groups with cyclic Sylow
2-subgroups of order 4. Finally POS-groups with two prime divisors are
studied. If S is a subset of G, denote by fg(m) the number of elements
of order m in S. Let U(n) be the unit group of the ring Z/nZ. Denote
by ord,(q) the order of ¢ in the group U(n). First of all, we consider
POS-groups with cyclic Sylow 2-subgroups.

2. Cyclic Sylow 2-subgroups

In this part, we study POS-groups with cyclic Sylow 2-subgroups,
and prove that if Sylow 2-subgroups of a POS-group G are cyclic, then
3 divides |G| or G has a self-centralized Sylow 2-subgroup. A celebrated
theorem of Frobenius asserts that if n is a positive divisor of |G| and
X = {g € G| g™ = 1}, then n divides |X]| (see, for example, Theorem
9.1.2 of [9]). This result is used in the sequel frequently. First, we cite
some lemmas.

Lemma 2.1. (Theorem 1, [10]). If every element of a finite group G
has order which is a power of a prime number and G is solvable, then
m(G)| < 2.

Recall that G is a 2-Frobenius group if G = ABC, where A and
AB are normal subgroups of G, AB and BC are Frobenius groups with
kernels A and B, and complements B and C respectively. Recall in
addition that G is a Cpy-group if the centralizer of every non-trivial p-
element is a p-group. The following lemma is due to Gruenberg and
Kegel (see Corollary of [15]).

Lemma 2.2. Let G be a solvable Cpy-group, then G is a p-group, a
Frobenius group or a 2-Frobenius group.

Lemma 2.3. (Theorem 3, [16]). Let G be a finite group. Then the
number of elements whose orders are multiples of n is either zero, or a
multiple of the largest divisor of |G| that is prime to n.

Next we give the following main result.

Theorem 2.4. If the Sylow 2-subgroups of a POS-group G are cyclic,
then 3 is a divisor of |G|, or G has a self-centralized Sylow 2-subgroup.
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Proof. Suppose that Ps is a Sylow 2-subgroup of G and | P,| = 2™. Since
Sylow 2-subgroups of G are cyclic, G is 2-nilpotent. Let the normal
2-complement of G be H. Set Cg(P2) = Py x N, where N < H. Next
we will prove that 3 is a divisor of | N| provide P, is not self-centralizing.
If N has an element of order m, then fg(2"m) = |H/N|-2""1. fx(m)
is a divisor of 2" - |H|. So fy(m) divides 2|N|. Note that |N| is odd. It
follows that 4 1 fy(m). Since ¢(m), the Euler’s totient function, divides
fn(m), then we have every order of element of N is a prime power, and
thus |7(N)| < 2 by Lemma 2.1.

Case I. m(N) = {p,q}. Set |[N| = p®¢’. By Lemma 2.2, we have that
N is a Frobenius or 2-Frobenius group. If N is Frobenius, without loss
of generality, we assume that the order of the kernel of N has divisor
q. As p-subgroups are cyclic, then fy(p) = (p — 1)¢® is a divisor of
2IN| = 2p%¢®. So p —1 = 2, then p = 3. If N is 2-Frobenius, we set
N = ABC, where A and AB are normal subgroups of N, AB and BC
are Frobenius groups with kernels A and B, and complements B and C,
respectively. Now let |A| = p and |C| = p®. Then fn(q) = (¢ — 1)p™
divides 2|N| = 2p%¢®. Since p® | fn(q) by Lemma 2.3, it follows that
q = 2p™ + 1. Clearly, ¢ > p. In addition, fx(p) = fa(p)+ (p — 1)¢°|A :
Cn(c)|, where ¢ is an element of order p of C. Since p — 1 and ¢® are
both divisors of f4(p) and (p—1,q) = 1, we have (p—1)¢® | fa(p). Then
p—112p% sop=23.

Case II. m(N) = {p}. Set |N| = p®. Then by the above discussion we
see that fy(p) | 2p®. Since p{ fn(p), we have p = 3. O

Note that indeed there exist POS-groups of Theorem 2.4 whose Sylow
2-subgroups are self-centralized and 3 1 |G|. The following is an example
of a POS group of order 400 whose Sylow 2-subgroups are cyclic and
self-centralizing.

Example 2.5. Let G = (a,b | a® = b0 = 1,a® = a7',[a,b?] = 1).
Then G is a POS-group with a cyclic Sylow 2-subgroup of order 2*.

Finch and Jone formulated a question in [4] whether the order of every
POS-group with more than one prime divisor has a divisor 3. Although
this question has a negative answer, it seems that orders of most POS-
groups have the divisor 3. We put the following problem.

