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GEODESIC METRIC SPACES AND GENERALIZED

NONEXPANSIVE MULTIVALUED MAPPINGS

A. ABKAR AND M. ESLAMIAN∗

Communicated by Javad Mashreghi

Abstract. In this paper, we present some common fixed point
theorems for two generalized nonexpansive multivalued mappings
in CAT(0) spaces as well as in UCED Banach spaces. Moreover,
we prove the existence of fixed points for generalized nonexpansive
multivalued mappings in complete geodesic metric spaces with con-
vex metric for which the asymptotic center of a bounded sequence
in a bounded closed convex subset is nonempty and singleton. The
results obtained in this paper extend and improve some recent re-
sults.

1. Introduction

Fixed point theory in CAT(0) spaces was first studied by Kirk (see
[18], [19]). He showed that every nonexpansive single valued mapping
defined on a bounded closed convex subset of a complete CAT(0) space
always has a fixed point. It is worth mentioning that fixed point the-
orems in CAT(0) spaces (specially in R-trees) can be applied to graph
theory, biology, and computer science. (see e.g., [2, 10]).
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In [5], Dhompongsa et al. presented a fixed point theorem for a com-
muting pair consisting of a single valued nonexpansive, and a multival-
ued nonexpansive mapping in a CAT(0) space. In the recent years, the
existence of common fixed points for a commuting pair of mappings,
including a single valued and a multivalued nonexpansive (generalized
nonexpansive) mapping in geodesic metric spaces, have been studied ex-
tensively by many authors (see, e.g, [1,8,9,11,17,21,23–25]). But to our
best knowledge, the existence of common fixed points for two multival-
ued mappings, even in a Hilbert space case, has not yet been studied.
In this paper we intend to present a common fixed point theorem for
two generalized nonexpansive multivalued mappings in CAT(0) spaces,
as well as in UCED Banach spaces. Moreover we prove the existence
of fixed points for generalized nonexpansive multivalued mappings in a
complete geodesic metric space with convex metric for which the asymp-
totic center of a bounded sequence in a bounded closed convex subset
is nonempty and singleton. The results we obtain in the paper extend
and improve some recent known results.

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X and
y ∈ X is a map c from a closed interval [0, l] ⊂ R to X such that
c(0) = x, c(l) = y and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In
particular, the mapping c is an isometry and d(x, y) = l. The image of
c is called a geodesic segment joining x and y which when it is unique
it is denoted by [x, y]. We write c(α0 + (1 − α)l) = αx + (1 − α)y for
0 ≤ α ≤ 1. The space (X, d) is called a geodesic space if any two points
of X are joined by a geodesic, and X is said to be uniquely geodesic if
there is exactly one geodesic joining x and y for each x, y ∈ X. A subset
K of X is called convex if K contains every geodesic segment joining
any two points of it.
A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) con-
sists of three points in X (the vertices of 4) and a geodesic segment
between each pair of points (the edges of 4). A comparison triangle for
4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the
Euclidean plane R2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.
A geodesic metric space X is called a CAT(0) space if all geodesic tri-
angles satisfy the following comparison axiom:
Let 4 be a geodesic triangle in X and let 4 be its comparison triangle
in R2. Then 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4
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and all comparison points x, y ∈ 4, d(x, y) ≤ dR2(x, y).
It is known (see [3]) that if (X, d) is a CAT (0) space and K ⊂ X is a
complete and convex subset of X, then for any x ∈ X, there exists a
unique closest point y ∈ K to x.

Definition 2.1. In a geodesic space (X, d), the metric d : X ×X → R
is convex if for any x, y, z ∈ X we have

d(x, (1− α)y ⊕ αz) ≤ (1− α)d(x, y) + αd(x, z) for all α ∈ [0, 1].

It is well-known that CAT(0) spaces are unique geodesic spaces with
convex metric, (see [7]).

Definition 2.2. ( [16]) A geodesic space (X, d) is uniformly convex if
for any r > 0 and ε ∈ (0, 2] there exists δ ∈ (0, 1] such that if w, x, y ∈ X
with d(x,w) ≤ r, d(y, w) ≤ r and d(x, y) ≥ εr, then

d(
x

2
⊕ y

2
, w) ≤ (1− δ)r.

