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POS-GROUPS WITH SOME CYCLIC SYLOW

SUBGROUPS

R. SHEN, W. SHI∗ AND J. SHI

Communicated by Ali Reza Ashrafi

Abstract. A finite group G is said to be a POS-group if for each
x in G the cardinality of the set {y ∈ G| o(y) = o(x)} is a divisor of
the order of G. In this paper we study the structure of POS-groups
with some cyclic Sylow subgroups.

1. Introduction

Throughout the paper G denotes a finite group, o(x) the order of
a group element x, and |X| the cardinality of a set X. Denote by
π(G) = {p| p is a prime divisor of |G|}. As in [4], the order subset
(or, order class) of G determined by an element x ∈ G is defined to
be the set OS(x) = {y ∈ G| o(y) = o(x)}. Clearly, for every x ∈ G,
OS(x) is a disjoint union of some conjugacy classes in G. The group G
is said to have perfect order subsets (in short, G is called a POS-group)
if |OS(x)| is a divisor of |G| for all x ∈ G. In [4], Finch and Jones first
classified abelian POS-groups. Afterwards they continued the study of
nonabelian POS-groups and gave some non-solvable POS-groups (see
[5],[6]). Recently, Das gave some properties of POS-groups in [2], and
Shen classified POS-groups of order 2m with (2,m) = 1 (see [14]). In
this note we study POS-groups with some cyclic Sylow subgroups. In
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section 2, POS-groups with cyclic Sylow 2-subgroups are studied. It is
proved that if Sylow 2-subgroups of a POS-group G are cyclic, then 3
divides |G| or G has a self-centralized Sylow 2-subgroup. In the next
section, we investigate the structure of POS-groups with cyclic Sylow
2-subgroups of order 4. Finally POS-groups with two prime divisors are
studied. If S is a subset of G, denote by fS(m) the number of elements
of order m in S. Let U(n) be the unit group of the ring Z/nZ. Denote
by ordn(q) the order of q in the group U(n). First of all, we consider
POS-groups with cyclic Sylow 2-subgroups.

2. Cyclic Sylow 2-subgroups

In this part, we study POS-groups with cyclic Sylow 2-subgroups,
and prove that if Sylow 2-subgroups of a POS-group G are cyclic, then
3 divides |G| or G has a self-centralized Sylow 2-subgroup. A celebrated
theorem of Frobenius asserts that if n is a positive divisor of |G| and
X = {g ∈ G| gn = 1}, then n divides |X| (see, for example, Theorem
9.1.2 of [9]). This result is used in the sequel frequently. First, we cite
some lemmas.

Lemma 2.1. (Theorem 1, [10]). If every element of a finite group G
has order which is a power of a prime number and G is solvable, then
|π(G)| ≤ 2.

Recall that G is a 2-Frobenius group if G = ABC, where A and
AB are normal subgroups of G, AB and BC are Frobenius groups with
kernels A and B, and complements B and C respectively. Recall in
addition that G is a Cpp-group if the centralizer of every non-trivial p-
element is a p-group. The following lemma is due to Gruenberg and
Kegel (see Corollary of [15]).

Lemma 2.2. Let G be a solvable Cpp-group, then G is a p-group, a
Frobenius group or a 2-Frobenius group.

Lemma 2.3. (Theorem 3, [16]). Let G be a finite group. Then the
number of elements whose orders are multiples of n is either zero, or a
multiple of the largest divisor of |G| that is prime to n.

Next we give the following main result.

Theorem 2.4. If the Sylow 2-subgroups of a POS-group G are cyclic,
then 3 is a divisor of |G|, or G has a self-centralized Sylow 2-subgroup.



POS-groups with some cyclic Sylow subgroups 943

Proof. Suppose that P2 is a Sylow 2-subgroup of G and |P2| = 2n. Since
Sylow 2-subgroups of G are cyclic, G is 2-nilpotent. Let the normal
2-complement of G be H. Set CG(P2) = P2 ×N , where N ≤ H. Next
we will prove that 3 is a divisor of |N | provide P2 is not self-centralizing.
If N has an element of order m, then fG(2nm) = |H/N | · 2n−1 · fN (m)
is a divisor of 2n · |H|. So fN (m) divides 2|N |. Note that |N | is odd. It
follows that 4 - fN (m). Since φ(m), the Euler’s totient function, divides
fN (m), then we have every order of element of N is a prime power, and
thus |π(N)| ≤ 2 by Lemma 2.1.

Case I. π(N) = {p, q}. Set |N | = paqb. By Lemma 2.2, we have that
N is a Frobenius or 2-Frobenius group. If N is Frobenius, without loss
of generality, we assume that the order of the kernel of N has divisor
q. As p-subgroups are cyclic, then fN (p) = (p − 1)qb is a divisor of
2|N | = 2paqb. So p − 1 = 2, then p = 3. If N is 2-Frobenius, we set
N = ABC, where A and AB are normal subgroups of N , AB and BC
are Frobenius groups with kernels A and B, and complements B and C,
respectively. Now let |A| = pa1 and |C| = pa2 . Then fN (q) = (q − 1)pa1

divides 2|N | = 2paqb. Since pa | fN (q) by Lemma 2.3, it follows that
q = 2pa2 + 1. Clearly, q > p. In addition, fN (p) = fA(p) + (p− 1)qb|A :
CN (c)|, where c is an element of order p of C. Since p − 1 and qb are
both divisors of fA(p) and (p−1, q) = 1, we have (p−1)qb | fA(p). Then
p− 1 | 2pa, so p = 3.