Problem 2.6. Classify POS-groups whose order has no divisor 3.
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3. Cyclic Sylow 2-subgroups of order 4

In this section, we deal with the POS-groups with cyclic Sylow 2-
subgroups of order 4. We completely classify such POS-groups whose
order has no divisor 3. First, we determine the number of prime divisors
of these groups.

Proposition 3.1. Let G be a POS-group with cyclic Sylow 2-subgroups
of order 4. Then |1(G)| < 6.

Proof. Let 0(G) = max{|r(o(g))| | ¢ € G}, and H be the normal
2-complement of G. Clearly, o(H) < 2. So we have |7(H)| < 5 by
Theorem 1.4(b) of [11]. Therefore, |7(G)| < 6. O

Although such POS-groups have a upper bound of the number of
prime divisors, is 6 the actual bound?

Lemma 3.2. Let |G| = 2"p™ and the Sylow p-subgroup P be normal in
G. If all Sylow subgroups of G are cyclic and G has no element of order
2p™, then G is a Frobenius group.

Proof. Since all Sylow subgroups of G are cyclic, we may see that G =
(a, b]a?" =b*" =1, a® = a") such that r*" = 1(mod p™) and (2"(r —
1),p™) = 1. By the above condition, we get that 2" is the order of r in
U(p™). In fact, otherwise if the order ord,m (r)(:= o(r)) of r is less than
2™ then
abo(r) _ a,,,o(r) 4l a.

hence 5°") € Cg(P). On the other hand, since Cg(P) = 1, b°(") = 1,
which contradicts that o(b) = 2. It is easy to see that the order ord,, (r)
is also 2" for 1 < ¢ < n — 1. So the centralizer of every nontrivial p-
element is P, and then G is a Frobenius group. U

To complete the proof of Theorem 3.6 and 4.3, we need some conclu-
sions of prime number. We call r,,(a) a primitive prime divisor of a™ —1
if 7, (a) | @™ —1 but rp,(a) doesn’t divide a* —1 for every i < m. Clearly,
for primitive prime divisor p = 7, (a), the formula m|p — 1 always holds.
Let ®,(x) be the n'* cyclotomic polynomial. It is well known that 2" —1
may be decomposed to the product of all cyclotomic polynomials whose
digit is some divisor of n, that is, 2" — 1 = ][, ®4(z). The existence
of primitive prime divisor is due to Zsigmondy (see [17]), and the prim-
itive prime divisor is closely connected with the cyclotomic polynomial
as follows.
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Lemma 3.3. Primitive prime divisors of a™ — 1 exist except if m = 6
anda =2, orm=2 anda=2F—1.

Lemma 3.4. Suppose that ¢" —1 has at least one primitive prime divisor
andn > 3. Then ®,(q) = (P(n), ®,.(q))-Zn(q), where P(n) is the largest
prime divisor of n and Zy,(q) the largest divisor of ¢" — 1 which contains
all primitive prime divisors.

Proof. By page 207 of [13] and Lemma 2.1 of [3], we have Z,(q) | ®,(q)
and (I)n(Q) | Zn(Q) : P(“)? and then cI)n(q> = (P(n)a (I)n(q)) : Zn(Q)‘ U

Lemma 3.5. (Lemma 5, [12]). Suppose that p is an odd primitive prime
divisor of ¢* — 1. Then p | ®4(q) if and only if f = kp’ for some j > 0.

We also make some preliminaries on the p-adic expansion of any inte-
ger. Let p be a prime. So any positive integer can be written in a base

p expansion in the form
n

Z aipla
i=0
where all a; are integers in {0,1,--- ,p — 1}. Moreover for a given pos-
itive integer m, the coefficients a; in such p-adic expansion of m are
determined uniquely.
Next we give the structure of POS-groups with cyclic Sylow 2-subgroups
of order 4.

Theorem 3.6. Let G be a POS-group with a cyclic Sylow 2-subgroup of
order 4. Then 3 is a divisor of |G|, or G is one of the following groups:
(a) the cyclic group of order 4;
(b) Frobenius groups Zsm : Zy;
(¢) quasi-dihedral groups (a,b | a®" =b* =1,a® = a™1).

Proof. Let H be the normal 2-complement. If 4  p — 1 for every p €
m(H), then 3 € w(H) since the smallest prime number in 7(H) is a
Fermat prime. Next we assume that w(H) has a prime p such that
4|p—1. Then H is a Cp,-group, and hence H is Frobenius or 2-Frobenius
by Lemma 2.2. Note that 7(H) has only such prime p (see [11]). We
should consider the following three cases.