Definition 2.3. ( [20]) For given r > 0 and ε ∈ (0, 2], the mapping
δ : (0,∞)× (0, 2]→ (0, 1] is called a modulus of uniform convexity. The
mapping δ is monotone (resp. lower semi-continuous from the right) if
for every fixed ε it decreases (resp. is lower semi-continuous from the
right) with respect to r.

A UC space is by definition, a uniformly convex metric space with
monotone (or lower-semicontinuous from the right) modulus of uniform
convexity.

Definition 2.4. ( [12]) A geodesic metric space (X, d) which satisfies
the inequality

d(x, y)d(z, p) ≤ d(x, z)d(y, p)+d(x, p)d(y, z) for every x, y, z, p ∈ X,
is called a geodesic Ptolemy space.

Definition 2.5. ( [12]) Let X be a geodesic space. We say that X
admits a uniformly continuous midpoint map if there exists a map m :
X ×X → X such that

d(x,m(x, y)) = d(y,m(x, y)) =
d(x, y)

2
for all x, y ∈ X,

and that for n ∈ N and xn, x
′
n, yn, y

′
n ∈ X with limn→∞ d(xn, x

′
n) = 0

and limn→∞ d(yn, y
′
n) = 0, we have

lim
n→∞

d(m(xn, x
′
n),m(yn, y

′
n)) = 0.
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Every geodesic Ptolemy space with a uniformly continuous midpoint
map is uniquely geodesic (see [12]).

The following lemma is a consequence of Proposition 2 proved by
Goebel and Kirk [15].

Lemma 2.6. Let X be a geodesic metric space with convex metric, {zn}
and {wn} be two bounded sequences in X, and let 0 < λ < 1. If for every
natural number n we have zn+1 = λwn ⊕ (1 − λ)zn and d(wn+1, wn) ≤
d(zn+1, zn), then limn→∞ d(wn, zn) = 0.

Lemma 2.7. ( [7]) Let X be a CAT(0) space. Then for all x, y, z ∈ X
and all t ∈ [0, 1] we have

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)(d(x, y))2.

Let (X, d) be a geodesic metric space. A subset K ⊂ X is called
proximal if for each x ∈ X, there exists an element y ∈ K such that

d(x, y) = dist(x,K) = inf{d(x, z) : z ∈ K}.

We denote by CB(K), P (K),KC(K) and CBP (K) the collection of all
nonempty closed bounded subsets, nonempty proximal subsets, nonempty
compact convex subsets, and nonempty closed bounded proximal sub-
sets of K, respectively. The Hausdorff metric H on CB(X) is defined
by

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(X).
Let T : X → 2X be a multivalued mapping. An element x ∈ X is said
to be a fixed point of T , if x ∈ Tx. The set of fixed points of T will be
denoted by F (T ).

Definition 2.8. A multivalued mapping T : X → CB(X) is called

(i) nonexpansive if

H(T (x), T (y)) ≤ d(x, y), x, y ∈ X.

(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(T (x), T (p)) ≤ d(x, p) for
all x ∈ H and all p ∈ F (T ).

In [13], J. Garcia-Falset, E. Liorens -Fuster and T. Suzuki introduced
two types of generalization for nonexpansive mappings. In the following,
we modify their conditions for multivalued mappings in the framework
of a geodesic metric space, (see also [1]).
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Definition 2.9. A multivalued mapping T : X → CB(X) is said to
satisfy condition (Cλ) for some λ ∈ (0, 1) provided that

λ dist(x, T (x)) ≤ d(x, y) =⇒ H(T (x), T (y)) ≤ d(x, y), x, y ∈ X.

Definition 2.10. A multivalued mapping T : X → CB(X) is said to
satisfy condition (Eµ,η) provided that

dist(x, T (y)) ≤ µdist(x, T (x)) + η d(x, y), x, y ∈ X.
We say that T satisfies condition (E) whenever T satisfies (Eµ,η) for
some µ, η ≥ 1.