Case II. π(N) = {p}. Set |N | = pa. Then by the above discussion we
see that fN (p) | 2pa. Since p - fN (p), we have p = 3. �

Note that indeed there exist POS-groups of Theorem 2.4 whose Sylow
2-subgroups are self-centralized and 3 - |G|. The following is an example
of a POS group of order 400 whose Sylow 2-subgroups are cyclic and
self-centralizing.

Example 2.5. Let G = 〈a, b | a25 = b16 = 1, ab = a−1, [a, b2] = 1〉.
Then G is a POS-group with a cyclic Sylow 2-subgroup of order 24.

Finch and Jone formulated a question in [4] whether the order of every
POS-group with more than one prime divisor has a divisor 3. Although
this question has a negative answer, it seems that orders of most POS-
groups have the divisor 3. We put the following problem.

Problem 2.6. Classify POS-groups whose order has no divisor 3.
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3. Cyclic Sylow 2-subgroups of order 4

In this section, we deal with the POS-groups with cyclic Sylow 2-
subgroups of order 4. We completely classify such POS-groups whose
order has no divisor 3. First, we determine the number of prime divisors
of these groups.

Proposition 3.1. Let G be a POS-group with cyclic Sylow 2-subgroups
of order 4. Then |π(G)| ≤ 6.

Proof. Let σ(G) = max{|π(o(g))| | g ∈ G}, and H be the normal
2-complement of G. Clearly, σ(H) ≤ 2. So we have |π(H)| ≤ 5 by
Theorem 1.4(b) of [11]. Therefore, |π(G)| ≤ 6. �

Although such POS-groups have a upper bound of the number of
prime divisors, is 6 the actual bound?

Lemma 3.2. Let |G| = 2npm and the Sylow p-subgroup P be normal in
G. If all Sylow subgroups of G are cyclic and G has no element of order
2pm, then G is a Frobenius group.

Proof. Since all Sylow subgroups of G are cyclic, we may see that G =
〈a, b | apm = b2

n
= 1, ab = ar〉 such that r2n ≡ 1(mod pm) and (2n(r −

1), pm) = 1. By the above condition, we get that 2n is the order of r in
U(pm). In fact, otherwise if the order ordpm(r)(:= o(r)) of r is less than
2n, then

ab
o(r)

= ar
o(r)

= a1 = a,

hence bo(r) ∈ CG(P ). On the other hand, since CG(P ) = 1, bo(r) = 1,
which contradicts that o(b) = 2n. It is easy to see that the order ordpi(r)
is also 2n for 1 ≤ i ≤ n − 1. So the centralizer of every nontrivial p-
element is P , and then G is a Frobenius group. �

To complete the proof of Theorem 3.6 and 4.3, we need some conclu-
sions of prime number. We call rm(a) a primitive prime divisor of am−1
if rm(a) | am−1 but rm(a) doesn’t divide ai−1 for every i < m. Clearly,
for primitive prime divisor p = rm(a), the formula m|p−1 always holds.
Let Φn(x) be the nth cyclotomic polynomial. It is well known that xn−1
may be decomposed to the product of all cyclotomic polynomials whose
digit is some divisor of n, that is, xn − 1 =

∏
d|n Φd(x). The existence

of primitive prime divisor is due to Zsigmondy (see [17]), and the prim-
itive prime divisor is closely connected with the cyclotomic polynomial
as follows.
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Lemma 3.3. Primitive prime divisors of am − 1 exist except if m = 6
and a = 2, or m = 2 and a = 2k − 1.

Lemma 3.4. Suppose that qn−1 has at least one primitive prime divisor
and n ≥ 3. Then Φn(q) = (P (n),Φn(q))·Zn(q), where P (n) is the largest
prime divisor of n and Zn(q) the largest divisor of qn−1 which contains
all primitive prime divisors.

Proof. By page 207 of [13] and Lemma 2.1 of [3], we have Zn(q)
∣∣ Φn(q)

and Φn(q)
∣∣ Zn(q) · P (n), and then Φn(q) = (P (n),Φn(q)) · Zn(q). �

Lemma 3.5. (Lemma 5, [12]). Suppose that p is an odd primitive prime
divisor of qk − 1. Then p | Φf (q) if and only if f = kpj for some j ≥ 0.

We also make some preliminaries on the p-adic expansion of any inte-
ger. Let p be a prime. So any positive integer can be written in a base
p expansion in the form

n∑
i=0

aip
i,

where all ai are integers in {0, 1, · · · , p− 1}. Moreover for a given pos-
itive integer m, the coefficients ai in such p-adic expansion of m are
determined uniquely.