Case 1. H is Frobenius. Let H = K : L with the kernel K and
the complement L. If L is a p-group, then L is cyclic. Since fr(p) =
(p — 1)|K| divides 4|K]| - |L|, we have p = 5. In addition, since K is
nilpotent, K has at least two prime divisors. If |7(K)| = 1, clearly
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3 € w(H). Next let 7(K) = {p1,p2}. Suppose that P; is a Sylow p;-
subgroup of K fori = 1,2. Then fy(p;) divides 4|Py|-|Ps|-|L|. If 31 |H]|,
then we assume that 5 < p; < p2. Note that p; t fu(p;), so we have
pr=2-54+1with k> 1. Set pp =2- 5k1p]f2+1. Let v be an element
of order 4. By Theorem 2.4, u is a fixed-point-free automorphism of
H. Next we will prove that K is abelian. Otherwise, we assume that
Hy = Ky : Ly is the minimal counterexample. Thus Kj is a pi-group.
Set ®(Kj) the Frattini subgroup of Ky. Clearly ®(Kp) > 1. Since
®(Ky) is a characteristic subgroup of Ky, Ko/P(Kp) : Lo has a fixed-
point-freely automorphism of order 4. So Ko/®(Kj) is abelian, and then
Ky is abelian, a contradiction. Thus K is abelian. Let |G| = 4 - 5™p%p5.
Since K is abelian, we may assume that fg(p;) =p;’ —1for i =1,2. In
addition, since fr(p;) divides |G|, we get a Diophantine equation

it =1 =2"5piph (3.1)
where j,s5,t > 0 and 1 < u < 2. Next we will prove that s; = 1 for
1 = 1,2. The following two subcases, should be studied.

Subcase I.I ¢ = 1. Then clearly s = 0. In view of Lemma 3.4,
pi' — 1 has a primitive prime divisor except if p; is a Mersenne prime
and s; = 2. If ¢t = 0, since w(p1 — 1) = {2,5}, we have s; = 1 or 2 by
Lemma 3.4. Now if s; = 2, then p; is a Mersenne prime, say 2/ — 1. So
s —1 =21 (271 + 1) = 2457, then [ = 1 since u < 2, a contradiction.
When ¢ > 0, the equation (3.1) becomes

Pt — 1 =2"57ph,. (3.2)
Similarly, since 7(p; — 1) = {2,5}, then s; is equal to 1 or a prime by
Lemma 3.4. Since py is a primitive prime divisor of pj* —1, s1|ps—1 = 2-
5’“1pr2. Sos; =1,2,50rp;. If s1 = 2, itiseasy tosee 8 | p2—1 = fu(p1),
a contradiction. If s; = 5, by Lemmas 3.5 and 3.6, then (3.2) becomes

5
pi—1 t
—— = Ds. 3.3
5(p1 — 1) D (3.3)

If ko > 0, then (3.3) becomes
16514 8.5% 1 8. 5% 4 4.5F 1= (2.5M (2. 55 + 1)k2 1), (3.4)

(3.4) is the expansion of pb, if k > 0 in base 5. The left hand side modulo
52k is 4.5% +1. Clearly, t < 5. So k = k; and t = 2. Moreover, the 5-adic
expansion of the left term of (3.4) is 3-5% 4 54— 1 4 53k—1 1 3.53k 4 52k+1 4
3-5%% 4 4.5% 4 1. But the largest digit of one of the right term is more
than or equal to 2k(k2 + 1), so 2k(k2 + 1) < 4k, then kp = 1. It follows
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that the right term of (3.4) is equal to 16-5%% 4+16-5% +12.5%F 4 4.5F 1,
a contradiction.
If ko = 0, then (3.3) becomes

16- 5% 4 8.5% 1 8.5% 1 4.58 1= (2-5M 4 1)". (3.5)

(3.5) is the expansion of p} in base (5) if ko = 0, then we may see
k = k1. Comparing the largest digits of the formulas of 5-adic expansion
of both sides of (3.5), we got that ¢ < 4. It is easy to check that for
every such t the equation (3.5) does not hold.

If s1 = p1, then, by Lemmas 3.5 and 3.6, (3.2) becomes

-1
pli—l = D2 (3.6)

If ko = 0, then po is a primitive prime divisor of p}" —1 since p; < ps.
Sop1 | p2—1=2-5% and then p; = 2 or 5. By (3.6), we have p} = 3 or
781. Since 781 = 11 - 71 has two prime divisors, it follows that py = 3,
which contradicts that py > 5.