Lemma 2.11. ( [1]) Let T : X → CB(X) be a multivalued nonexpansive
mapping, then T satisfies condition (E).

The following theorem was proved in the setting of CAT(0) spaces [1].
It is easy to see that this result stands true in a more general context.
We formulate this result in the framework of a geodesic metric space,
but omit the details of its proof.

Theorem 2.12. Let X be a geodesic metric space with convex met-
ric and K be a nonempty bounded convex subset of X. Let T : K →
CBP (K) satisfy the condition (Cλ) on K for some λ ∈ (0, 1). Then
there exists a sequence {xn} in K such that

lim
n→∞

dist(xn, T (xn)) = 0.

Let {xn} be a bounded sequence in X and K be a nonempty bounded
subset of X. We associate this sequence with the number

r = r(K, {xn}) = inf{r(x, {xn}) : x ∈ K},
where

r(x, {xn}) = lim sup
n→∞

d(xn, x),

and the set

A = A(K, {xn}) = {x ∈ K : r(x, {xn}) = r}.
The number r is known as the asymptotic radius of {xn} relative to K.
Similarly, the set A is called the asymptotic center of {xn} relative to
K. In a complete CAT(0) space, the asymptotic center A = A(K, {xn})
of (xn) consists of exactly one point whenever K is closed and convex
(see for example [6]). Likewise, the same holds for complete uniformly
convex metric spaces with a monotone (or lower semi-continuous from
the right) modulus of uniform convexity (see [8] for details) and complete
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Ptolemy spaces with a uniformly continuous midpoint map (see [12] for
details).

Definition 2.13. A bounded sequence {xn} is said to be regular with
respect to K if for every subsequence {x′n} we have

r(K, {xn}) = r(K, {x′n}).

The following lemma was proved by Goebel and Lim (see [14] and [22])
in the framework of Banach spaces. Since the proof has a metric nature
the lemma holds true in complete geodesic metric spaces with convex
metric.

Lemma 2.14. Let X be a complete geodesic metric space with convex
metric, {xn} be a bounded sequence in X and let K be a nonempty closed
convex subset of X. Then there exists a subsequence of {xn} which is
regular relative to K.

3. Geodesic metric spaces

Theorem 3.1. Let X be a complete geodesic metric space with convex
metric, and K be a nonempty closed convex bounded subset of X. Let
T : K → KC(K) be a multivalued mapping satisfying the conditions (E)
and (Cλ) for some λ ∈ (0, 1). If the asymptotic center relative to K of
each sequence in K is nonempty and singleton, then T has a fixed point.

Proof. By Theorem 2.12 there exists an approximate fixed point se-
quence {xn} for T in K. We can choose a sequence yn ∈ T (xn) such
that

lim
n→∞

dist(xn, T (xn)) = lim
n→∞

d(xn, yn) = 0.

From Lemma 2.14, by passing to a subsequence, we may assume that
{xn} is regular. By assumption A(K, {xn}) = {z} is singleton. If r =
r(K, {xn}) = 0, then we have xn → z. Since T satisfies condition (E),
there exists η, µ ≥ 1 such that

dist(z, T (z)) ≤ d(z, xn) + dist(xn, T (z))

≤ (η + 1)d(z, xn) + µdist(xn, T (xn))→ 0 n→∞,

which implies that z ∈ T (z). In the other case if r > 0 there exists a
natural number n0 such that for every n ≥ n0,

λ dist(xn, T (xn)) ≤ d(xn, z)
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and hence from our assumption we have

H(T (xn), T (z)) ≤ d(xn, z), ∀n ≥ n0.

The compactness of T (z) implies that for each n ≥ 1 we can take zn ∈
T (z) such that

d(yn, zn) = dist(yn, T (z)).

Also we have

d(yn, zn) = dist(yn, T (z)) ≤ H(T (xn), T (z)) ≤ d(xn, z), ∀n ≥ n0.