Next we give the structure of POS-groups with cyclic Sylow 2-subgroups
of order 4.

Theorem 3.6. Let G be a POS-group with a cyclic Sylow 2-subgroup of
order 4. Then 3 is a divisor of |G|, or G is one of the following groups:

(a) the cyclic group of order 4;
(b) Frobenius groups Z5m : Z4;
(c) quasi-dihedral groups 〈a, b | a5m = b4 = 1, ab = a−1〉.

Proof. Let H be the normal 2-complement. If 4 - p − 1 for every p ∈
π(H), then 3 ∈ π(H) since the smallest prime number in π(H) is a
Fermat prime. Next we assume that π(H) has a prime p such that
4|p−1. Then H is a Cpp-group, and hence H is Frobenius or 2-Frobenius
by Lemma 2.2. Note that π(H) has only such prime p (see [11]). We
should consider the following three cases.

Case I. H is Frobenius. Let H = K : L with the kernel K and
the complement L. If L is a p-group, then L is cyclic. Since fH(p) =
(p − 1)|K| divides 4|K| · |L|, we have p = 5. In addition, since K is
nilpotent, K has at least two prime divisors. If |π(K)| = 1, clearly
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3 ∈ π(H). Next let π(K) = {p1, p2}. Suppose that Pi is a Sylow pi-
subgroup of K for i = 1, 2. Then fH(pi) divides 4|P1|·|P2|·|L|. If 3 - |H|,
then we assume that 5 < p1 < p2. Note that pi - fH(pi), so we have

p1 = 2 · 5k + 1 with k ≥ 1. Set p2 = 2 · 5k1pk21 +1. Let u be an element
of order 4. By Theorem 2.4, u is a fixed-point-free automorphism of
H. Next we will prove that K is abelian. Otherwise, we assume that
H0 = K0 : L0 is the minimal counterexample. Thus K0 is a p1-group.
Set Φ(K0) the Frattini subgroup of K0. Clearly Φ(K0) > 1. Since
Φ(K0) is a characteristic subgroup of K0, K0/Φ(K0) : L0 has a fixed-
point-freely automorphism of order 4. So K0/Φ(K0) is abelian, and then
K0 is abelian, a contradiction. Thus K is abelian. Let |G| = 4 · 5mpa1pb2.
Since K is abelian, we may assume that fH(pi) = psii − 1 for i = 1, 2. In
addition, since fH(pi) divides |G|, we get a Diophantine equation

psii − 1 = 2u5jps1p
t
2 (3.1)

where j, s, t ≥ 0 and 1 ≤ u ≤ 2. Next we will prove that si = 1 for
i = 1, 2. The following two subcases, should be studied.

Subcase I.I i = 1. Then clearly s = 0. In view of Lemma 3.4,
ps11 − 1 has a primitive prime divisor except if p1 is a Mersenne prime
and s1 = 2. If t = 0, since π(p1 − 1) = {2, 5}, we have s1 = 1 or 2 by
Lemma 3.4. Now if s1 = 2, then p1 is a Mersenne prime, say 2l − 1. So
s2

1 − 1 = 2l+1(2l−1 + 1) = 2u5j , then l = 1 since u ≤ 2, a contradiction.
When t > 0, the equation (3.1) becomes

ps11 − 1 = 2u5jpt2. (3.2)

Similarly, since π(p1 − 1) = {2, 5}, then s1 is equal to 1 or a prime by
Lemma 3.4. Since p2 is a primitive prime divisor of ps11 −1, s1|p2−1 = 2·
5k1pk21 . So s1 = 1, 2, 5 or p1. If s1 = 2, it is easy to see 8 | p2

1−1 = fH(p1),
a contradiction. If s1 = 5, by Lemmas 3.5 and 3.6, then (3.2) becomes

p5
1 − 1

5(p1 − 1)
= pt2. (3.3)

If k2 > 0, then (3.3) becomes

16 · 54k−1 + 8 · 53k + 8 · 52k + 4 · 5k + 1 = (2 · 5k1(2 · 5k + 1)k2 + 1)t. (3.4)

(3.4) is the expansion of pt2, if k > 0 in base 5. The left hand side modulo
52k is 4.5k +1. Clearly, t < 5. So k = k1 and t = 2. Moreover, the 5-adic
expansion of the left term of (3.4) is 3·54k+54k−1+53k−1+3·53k+52k+1+
3 · 52k + 4 · 5k + 1. But the largest digit of one of the right term is more
than or equal to 2k(k2 + 1), so 2k(k2 + 1) ≤ 4k, then k2 = 1. It follows
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that the right term of (3.4) is equal to 16·54k+16·53k+12·52k+4·5k+1,
a contradiction.

If k2 = 0, then (3.3) becomes

16 · 54k−1 + 8 · 53k + 8 · 52k + 4 · 5k + 1 = (2 · 5k1 + 1)t. (3.5)

(3.5) is the expansion of pt2 in base (5) if k2 = 0, then we may see
k = k1. Comparing the largest digits of the formulas of 5-adic expansion
of both sides of (3.5), we got that t ≤ 4. It is easy to check that for
every such t the equation (3.5) does not hold.