When ks > 0, we extend the number of (3.6) into the pj-adic ex-
pansion, in which the first and second digits of the left and right are
p1 + 1 and l-p’fZ +1 and p; > [ = 2t - 5%(modpy). So ko = 1 and
2t-5F = 1(mod py). It follows that p; | 2¢-5% —1+p; = 2-5%(¢t+1), and
then ¢t +1 = 0(mod p1). On the other hand, t < p; , we have t = p; — 1.
Thus (3.6) is changed into

n -1
p1—1
It is not hard to see that the largest digit of right hand of (3.7) is more
than one of left term in light of the form of the p;-adic expansion of

both side of (3.7), a contradiction. Thus s; = 1.
Subcase L.II. i = 2. Then (3.1) becomes

= (2-5%p; + 1)L, (3.7)

p3? — 1 =2U5p;. (3.8)

Clearly, s # 2 (otherwise 8 | p2 — 1). If k; and ko are both more than
0, since m(py — 1) = {2,5,p1}, we have that s, = 1 by Lemma 3.4. If
ki = 0, then 5 is a primitive prime divisor of p5* — 1. So sy ’ 5—1=4,
hence s = 1 or 4. But if s = 4, gives that 8 | p3 — 1, a contradiction.
ko = 0, gives that so ‘ pp—1=2. 5%. So sy = 5. Next we may only
consider following Diophantine equation by Lemmas 3.5 and 3.6 that is
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= 5p5. (3.9)

Using the same method as one of (3.3), we can get that the (3.9) also
has no solution. Thus ss is also equal to 1. Therefore, K is cyclic. Since
5™ divides fr(p;), we have p; =2-5™ +1 and py = 2- 5™ -plfQ + 1 with
ko > 0. Now note that f(pip}) = (pipl) = 4- 52mp]f2+“_1pg_1 divides
|G| = 4 - 5™p$ph, a contradiction.

If K is a p-group, then fg(q) divides 4|L| for every q € w(L). But
since 4 1 ¢ — 1 and the smallest prime in w(L) is a Fermat one, we have
3emn(Ll).

Case II. H is 2-Frobenius. Similarly, assume that H = ABC, where
A, B,C are the same as above. Clearly, the commutator subgroup
H' = AB. 1f 3 1 |H|, by Theorem 2.4, H admits a fixed-point-freely
automorphism of order 4. Then H' is nilpotent (see Exercises 1, Chap.
10, [7]), a contradiction.

Case III. H is a p-group. Certainly, p = 5. By Proposition 2.8
of [2], the Sylow 5-subgroup, that is H, is cyclic. Let |H| = 5™. By
Theorem 2.4 we have that the Sylow 2-subgroup of G is self-centralized.
So G is not cyclic. Then G = {(a,b | a®" = b* = 1,a® = a") such
that r* = 1(mod5™) and (r — 1,5™) = 1. If the centralizer of a is
(a), then G is Frobenius by Lemma 3.3. If |Cg(a)| = 2 - 5™, then
r?2 = 1(mod5™). Since (r — 1,5™) = 1, we have r = —1(mod5™).
Therefore, G = (a,b | a®" =b* =1,a® = a™1). O

4. POS-groups with two prime divisors

In this section, assume that |G| = 2"p™ with p an odd prime num-
ber. If G is a POS-group, then p is a Fermat prime, say 22" 4 1. By
Proposition 3.1 of [2], we know that if 2" < (p — 1)3,i. e., n < 3- 2%
then the Sylow p-subgroup is cyclic and normal. Certainly there exists
a POS-group with non-normal cyclic Sylow subgroups, such as SLy(3)
of order 24. In this section, we give the structure of G with cyclic Sylow
p-subgroups. First we cite some lemmas.

Lemma 4.1. (Theorem 1, [1]). Let G be a 2-group of order 2" and
exp(G) = 2¢ > 2. Then the number of elements of order 2 is a multiple
of 2 for 2 < i < e except in the following cases:

(a) the cyclic 2-group;
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(b) the dihedral 2-group {a,b|a®" = b2 =1,a"=a7');
(¢) the semi-dihedral 2-group (a,b|a® =b%=1,a" = a2" "~1);
the generalized quaternion 2-group (a, a? = 1,a¥ =
d) th lized 2- bl = 162
b2 ab =a™1).

Lemma 4.2. Let G be a finite group with a normal subgroup N. If
x € G\N has order m, then fxz(m) = fny(m) for all cosets Ny which
are G /N -conjugate to Nx.