Since T (z) is compact, the sequence {zn} has a convergent subsequence
{znk
} with limk→∞ znk

= w ∈ T (z). Note that

d(xnk
, w) ≤ d(xnk

, ynk
) + d(ynk

, znk
) + d(znk

, w)

≤ d(xnk
, ynk

) + d(xnk
, z) + d(znk

, w),

for nk ≥ n0. This implies that

lim sup
k→∞

d(xnk
, w) ≤ lim sup

k→∞
d(xnk

, z) ≤ r.

This implies by the regularity of {xn} and by uniqueness of asymptotic
center that z = w ∈ T (z). This completes the proof. �

Corollary 3.2. Let X be a complete UC space, and K be a nonempty
closed convex bounded subset of X. Let T : K → KC(K) be a multival-
ued mapping satisfying the conditions (E) and (Cλ) for some λ ∈ (0, 1).
Then T has a fixed point.

Corollary 3.3. Let X be a complete Ptolemy space with a uniformly
continuous midpoint map and K be a nonempty closed convex bounded
subset of X. Let T : K → KC(K) be a multivalued mapping satisfying
the conditions (E) and (Cλ) for some λ ∈ (0, 1). Then T has a fixed
point.

4. CAT(0) spaces

We need the following lemma for the proof of our main result.

Lemma 4.1. Let K be a closed convex subset of a CAT(0) space X.
Let T : K → P (K) be a multivalued mapping such that PT is quasi-
nonexpansive, where PT (x) = {y ∈ T (x) : d(x, y) = dist(x, T (x))}.
Then F (T ) is closed and convex.
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Proof. Let {pn} be a sequence in F (T ) such that pn → z as n → ∞.
Then PT (pn) = {pn}. By quasi-nonexpansivness of PT we have

dist(z, T (z)) ≤ dist(z, PT (z)) ≤ d(z, pn) + dist(pn, PT (z))

≤ d(z, pn) +H(PT (pn), PT (z))

≤ 2 d(z, pn)→ 0 n→∞.
This implies that z ∈ T (z), hence z ∈ F (T ). We now show that F (T )
is convex. For x, y ∈ F (T ) we have PT (x) = {x} and PT (y) = {y}. For
α ∈ [0, 1], put z = αx ⊕ (1 − α)y. Let w ∈ PT (z), then by Lemma 2.7
we have

d(w, z)2 = d(αx⊕ (1− α)y, w)2

≤ αd(w, x)2 + (1− α)d(w, y)2 − α(1− α)d(x, y)2

= αdist(w,PT (x))2 + (1− α)dist(w,PT (y))2

−α(1− α)d(x, y)2

≤ αH(PT (z), PT (x))2 + (1− α)H(PT (z), PT (y))2

−α(1− α)d(x, y)2

≤ αd(x, z)2 + (1− α)d(z, y)2 − α(1− α)d(x, y)2

≤ α(1− α)2d(x, y)2 + (1− α)α2d(x, y)2 − α(1− α)d(x, y)2

= α(1− α)(1− α+ α− 1)d(x, y)2 = 0

so that z = w ∈ PT (z) ⊂ T (z) and finally z ∈ F (T ). �

We remark that there exist examples of multivalued mappings for
which PT is nonexpansive (see [26] for details), so that the assumption
on T is not artificial.

Lemma 4.2. Let K be a closed convex subset of a CAT(0) space X. Let
T : K → CB(K) be a quasi-nonexpansive multivalued mapping. Assume
that T (p) = {p} for all p ∈ F (T ). Then F (T ) is closed and convex.

Proof. Let {pn} be a sequence in F (T ) such that pn → z as n → ∞.
Then by assumption T (pn) = {pn}. It follows that

dist(z, T (z)) ≤ d(z, pn) + dist(pn, T (z))

≤ d(z, pn) +H(T (pn), T (z))

≤ 2 d(z, pn)→ 0 n→∞.