If s1 = p1, then, by Lemmas 3.5 and 3.6, (3.2) becomes

pp11 − 1

p1 − 1
= pt2. (3.6)

If k2 = 0, then p2 is a primitive prime divisor of pp11 − 1 since p1 < p2.
So p1 | p2−1 = 2 ·5k1 , and then p1 = 2 or 5. By (3.6), we have pt2 = 3 or
781. Since 781 = 11 · 71 has two prime divisors, it follows that p2 = 3,
which contradicts that p2 > 5.

When k2 > 0, we extend the number of (3.6) into the p1-adic ex-
pansion, in which the first and second digits of the left and right are
p1 + 1 and l · pk21 + 1 and p1 > l ≡ 2t · 5k(modp1). So k2 = 1 and
2t ·5k ≡ 1( mod p1). It follows that p1 | 2t ·5k−1+p1 = 2 ·5k(t+1), and
then t+ 1 ≡ 0(mod p1). On the other hand, t < p1 , we have t = p1− 1.
Thus (3.6) is changed into

pp11 − 1

p1 − 1
= (2 · 5kp1 + 1)p1−1. (3.7)

It is not hard to see that the largest digit of right hand of (3.7) is more
than one of left term in light of the form of the p1-adic expansion of
both side of (3.7), a contradiction. Thus s1 = 1.

Subcase I.II. i = 2. Then (3.1) becomes

ps22 − 1 = 2u5jps1. (3.8)

Clearly, s2 6= 2 (otherwise 8 | p2
2 − 1). If k1 and k2 are both more than

0, since π(p2 − 1) = {2, 5, p1}, we have that s2 = 1 by Lemma 3.4. If
k1 = 0, then 5 is a primitive prime divisor of ps22 − 1. So s2

∣∣ 5− 1 = 4,

hence s2 = 1 or 4. But if s2 = 4, gives that 8 | p4
2 − 1, a contradiction.

k2 = 0, gives that s2

∣∣ p1 − 1 = 2 · 5k. So s2 = 5. Next we may only
consider following Diophantine equation by Lemmas 3.5 and 3.6 that is
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p5
2 − 1

p2 − 1
= 5ps1. (3.9)

Using the same method as one of (3.3), we can get that the (3.9) also
has no solution. Thus s2 is also equal to 1. Therefore, K is cyclic. Since
5m divides fH(pi), we have p1 = 2 · 5m + 1 and p2 = 2 · 5m · pk21 + 1 with

k2 ≥ 0. Now note that fH(pa1p
b
2) = φ(pa1p

b
2) = 4 · 52mpk2+a−1

1 pb−1
2 divides

|G| = 4 · 5mpa1pb2, a contradiction.
If K is a p-group, then fH(q) divides 4|L| for every q ∈ π(L). But

since 4 - q − 1 and the smallest prime in π(L) is a Fermat one, we have
3 ∈ π(L).

Case II. H is 2-Frobenius. Similarly, assume that H = ABC, where
A,B,C are the same as above. Clearly, the commutator subgroup
H ′ = AB. If 3 - |H|, by Theorem 2.4, H admits a fixed-point-freely
automorphism of order 4. Then H ′ is nilpotent (see Exercises 1, Chap.
10, [7]), a contradiction.

Case III. H is a p-group. Certainly, p = 5. By Proposition 2.8
of [2], the Sylow 5-subgroup, that is H, is cyclic. Let |H| = 5m. By
Theorem 2.4 we have that the Sylow 2-subgroup of G is self-centralized.
So G is not cyclic. Then G = 〈a, b | a5m = b4 = 1, ab = ar〉 such
that r4 ≡ 1(mod5m) and (r − 1, 5m) = 1. If the centralizer of a is
〈a〉, then G is Frobenius by Lemma 3.3. If |CG(a)| = 2 · 5m, then
r2 ≡ 1(mod5m). Since (r − 1, 5m) = 1, we have r ≡ −1(mod5m).
Therefore, G = 〈a, b | a5m = b4 = 1, ab = a−1〉. �

4. POS-groups with two prime divisors

In this section, assume that |G| = 2npm with p an odd prime num-

ber. If G is a POS-group, then p is a Fermat prime, say 22k + 1. By
Proposition 3.1 of [2], we know that if 2n < (p − 1)3, i. e., n < 3 · 2k,
then the Sylow p-subgroup is cyclic and normal. Certainly there exists
a POS-group with non-normal cyclic Sylow subgroups, such as SL2(3)
of order 24. In this section, we give the structure of G with cyclic Sylow
p-subgroups. First we cite some lemmas.