Proof. Suppose that Ny is G /N-conjugate to Nz, so Ny = Ng~lzg for
some g € G. Then the map ¢ : Nz +— Ny, defined by nx — g~ 'nag,
induces a bijection between the subset of elements of order m in Nz and
the corresponding subset of Ny. g

In the following we give the structure of POS-groups with two prime
divisors and cyclic Sylow p-subgroups.

Theorem 4.3. Let G be a POS-group with a cyclic Sylow p-subgroup

P and |7(G)| = 2. Then G is a Frobenius group Zym : Zy, where

p=1+ 22 s a Fermat prime and m > 0 arbitrary, or satisfies one of
the following conditions:

(CL) p = 37 CG'( ) P x Z2 X ZQ and Ng( ) P: (ZQ X Z4)

(b) the number of elements of order 2 of G is 1;

(¢) G is p-nilpotent.

Proof. Suppose that P = (z) is a Sylow p-subgroup and the number of
Sylow p-subgroups is |G : Ng(P)| = 2'. By Zassenhaus’s theorem we
may let N = Ng(P) = P: K and C = Cg(P) = P x U, where K and
U are 2-subgroups of G. Since Cg(2Y) = Cg(x)? and Cg(z) = Ca((x)),
we have that the number fg(2p™) of elements of order 2p™ i

26(0™) foge, (2) = 272 " ey, (),

where ¢ is Euler totient function. Let |G| = 2"p™, where p = 22" 4 1is
Fermat. Since f¢(2p™) is a divisor of |G| = 2"p™ and fc,, (2) is odd
or 0, it leads to fCG(z)(2) = 0,1 or p. Now note that
K/U = N/C < Aut(P) = Z22kpm,1,

so U/K is cyclic. If K/U =1, that is N = C, then G is p-nilpotent by
the well-known Burnside’s theorem. If K/U # 1, then N/U = P : K/U
has no element of order 2p™. In fact, otherwise we may choose an
element y € K\U such that 2UYY = 2U, and then 27 '2¥ € U. Since
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(x) = P< G, we have v 12¥ € P. So a7 '2¥ € UN P =1, then 2¥ = z.
Hence y € U, a contradiction. Therefore N/U is a Frobenius group by
Lemma 3.3. If U # 1, that is fy(2) # 0, then we have

fa(2) = fu(2) + fnmo (2) + fen(2) = fu(2) + " fyu (2) + fern (2)

by Lemma 4.2, where o(yU) = 2. If f,y(2) # 0, then fg(2) > p™,
which contradicts that fg(2) | p™. So fa(2) = fu(2) + faw(2) =
ngec ue(2) + fg\Ugech(Z). If fu(2) = 1, denote by z the unique
element of order 2 in U, then ngeG vs(2) = |G : Cg(z)|. So we may
assume that f __ vo (2) = 2°. Now we choose any element a of order 2
in G\ Uyeq K7, we see that p™ { |Cg(a)l, hence p | fa\U,eo Ka(2). We
set fa Uyec k9(2) = p- 1. Now use class equation of GG, we can obtain
fa(2) =2°+p-1|p™ Sos=1=0, and then fz(2) = 1. Next we
consider the case of fi7(2) = p. Now assume that |U| = 2*.

If fir(4) = 0, then U is an elementary abelian 2-group. So fy(2) =
2 —1 = p. It follows that v = 2 and kK = 0. By Lemma 2.3, we
have 27 | fo(p™) + fa(2p™) = 2072 pm=1(1 + p) = 20+3pm=1 and then
n<t+3. So |K|=2""t <23 It is easy to see that K is Zy x Zy.

If fy(4) # 0, then fe(4p™) = 242 p™ fr(4) | 27p™. So fy(4) |
9n=t=2"; On the other hand, since

411+ fu(2) + fud) =2+2% + fu(4),

and fir(4) | 2p. By Lemma 4.1, we have that U is a dihedral or semi-
dihedral 2-group. If U is a semi-dihedral one, then fy7(2) = 1+2%"2 and
fu(4) = 242472 which contradicts that fi;(2) = p and fy(4) | 2p. If U
is a dihedral one, then fr(2) =271 + 1 =p and fy(2%) = ¢(2°) = 2071
for 1 <i<wu-—1. Certainly, u = 1+ 22 gince 2¢"1 +1 = p, we get that

U| = 22"+1, (4.1)