This implies that z ∈ T (z), hence z ∈ F (T ). We now show that F (T )
is convex. For x, y ∈ F (T ) we have T (x) = {x} and T (y) = {y}. For
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α ∈ [0, 1], put z = αx⊕ (1− α)y. Let w ∈ T (z) , then we have

d(w, z)2 = d(αx⊕ (1− α)y, w)2

≤ αd(w, x)2 + (1− α)d(w, y)2 − α(1− α)d(x, y)2

= αdist(w, T (x))2 + (1− α)dist(w, T (y))2 − α(1− α)d(x, y)2

≤ αH(T (z), T (x))2 + (1− α)H(T (z), T (y))2 − α(1− α)d(x, y)2

≤ αd(x, z)2 + (1− α)d(z, y)2 − α(1− α)d(x, y)2

≤ α(1− α)2d(x, y)2 + (1− α)α2d(x, y)2 − α(1− α)d(x, y)2

= α(1− α)(1− α+ α− 1)d(x, y)2 = 0

so that z = w ∈ T (z) and finally z ∈ F (T ). �

As a corollary, we obtain the following result of Chaoha and Phon-
On [4].

Corollary 4.3. Let K be a closed convex subset of a CAT(0) space X.
Let T : K → K be a quasi-nonexpansive single valued mapping. Then
F (T ) is closed and convex.

Definition 4.4. Let K be a nonempty subset of a CAT(0) space X,
and T1, T2 : X → 2X be two multivalued mappings. We say that a pair
(T1, T2) commutes in K if for all x ∈ K

T1(T2(x)) = T2(T1(x),

where T1(T2(x)) =
⋃
y∈T2(x) T1(y).

Now we state the main result of this section.

Theorem 4.5. Let K be a nonempty closed convex bounded subset
of a complete CAT(0) space X. Let S : K → CB(K) be a quasi-
nonexpansive multivalued mapping, and let T : K → KC(K) be a
multivalued mapping satisfying the conditions (E) and (Cλ) for some
λ ∈ (0, 1). If the pair (S, T ) commutes in F (S) and S(p) = {p} for all
p ∈ F (S), then S and T have a common fixed point.

Proof. By Lemma 4.2, it follows that F (S) is a nonempty closed convex
subset of X. We show that for x ∈ F (S), T (x) ∩ F (S) 6= ∅. To see this,
let x ∈ F (S), and let y ∈ T (x) be the unique closest point to x. Since
S and T commute in x and S(x) = {x} we have

S(y) ⊂ ST (x) ⊂ TS(x) = T (x),
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and since S is quasi-nonexpansive, we have

dist(S(y), x) ≤ H(S(y), S(x)) ≤ d(y, x),

hence there exists z ∈ S(y) ⊂ T (x) such that d(z, x) = dist(S(y), x) ≤
d(y, x). Now by the uniqueness of y as the closest point to x, we get
y = z ∈ S(y) and therefore T (x) ∩ F (S) 6= ∅, for x ∈ F (S).

Now we find an approximate fixed point sequence in F (S) for T . Take
x0 ∈ F (S), since T (x0)∩F (S) 6= ∅, we can find y0 ∈ T (x0)∩F (S). Define

x1 = (1− λ)x0 ⊕ λy0.

Since F (S) is convex, we have x1 ∈ F (S). Let y1 ∈ T (x1) be taken in
such a way that

d(y0, y1) = dist(y0, T (x1)).

By the method described above we can prove that y1 ∈ F (S). Similarly,
we put x2 = (1− λ)x1 ⊕ λy1, and again we choose y2 ∈ T (x2) in such a
way that

d(y1, y2) = dist(y1, T (x2)).

By the same argument, we get y2 ∈ F (S). In this way we will find
a sequence {xn} in F (S) such that xn+1 = (1 − λ)xn ⊕ λyn where
yn ∈ T (xn) ∩ F (S) and

d(yn−1, yn) = dist(yn−1, T (xn)).

Therefore for every natural number n ≥ 1 we have

λ d(xn, yn) = d(xn, xn+1)

from which it follows that

λ dist(xn, T (xn)) ≤ λd(xn, yn) = d(xn, xn+1), n ≥ 1.