Lemma 4.1. (Theorem 1, [1]). Let G be a 2-group of order 2n and
exp(G) = 2e > 2. Then the number of elements of order 2i is a multiple
of 2i for 2 ≤ i ≤ e except in the following cases:

(a) the cyclic 2-group;
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(b) the dihedral 2-group 〈a, b | a2n−1
= b2 = 1, ab = a−1〉;

(c) the semi-dihedral 2-group 〈a, b | a2n−1
= b2 = 1, ab = a2n−2−1〉;

(d) the generalized quaternion 2-group 〈a, b | a2n−1
= 1, a2n−2

=
b2, ab = a−1〉.

Lemma 4.2. Let G be a finite group with a normal subgroup N . If
x ∈ G\N has order m, then fNx(m) = fNy(m) for all cosets Ny which
are G/N -conjugate to Nx.

Proof. Suppose that Ny is G/N -conjugate to Nx, so Ny = Ng−1xg for
some g ∈ G. Then the map ϕ : Nx 7→ Ny, defined by nx 7→ g−1nxg,
induces a bijection between the subset of elements of order m in Nx and
the corresponding subset of Ny. �

In the following we give the structure of POS-groups with two prime
divisors and cyclic Sylow p-subgroups.

Theorem 4.3. Let G be a POS-group with a cyclic Sylow p-subgroup
P and |π(G)| = 2. Then G is a Frobenius group Zpm : Z

22
k , where

p = 1 + 22k is a Fermat prime and m > 0 arbitrary, or satisfies one of
the following conditions:

(a) p = 3, CG(P ) ∼= P × Z2 × Z2 and NG(P ) ∼= P : (Z2 × Z4);
(b) the number of elements of order 2 of G is 1;
(c) G is p-nilpotent.

Proof. Suppose that P = 〈x〉 is a Sylow p-subgroup and the number of
Sylow p-subgroups is |G : NG(P )| = 2t. By Zassenhaus’s theorem we
may let N = NG(P ) = P : K and C = CG(P ) = P × U , where K and
U are 2-subgroups of G. Since CG(xg) = CG(x)g and CG(x) = CG(〈x〉),
we have that the number fG(2pm) of elements of order 2pm is

2tφ(pm)fCG(x)
(2) = 2t+2kpm−1fCG(x)

(2),

where φ is Euler totient function. Let |G| = 2npm, where p = 22k + 1 is
Fermat. Since fG(2pm) is a divisor of |G| = 2npm and fCG(x)

(2) is odd

or 0, it leads to fCG(x)
(2) = 0, 1 or p. Now note that

K/U ∼= N/C . Aut(P ) ∼= Z
22kpm−1 ,

so U/K is cyclic. If K/U = 1, that is N = C, then G is p-nilpotent by
the well-known Burnside’s theorem. If K/U 6= 1, then N/U ∼= P : K/U
has no element of order 2pm. In fact, otherwise we may choose an
element y ∈ K\U such that xUyU = xU , and then x−1xy ∈ U . Since
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〈x〉 = P CG, we have x−1xy ∈ P . So x−1xy ∈ U ∩ P = 1, then xy = x.
Hence y ∈ U , a contradiction. Therefore N/U is a Frobenius group by
Lemma 3.3. If U 6= 1, that is fU (2) 6= 0, then we have

fG(2) = fU (2) + fN\U (2) + fG\N (2) = fU (2) + pmfyU (2) + fG\N (2)

by Lemma 4.2, where o(yU) = 2. If fyU (2) 6= 0, then fG(2) > pm,
which contradicts that fG(2) | pm. So fG(2) = fU (2) + fG\N (2) =
f⋃

g∈G Ug(2) + fG\
⋃

g∈G Kg(2). If fU (2) = 1, denote by z the unique

element of order 2 in U , then f⋃
g∈G Ug(2) = |G : CG(z)|. So we may

assume that f⋃
g∈G Ug(2) = 2s. Now we choose any element a of order 2

in G\
⋃

g∈GK
g, we see that pm - |CG(a)|, hence p | fG\⋃g∈G Kg(2). We

set fG\
⋃

g∈G Kg(2) = p · l. Now use class equation of G, we can obtain

fG(2) = 2s + p · l | pm. So s = l = 0, and then fG(2) = 1. Next we
consider the case of fU (2) = p. Now assume that |U | = 2u.

If fU (4) = 0, then U is an elementary abelian 2-group. So fU (2) =
2u − 1 = p. It follows that u = 2 and k = 0. By Lemma 2.3, we

have 2n | fG(pm) + fG(2pm) = 2t+2kpm−1(1 + p) = 2t+3pm−1, and then
n ≤ t+ 3. So |K| = 2n−t ≤ 23. It is easy to see that K is Z2 × Z4.