Moreover, since K /U is a cyclic 2-group, we have that there exists L <1 K
such that L/U = Zs. By the above discussion, we may see that L has
no element of order 2. In addition, L\U has an element of order 4. In
fact, otherwise fr(4) = 2, by Lemma 4.1, L is a cyclic, dihedral, semi-
dihedral or generalized quaternion 2-group, which have an element of
order 4 in L\U, a contradiction. So fz(4) > 2. Next we discuss the
number of elements of order 4 in G. Clearly,

fa(d) = fu,cque(d) + fa\u,cqvs (4)-



POS-groups with some cyclic Sylow subgroups 951

Note that two elements of order 4 in U are conjugate, so the elements
of order 4 in | gec U? make one congugacy class of G. Thus

fUyeove®) = |G = Cow)],

where w is of order 4in U. Since p™ | |Ca(w)|, we may set ngEG ve(4) =
2°. In addition, obviously p | fe\ Uyeq K° (4). Assume that fe\ Uyea K9 (4)
= p-l. Then we have fg(4) = 2°+p-1|2"p", hence fg(4) = 27 for
1 < j < n. Since fg(2) | p™, we may set fg(2) = p'. By Frobenius’s
theorem, we have
411+ fa(2) + fa(4) =1+2 +p".

Since fg(4) > 2, we have 4 | 1 + p%, and thus k = 0 and i is odd.
By Lemma 2.3 we have 2" | fa(p™) + fa(2p™) + -+ + fa(2v p™) =

2t+1pm71(1 +p+ fU(4>) N fU(2u71)) — 2t+2pm71(1 + 2u72)’ and
son <t+ 2. It leads to

K| = 2"t <22, (4.2)

By (4.1) we may get U = K, which contradicts that U # K.

If U =1, then N = P : K is a Frobenius group and K is cyclic.
Then the number fy(2) of order 2 in N is equal to p™ fx(2). Since
fr(2) > 1, we have fg(2) > fn(2) > p™. On the other hand, fg(2) |
p™. Hence fg(2) = p™. By Lemma 2.3, we have 2" | fq(p™), and
fa(p™) =2t - ¢(p™). Hence t = n — 2%, Next we use induction to prove
that fg(2)) = 20 1p™ for 1 < i < 2F. Clearly when i = 1, it is true.
Assume that it is true for ¢ = j — 1. Now we deal with the case of i = j.
Since
2| 1+ fa(2)+- -+ fo(27) = 14+p™ +---+2772p" 12771+ fo N (2)
and p™ = 1(mod 27), we have 27 | fe\n(27). On the other hand, since
fa(2) =27 p" +fon(27) | 27p™, we have 27§ f(27). Hence fg(27) =
2J=1p™  Since every Sylow 2-subgroup of G has at most one subgroup of
order 2 of N (otherwise the generated subgroup by some two elements
of order 2 of N is a Frobenius group, which is not a 2-group), we have
that the number of Sylow 2-subgroups is p'™, and then the intersection
of every pair Sylow 2-subgroups is trivial. Thus G is a Frobenius group.
It leads to ¢ = 0, that is n = 2, hence G = Zym : Zyok is a Frobenius
group. O

Note that there exist groups satisfying the condition (a) of Theorem
4.3. We give an example as follows.
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Example 4.4. (a,b,c | a®" = 0> = ! = 1,a® = q, ac® = a,a’ =
a"l,[b,c] = 1) is a POS-group of order 8 - 3™ with cyclic Sylow 3-
subgroups.

Using the GAP software [8], it seems that the group satisfying the
condition (a) has not been found except those of Example 4.4. We put
the following conjecture.

Conjecture 4.5. POS-groups satisfying the condition (a) of Theorem
4.8 are those of Example 4.4.

It is not hard to determine groups satisfying the condition (b) of The-
orem 4.3. Since the number of elements of order 2 of GG is 1, so is for a
Sylow 2-subgroup P» of G. Thus P; is cyclic or a generalized quaternion
group. Those groups were classified by Zassenhaus in [18]. The Table 1
lists all such groups with two prime divisors.

TABLE 1.
Type | Order | Generators Relations Conditions
1 2np™m cyclic group
17 2np™ a,b " =" =1, | (r—1,p™) =1,
a’ =a” r2" = 1(mod p™)
IIT | 2ntipm a,b,c b2 = 2 n > 2,
a¢=a®,b¢=>b"1| 52 = 1(mod p™)

We now give the following result. Note that p = 22° 1 1 is a Fermat
prime.