Since T satisfies the condition (Cλ) we have

H(T (xn), T (xn+1)) ≤ d(xn, xn+1), n ≥ 1,

hence for each n ≥ 1

d(yn, yn+1) = dist(yn, T (xn+1)) ≤ H(T (xn), T (xn+1)) ≤ d(xn, xn+1).

We now apply Lemma 2.6 to conclude that limn→∞ d(xn, yn) = 0 where
yn ∈ T (xn). From Lemma 2.14 by passing to a subsequence we may
assume that {xn} is regular. Put A(F (S), {xn}) = {z}. If

r = r(F (S), {xn}) = 0,
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then xn → z as n → ∞. Since T satisfies condition (E), there exist
η, µ ≥ 1 such that

dist(z, T (z)) ≤ d(z, xn) + dist(xn, T (z))

≤ (η + 1)d(z, xn) + µdist(xn, T (xn))→ 0 n→∞,

which implies that z ∈ T (z). In the other case, if r > 0, there exists a
natural number n0 such that for every n ≥ n0,

λ dist(xn, T (xn)) ≤ d(xn, z)

and hence from our assumption we have

H(T (xn), T (z)) ≤ d(xn, z), ∀n ≥ n0.

The compactness of T (z) implies that for each n ≥ 1 we can take zn ∈
T (z) such that

d(yn, zn) = dist(yn, T (z)).

Since yn ∈ F (S), by a similar argument, we obtain zn ∈ F (S). We also
have

d(yn, zn) = dist(yn, T (z)) ≤ H(T (xn), T (z)) ≤ d(xn, z), ∀n ≥ n0.

Since T (z) is compact, the sequence {zn} has a convergent subsequence
{znk
} with limk→∞ znk

= w ∈ T (z). Now, the closedness of F (S) implies
that w ∈ F (S). Note that

d(xnk
, w) ≤ d(xnk

, ynk
) + d(ynk

, znk
) + d(znk

, w)

≤ d(xnk
, ynk

) + d(xnk
, z) + d(znk

, w),

for nk ≥ n0. This implies that

lim sup
k→∞

d(xnk
, w) ≤ lim sup

k→∞
d(xnk

, z) ≤ r.

This implies, by the regularity of {xn} and by the uniqueness of asymp-
totic center, that z = w ∈ T (z). Hence z ∈ F (S)

⋂
F (T ). �

Theorem 4.6. Let K be a nonempty closed convex bounded subset of
a complete CAT(0) space X. Let S : K → P (K) be a multivalued
mapping such that PS is quasi-nonexpansive, and let T : K → KC(K)
be a multivalued mapping satisfying the conditions (E) and (Cλ) for
some λ ∈ (0, 1). If the pair (PS , T ) commutes in F (S), then they have
a common fixed point.
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Proof. According to Lemma 4.1, it follows that F (S) is a nonempty
closed convex subset of X. We show that for x ∈ F (S), T (x)∩F (S) 6= ∅.
To see this, let x ∈ F (S) then we have PS(x) = {x}. Let y ∈ T (x) be
the unique closest point to x, since the pair (PS , T ) commutes in x and
we have

PS(y) ⊂ PST (x) ⊂ TPS(x) = T (x)

and since PS is quasi-nonexpansive, we have

dist(PS(y), x) ≤ H(PS(y), PS(x)) ≤ d(y, x).

Thus there exists z ∈ PS(y) ⊂ T (x) such that d(z, x) = dist(PS(y), x) ≤
d(y, x). Now by the uniqueness of y as the closest point to x, we get
y = z ∈ PS(y) ⊂ S(y) and therefore T (x)∩F (S) 6= ∅, for x ∈ F (S). The
rest of proof is exactly similar to the proof of Theorem 4.5. �

Corollary 4.7. Let K be a nonempty closed convex bounded subset of a
complete CAT(0) space X. Let t : K → K be a quasi nonexpansive single
valued mapping, and let T : K → KC(K) be a multivalued mapping
satisfying the conditions (E) and Cλ for some λ ∈ (0, 1). If t and T
commute, then they have a common fixed point, i.e. there exists a point
z ∈ K such that z = t(z) ∈ T (z).