If fU (4) 6= 0, then fG(4pm) = 2t+2kpmfU (4) | 2npm. So fU (4) |
2n−t−2kp. On the other hand, since

4 | 1 + fU (2) + fU (4) = 2 + 22k + fU (4),

and fU (4) | 2p. By Lemma 4.1, we have that U is a dihedral or semi-
dihedral 2-group. If U is a semi-dihedral one, then fU (2) = 1+2u−2 and
fU (4) = 2 + 2u−2, which contradicts that fU (2) = p and fU (4) | 2p. If U
is a dihedral one, then fU (2) = 2u−1 + 1 = p and fU (2i) = φ(2i) = 2i−1

for 1 ≤ i ≤ u− 1. Certainly, u = 1 + 22k since 2u−1 + 1 = p, we get that

|U | = 22k+1. (4.1)

Moreover, since K/U is a cyclic 2-group, we have that there exists LCK
such that L/U ∼= Z2. By the above discussion, we may see that L has
no element of order 2. In addition, L\U has an element of order 4. In
fact, otherwise fL(4) = 2, by Lemma 4.1, L is a cyclic, dihedral, semi-
dihedral or generalized quaternion 2-group, which have an element of
order 4 in L\U , a contradiction. So fG(4) > 2. Next we discuss the
number of elements of order 4 in G. Clearly,

fG(4) = f⋃
g∈G Ug(4) + fG\

⋃
g∈G Ug(4).
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Note that two elements of order 4 in U are conjugate, so the elements
of order 4 in

⋃
g∈G U

g make one congugacy class of G. Thus

f⋃
g∈G Ug(4) = |G : CG(w)|,

where w is of order 4 in U . Since pm
∣∣ |CG(w)|, we may set f⋃

g∈G Ug(4) =

2s. In addition, obviously p | fG\⋃g∈G Kg(4). Assume that fG\
⋃

g∈G Kg(4)

= p · l. Then we have fG(4) = 2s + p · l | 2npm, hence fG(4) = 2j for
1 ≤ j ≤ n. Since fG(2) | pm, we may set fG(2) = pi. By Frobenius’s
theorem, we have

4 | 1 + fG(2) + fG(4) = 1 + 2j + pi.

Since fG(4) > 2, we have 4 | 1 + pi, and thus k = 0 and i is odd.
By Lemma 2.3 we have 2n | fG(pm) + fG(2pm) + · · · + fG(2u−1pm) =
2t+1pm−1(1 + p + fU (4)) + · · · + fU (2u−1)) = 2t+2pm−1(1 + 2u−2), and
so n ≤ t+ 2. It leads to

|K| = 2n−t ≤ 22. (4.2)

By (4.1) we may get U = K, which contradicts that U 6= K.
If U = 1, then N = P : K is a Frobenius group and K is cyclic.

Then the number fN (2) of order 2 in N is equal to pmfK(2). Since
fK(2) ≥ 1, we have fG(2) ≥ fN (2) ≥ pm. On the other hand, fG(2) |
pm. Hence fG(2) = pm. By Lemma 2.3, we have 2n | fG(pm), and
fG(pm) = 2t · φ(pm). Hence t = n− 2k. Next we use induction to prove
that fG(2i) = 2i−1pm for 1 ≤ i ≤ 2k. Clearly when i = 1, it is true.
Assume that it is true for i = j− 1. Now we deal with the case of i = j.
Since

2j | 1+fG(2)+ · · ·+fG(2j) = 1+pm + · · ·+2j−2pm +2j−1pm +fG\N (2j)

and pm ≡ 1(mod 2j), we have 2j | fG\N (2j). On the other hand, since

fG(2j) = 2j−1pm+fG\N (2j) | 2npm, we have 2j - fG(2j). Hence fG(2j) =

2j−1pm. Since every Sylow 2-subgroup of G has at most one subgroup of
order 2 of N (otherwise the generated subgroup by some two elements
of order 2 of N is a Frobenius group, which is not a 2-group), we have
that the number of Sylow 2-subgroups is pm, and then the intersection
of every pair Sylow 2-subgroups is trivial. Thus G is a Frobenius group.
It leads to t = 0, that is n = 2k, hence G ∼= Zpm : Z

22k
is a Frobenius

group. �

Note that there exist groups satisfying the condition (a) of Theorem
4.3. We give an example as follows.
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Example 4.4. 〈a, b, c | a3m = b2 = c4 = 1, ab = a, ac
2

= a, ac =
a−1, [b, c] = 1〉 is a POS-group of order 8 · 3m with cyclic Sylow 3-
subgroups.

Using the GAP software [8], it seems that the group satisfying the
condition (a) has not been found except those of Example 4.4. We put
the following conjecture.

Conjecture 4.5. POS-groups satisfying the condition (a) of Theorem
4.3 are those of Example 4.4.

It is not hard to determine groups satisfying the condition (b) of The-
orem 4.3. Since the number of elements of order 2 of G is 1, so is for a
Sylow 2-subgroup P2 of G. Thus P2 is cyclic or a generalized quaternion
group. Those groups were classified by Zassenhaus in [18]. The Table 1
lists all such groups with two prime divisors.

Table 1.

Type Order Generators Relations Conditions

I 2npm cyclic group

II 2npm a, b ap
m

= b2
n

= 1, (r − 1, pm) = 1,

ab = ar r2n ≡ 1(mod pm)

III 2n+1pm a, b, c b2
n−1

= c2, n ≥ 2,

ac = as, bc = b−1 s2 ≡ 1(mod pm)

We now give the following result. Note that p = 22k + 1 is a Fermat
prime.