Theorem 4.6. Let G be a POS-group with a cyclic Sylow p-subgroup
and |m(G)| = 2. If the number of elements of order 2 of G is 1, then G
is one of the following groups:

(a) cyclic groups Zanzm;

(b) groups (a,b|a®" =b*" =1,a> = a”), where ordym(r) > 2F;

m PLEE] ok _
(c) groups (a,b | a?" = b? =1, =ca=a",a°=a"'b° =

b=1), where ordym (1) > 2.

Proof. Clearly if G is cyclic, then G = Zynzm. Let ordym(r) = o(r).
Assume that G is of Type IL Since a® = a” and o(r) = ordy(r) for
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1 <t < m, we have (apl)bo(r) = (apz)ro(r) =a” with1<i<m-—1. SoG
has an element of order 27°(")p™~% and the number of these elements
is ¢(2n—o(r)pm—i) — 22k+n—o(r)—1pm—i—1‘ Then 2¢ +n— 0(7") —1<mn,
that is o(r) > 2¥ — 1. Clearly 0(7‘)|22k, thus o(r) > 2¥. For other order
2 of the element z; € G for 1 < i < n, the number of these elements is
#(2%) - |G : Ng({z;))|, which is a divisor of |G|.

Assume that G is of Type III. If s = 1(modp™), then fg(4) =
2[{a,b) : Nygpy((z))| + (2"p™ — p™ + 1), where x € (a,b) is of order
4. We may assume that [(a,b) : Ny ((z))| = p'. Then fg(4) =
2p' + (2" — 1)p™ + 1 is a divisor of 2"t1p™. So t = 0 and p = 3,
we may get a Diophantine equation

1+@2"—1)-3m 1 =20, (4.3)
Clearly, n|i. So
20 — 1 .
=3m-1 4.4

By Lemma 3.4, we have that 3 is a primitive prime divisor of 22 — 1. It
follows that ¢ = 2 or 6. Thus n =1 and m = 2, or n = 3 and m = 3.
Since n > 2, we have n = 3 and m = 3, that is G = (a,b,c|a®” = b® =
1,a® = a",b* = %,a° = a,b° = b~1). Using the GAP [8], we checked
r=1or —1, G is not a POS-group.

If s = —1(mod p™), then all elements of G\(a,b) are of order 4. So
fa(4) = 2pt 4+ 2™p™, where 2p! is the number of elements of order 4 in
(a,b). Then we can get an equation as follows, that is

opt + 2™ = 247 (4.5)

Clearly, i = 1. Then (4.5) becomes p' + 2"~ 1p™ = pJ. So j > t. Thus
the (4.5) becomes

142"t =/t (4.6)
Since j — t > 0, we have m = t. So the (4.6) becomes
o=l — =t 1. (4.7)

Since 2 is a primitive prime divisor of p — 1, by Lemma 3.4 we have
j—t=11in (47). Then n = 2¥ 4 1. Since (a,b) is same as one of
Type II, fG(Qn—o(r)pm—i) — ¢(2n—o(r)pm—i) — 22k+n—o(r)—1pm—i—1‘ So
28 +m —o(r) =1 < n+1, then o(r) > 2*. Thus G = (a,b | a?" =

ok 1 2k _ —
b2 =1,a’=a",0* =c%a=a"1b¢=0b"1). O
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For the remain part (¢) of Theorem 4.3, we may get the following
result.

Theorem 4.7. Let G be a POS-group with a cyclic Sylow p-subgroup
P and |7(G)| = 2. If G is p-nilpotent, then G = Zaynzm, Dg X Zsm,
Qgak 42 X Zpm , where p = 92" 11 a Fermat prime, or satisfies the condition
that p =3 and Ng(P) = Cq(P) = Zy x Zy x P.

Proof. By the proof of Theorem 4.3 we see that Ng(P) = Cg(P). Let
N = Ng(P) = P x U, |G: N| =2"and P, be the Sylow 2-subgroup.
Then fg(2p™) = 2t+2kpm_1fU(2), so fu(2) =1 or p. We divide into two
cases.

Case (a). fu(2) =1.
Then U is cyclic or a generalized quaternion group. If U is cyclic,
then

fG(antpm) — 2t+2kpm712n7t71 — 22k+n71 ‘ on m’
and so 2F < 1, that is p = 3. Since we may assume that ngEG re(4) = 20
Also

fald) = fuy, s () + Frny, o s (4)
Since 3 ‘ fPQ\UgGG ve(4), we have fg(4) is a power of 2, say 2/. Let

fc(2) = 3" for h > 0. Now assume that P acts on the set Q of elements
of order 2 of GG, we have

fa(2) = 3" = |Cq(P)| = 1(mod3).