We now give an example to illustrate Theorem 4.5.
Example. Define two mappings T and S on the closed interval [0, 5] by

S(x) = [
x

6
,
x

2
], T (x) =

{
[0, x5 ], x 6= 5

{1} x = 5.

Then S is quasi-nonexpansive, and 0 is the only fixed point of S. Also
T satisfies conditions (Cλ) and E (for details, see [1]). It is easy to see
that S and T commute on F (S) = {0} and that 0 is a common fixed
point of T and S.

5. Banach spaces

Let X be a Banach space. X is said to be strictly convex if ‖x+y‖ < 2
for all x, y ∈ X, ‖x‖ = ‖y‖ = 1 and x 6= y. We recall that a Banach space
X is said to be uniformly convex in every direction (UCED, for short)
provided that for every ε ∈ (0, 2] and z ∈ X with ‖z‖ = 1, there exists
a positive number δ (depending on ε and z) such that for all x, y ∈ X
with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and x − y ∈ {tz : t ∈ [−2,−ε] ∪ [ε, 2]} we have
‖x+ y‖ ≤ 2(1− δ). X is said to be uniformly convex if X is UCED and
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inf{δ(ε, z) : ‖z‖ = 1} > 0 for all ε ∈ (0, 2]. It is rather obvious that
uniform convexity implies UCED, and UCED implies strict convexity.

It is also known that in a UCED Banach space X, the asymptotic
center of a bounded sequence with respect to a weakly compact convex
set is a singleton;

Lemma 5.1. Let K be a nonempty closed convex subset of a strictly
convex Banach space X. Let T : C → P (C) be a multivalued mapping
such that PT is quasi-nonexpansive, where PT (x) = {y ∈ T (x) : ‖x −
y‖ = dist(x, T (x))}. Then F (T ) is closed and convex.

Proof. Let {pn} be a sequence in F (T ) such that pn → z as n → ∞.
Then PT (pn) = {pn}. Since PT is quasi-nonexpansive we have

dist(z, PT (z)) ≤ d(z, pn) + dist(pn, PT (z))

≤ d(z, pn) +H(PT (pn), PT (z))

≤ 2 d(z, pn)→ 0 n→∞.
This implies that z ∈ Tz, hence z ∈ F (T ). We now show that F (T ) is
convex. For x, y ∈ F (T ) we have PT (x) = {x} and PT (y) = {y}. For
α ∈ [0, 1], put z = αx+ (1− α)y. Let w ∈ PT (z) , then we have

‖x− y‖ ≤ ‖x− w‖+ ‖w − y‖
= dist(w,PT (x)) + dist(w,PT (y))

≤ H(PT (z), PT (x)) +H(PT (z), PT (y))

≤ ‖x− z‖+ ‖z − y‖
= ‖x− y‖

By the strict convexity of X, there exist λ ∈ [0, 1] such that w = λx +
(1− λ)y. Since

λ‖x− y‖ = ‖w − y‖ = dist(w,PT (y))

≤ H(PT (z), PT (y))

≤ ‖y − z‖
= α‖x− y‖

and

(1− λ)‖x− y‖ = ‖w − x‖
= dist(w,PT (x))

≤ H(PT (z), PT (x))

≤ ‖x− z‖ = (1− α)‖x− y‖,
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we have 1 − λ ≤ 1 − α and λ ≤ α. These imply that λ = α. Hence
z = w ∈ PT (z) ⊂ T (z) and finally z ∈ F (T ). �

By the uniqueness of asymptotic center and using Lemma 5.1 and a
similar argument as in the proof of Theorem 4.6 we obtain the following
theorem.

Theorem 5.2. Let K be a nonempty weakly compact convex subset of a
UCED Banach space X. Let S : K → P (K) be a multivalued mapping
such that PS is quasi-nonexpansive, and let T : K → KC(K) be a
multivalued mapping satisfying the conditions (E) and (Cλ) for some
λ ∈ (0, 1). If the pair (PS , T ) commutes in F (S) then they have a
common fixed point.
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