Theorem 4.6. Let G be a POS-group with a cyclic Sylow p-subgroup
and |π(G)| = 2. If the number of elements of order 2 of G is 1, then G
is one of the following groups:

(a) cyclic groups Z2n3m;
(b) groups 〈a, b | apm = b2

n
= 1, ab = ar〉, where ordpm(r) ≥ 2k;

(c) groups 〈a, b | apm = b2
2k+1

= 1, b2
2k

= c2, ab = ar, ac = a−1, bc =
b−1〉, where ordpm(r) ≥ 2k.

Proof. Clearly if G is cyclic, then G ∼= Z2n3m . Let ordpm(r) = o(r).

Assume that G is of Type II. Since ab = ar and o(r) = ordpt(r) for
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1 ≤ t ≤ m, we have (ap
i
)b

o(r)
= (ap

i
)r

o(r)
= ap

i
with 1 ≤ i ≤ m−1. So G

has an element of order 2n−o(r)pm−i and the number of these elements

is φ(2n−o(r)pm−i) = 22k+n−o(r)−1pm−i−1. Then 2k + n − o(r) − 1 ≤ n,

that is o(r) ≥ 2k − 1. Clearly o(r)|22k , thus o(r) ≥ 2k. For other order
2i of the element xi ∈ G for 1 ≤ i ≤ n, the number of these elements is
φ(2i) · |G : NG(〈xi〉)|, which is a divisor of |G|.

Assume that G is of Type III. If s ≡ 1(modpm), then fG(4) =
2|〈a, b〉 : N〈a,b〉(〈x〉)| + (2npm − pm + 1), where x ∈ 〈a, b〉 is of order

4. We may assume that |〈a, b〉 : N〈a,b〉(〈x〉)| = pt. Then fG(4) =

2pt + (2n − 1)pm + 1 is a divisor of 2n+1pm. So t = 0 and p = 3,
we may get a Diophantine equation

1 + (2n − 1) · 3m−1 = 2i. (4.3)

Clearly, n|i. So

2i − 1

2n − 1
= 3m−1. (4.4)

By Lemma 3.4, we have that 3 is a primitive prime divisor of 22 − 1. It
follows that i = 2 or 6. Thus n = 1 and m = 2, or n = 3 and m = 3.
Since n ≥ 2, we have n = 3 and m = 3, that is G = 〈a, b, c |a27 = b8 =
1, ab = ar, b4 = c2, ac = a, bc = b−1〉. Using the GAP [8], we checked
r = 1 or −1, G is not a POS-group.

If s ≡ −1(mod pm), then all elements of G\〈a, b〉 are of order 4. So
fG(4) = 2pt + 2npm, where 2pt is the number of elements of order 4 in
〈a, b〉. Then we can get an equation as follows, that is

2pt + 2npm = 2ipj . (4.5)

Clearly, i = 1. Then (4.5) becomes pt + 2n−1pm = pj . So j > t. Thus
the (4.5) becomes

1 + 2n−1pm−t = pj−t. (4.6)

Since j − t > 0, we have m = t. So the (4.6) becomes

2n−1 = pj−t − 1. (4.7)

Since 2 is a primitive prime divisor of p − 1, by Lemma 3.4 we have
j − t = 1 in (4.7). Then n = 2k + 1. Since 〈a, b〉 is same as one of

Type II, fG(2n−o(r)pm−i) = φ(2n−o(r)pm−i) = 22k+n−o(r)−1pm−i−1. So
2k + n − o(r) − 1 ≤ n + 1, then o(r) ≥ 2k. Thus G = 〈a, b | apm =

b2
2k+1

= 1, ab = ar, b2
2k

= c2, ac = a−1, bc = b−1〉. �
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For the remain part (c) of Theorem 4.3, we may get the following
result.

Theorem 4.7. Let G be a POS-group with a cyclic Sylow p-subgroup
P and |π(G)| = 2. If G is p-nilpotent, then G ∼= Z2n3m , D8 × Z5m,

Q
22k+2×Zpm, where p = 22k+1 a Fermat prime, or satisfies the condition

that p = 3 and NG(P ) = CG(P ) ∼= Z2 × Z2 × P .

Proof. By the proof of Theorem 4.3 we see that NG(P ) = CG(P ). Let
N = NG(P ) = P × U , |G : N | = 2t and P2 be the Sylow 2-subgroup.

Then fG(2pm) = 2t+2kpm−1fU (2), so fU (2) = 1 or p. We divide into two
cases.

Case (a). fU (2) = 1.
Then U is cyclic or a generalized quaternion group. If U is cyclic,

then

fG(2n−tpm) = 2t+2kpm−12n−t−1 = 22k+n−1
∣∣ 2npm,

and so 2k ≤ 1, that is p = 3. Since we may assume that f⋃
g∈G Ug(4) = 2i.

Also

fG(4) = f⋃
g∈G Ug(4) + fP2\

⋃
g∈G Ug(4).

Since 3
∣∣ fP2\

⋃
g∈G Ug(4), we have fG(4) is a power of 2, say 2j . Let

fG(2) = 3h for h ≥ 0. Now assume that P acts on the set Ω of elements
of order 2 of G, we have

fG(2) = 3h ≡ |CΩ(P )| = 1(mod3).