Thus h =0, i.e. f¢(2) =1. On the other hand, by Frobenius’s theorem
we can get that 4 | 1+ fo(2) + fg(4) = 2+ 2/, and then fg(4) = 2.
By Lemma 4.1, P, is also cyclic. Therefore, G is 2-nilpotent, that is
G =2 Zongm.

If U is a generalized quaternion group, then fi;(4) =271 +2. So

fG(4pm) — 2t+2k+1pm—1(2n—t—2 + 1) | 2n m’

then p = 2""t"2 4+ 1. Thus n —t = 2 + 2. Let fg(2) = p" for h > 0.
Similarly, assume that P acts on the set €2 of elements of order 2 of G,
we have

fa(2) = p" = |Cqa(P)| = 1(modp).
Thus h = 0, i.e., fg(2) = 1. By Lemma 4.1, P, is also a generalized

quaternion group. Choose an element  of order 2”71, then (x) is char-
acteristic in P». So (x) is normal in G. Apply the N/C-theorem, we
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have Ng((z))/Cq(z) < Aut({(z)), then Cg(z) = (x) x P. It leads to
z €U, so P, =U. Therefore G = Q,ok 5 X Zpm, where p = 22" 1 1.

Case (b). fu(2) =p.

Similarly, if fi(4) # 0, then fy(4) | 2"p. On the other hand, since
411+ fu(2)+ fu(4), it follows that fi7(4) =2 or 2p. By Lemma 4.1, U is
a dihedral or semi-dihedral group. If U is a dihedral one, then fy(2) =
1+2" 1 and fy(4) =2. Son—t =2+ 1. Also U has an element
of order 277 t=1 g0 fo(2nt-lpm) = 2t+2k+n—t—2pm—1 — 2n+2k’—2pm—1'
Then n + 2% — 2 < n, that is k = 1. Thus p = 5 and U = Dg. Since
two elements of order 4 of U are conjugate, we have that ngeG ve(4) is

a 2-power, say 2¢. Also clearly
fo8) = U, o va(@) + Fray, o ue (.

But 5 | fp,\y, ., vs(4) and fa(4) | 2°5™, s0 51 fa(4). Let fa(4) = 2h
for h > 1. Set fg(2) = 5/ for j > 1. By Frobenius’s theorem we can
obtain that 4 | 1+ 2" + 5/, so h = 1, that is fg(4) = 2. In view of
Lemma 4.1, it is easy to see that P, is also a dihedral group. Obviously,
for all x € P, the element = is an automorphism of P». On the other
hand, the order of the automorphism group of a dihedral 2-group is
still a 2-group, so P acts trivially on P,. It leads to G = P x Ps, i.e.,
G = Zsm x Dan. Moreover, fg(2) =1+ 2""1. So we get a Diophantine
equation 1+ 2""! = 5/. By Lemma 3.4, the solution is n = 3 and j = 1.
Thus G = Dg X Z5m.

If U is a semi-dihedral one, then fi;(2) = 1+ 2772 and fy(4) =
24277172 Since fy(4) > 2, fu(4) = 2fy(2), which is impossible.

Next assume that fi;(4) = 0. Then U is an elementary abelian 2-
group of order 2", We may let U > 1 (otherwise fg(p™) = 2”+2kpm_1 |
2"p"™ a contradiction). By Lemma 2.3, we have 2" | fa(p™)+ fa(2p™) =
ot+2F ym—1 4 ot42%ym ooy ¢ < 2% 4 1. In addition, let P act on the
set of elements of order 2 in G, so we have

fa(2) = fu(2) = 2" — 1(mod p). (4.8)

We make the equation (4.8) into two cases to consider.

Case I. fg(2) = fu(2) = 2"t — 1. Then 2"¢ — 1 | p™, and hence
n—t=2andp=3.

Case IL. f(2) > fy(2). Then n—t > 2% and thus n—t = 2¥+1. Since
fa(2) | p™, wehave p | fy(2) =221 —1. Sop=3andn—t=2. O
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Using GAP software, we checked all small POS-groups G (|G| <
2000), G has a cylic Sylow p-subgroup or a generalized quaternion Sy-
low 2-group or a normal p-complement or a normal Sylow p-subgroup
for every p € m(G). We put a conjecture to close this note.

Conjecture 4.8. Let G be a POS-group and p € 7(G). Then G satisfies
one of following conditions:

(a) G has a cylic Sylow p-subgroup or a generalized quaternion Sylow
2-group;

(b) G has a normal p-complement;

(¢) G has a normal Sylow p-subgroup.
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