Thus h = 0, i.e. fG(2) = 1. On the other hand, by Frobenius’s theorem
we can get that 4 | 1 + fG(2) + fG(4) = 2 + 2j , and then fG(4) = 2.
By Lemma 4.1, P2 is also cyclic. Therefore, G is 2-nilpotent, that is
G ∼= Z2n3m .

If U is a generalized quaternion group, then fU (4) = 2n−t−1 + 2. So

fG(4pm) = 2t+2k+1pm−1(2n−t−2 + 1)
∣∣ 2npm,

then p = 2n−t−2 + 1. Thus n − t = 2k + 2. Let fG(2) = ph for h ≥ 0.
Similarly, assume that P acts on the set Ω of elements of order 2 of G,
we have

fG(2) = ph ≡ |CΩ(P )| = 1(modp).

Thus h = 0, i.e., fG(2) = 1. By Lemma 4.1, P2 is also a generalized
quaternion group. Choose an element x of order 2n−1, then 〈x〉 is char-
acteristic in P2. So 〈x〉 is normal in G. Apply the N/C-theorem, we
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have NG(〈x〉)/CG(x) . Aut(〈x〉), then CG(x) = 〈x〉 × P . It leads to

x ∈ U , so P2 = U . Therefore G ∼= Q
22k+2 × Zpm , where p = 22k + 1.

Case (b). fU (2) = p.
Similarly, if fU (4) 6= 0, then fU (4) | 2np. On the other hand, since

4 | 1+fU (2)+fU (4), it follows that fU (4) =2 or 2p. By Lemma 4.1, U is
a dihedral or semi-dihedral group. If U is a dihedral one, then fU (2) =
1 + 2n−t−1 and fU (4) = 2. So n − t = 2k + 1. Also U has an element

of order 2n−t−1, so fG(2n−t−1pm) = 2t+2k+n−t−2pm−1 = 2n+2k−2pm−1.
Then n + 2k − 2 ≤ n, that is k = 1. Thus p = 5 and U ∼= D8. Since
two elements of order 4 of U are conjugate, we have that f⋃

g∈G Ug(4) is

a 2-power, say 2i. Also clearly

fG(4) = f⋃
g∈G Ug(4) + fP2\

⋃
g∈G Ug(4).

But 5 | fP2\
⋃

g∈G Ug(4) and fG(4) | 2n5m, so 5 - fG(4). Let fG(4) = 2h

for h ≥ 1. Set fG(2) = 5j for j ≥ 1. By Frobenius’s theorem we can
obtain that 4 | 1 + 2i + 5j , so h = 1, that is fG(4) = 2. In view of
Lemma 4.1, it is easy to see that P2 is also a dihedral group. Obviously,
for all x ∈ P , the element x is an automorphism of P2. On the other
hand, the order of the automorphism group of a dihedral 2-group is
still a 2-group, so P acts trivially on P2. It leads to G = P × P2, i.e.,
G ∼= Z5m ×D2n . Moreover, fG(2) = 1 + 2n−1. So we get a Diophantine
equation 1 + 2n−1 = 5j . By Lemma 3.4, the solution is n = 3 and j = 1.
Thus G ∼= D8 × Z5m .

If U is a semi-dihedral one, then fU (2) = 1 + 2n−t−2 and fU (4) =
2 + 2n−t−2. Since fU (4) > 2, fU (4) = 2fU (2), which is impossible.

Next assume that fU (4) = 0. Then U is an elementary abelian 2-

group of order 2n−t. We may let U > 1 (otherwise fG(pm) = 2n+2kpm−1 |
2npm, a contradiction). By Lemma 2.3, we have 2n | fG(pm)+fG(2pm) =

2t+2kpm−1 + 2t+2kpm, so n − t ≤ 2k + 1. In addition, let P act on the
set of elements of order 2 in G, so we have

fG(2) ≡ fU (2) = 2n−t − 1(mod p). (4.8)

We make the equation (4.8) into two cases to consider.
Case I. fG(2) = fU (2) = 2n−t − 1. Then 2n−t − 1 | pm, and hence

n− t = 2 and p = 3.
Case II. fG(2) > fU (2). Then n−t > 2k, and thus n−t = 2k+1. Since

fG(2) | pm, we have p | fU (2) = 22k+1 − 1. So p = 3 and n− t = 2. �
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Using GAP software, we checked all small POS-groups G (|G| ≤
2000), G has a cylic Sylow p-subgroup or a generalized quaternion Sy-
low 2-group or a normal p-complement or a normal Sylow p-subgroup
for every p ∈ π(G). We put a conjecture to close this note.

Conjecture 4.8. Let G be a POS-group and p ∈ π(G). Then G satisfies
one of following conditions:

(a) G has a cylic Sylow p-subgroup or a generalized quaternion Sylow
2-group;

(b) G has a normal p-complement;
(c) G has a normal Sylow p-subgroup.
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