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ON THE FISCHER-CLIFFORD MATRICES OF A

MAXIMAL SUBGROUP OF THE LYONS GROUP Ly

J. MOORI AND T. SERETLO∗

Communicated by Ali Reza Ashrafi

Abstract. The non-split extension group G = 53.L(3, 5) is a sub-
group of order 46500000 and of index 1113229656 in Ly. The group
G in turn has L(3, 5) and 52:2.A5 as inertia factors. The group
52:2.A5 is of order 3000 and is of index 124 in L(3, 5). The aim of

this paper is to compute the Fischer-Clifford matrices of G, which
together with associated partial character tables of the inertia fac-
tor groups, are used to compute a full character table of G. A par-
tial projective character table corresponding to 52:2A5 is required,
hence we have to compute the Schur multiplier and projective char-
acter table of 52:2A5.

1. Introduction

The Lyons group Ly, is a sporadic simple group of order
28.37.56.7.11.31.37.67 = 51765179004000000. It was discovered in 1970
by Richard Lyons [21], using the concept of classifying simple groups
with an involution centralizer 2.An. The smallest value of n for which
2.An has non-central involutions is n = 8, for which the McLaughlin
group M cL, has an involution centralizer 2.A8. The only other case
that arises is n = 11 which is in the Lyons group Ly, that is the Lyons
group has an involution centralizer 2.A11. Moreover, a 3-cycle in 2.A11

centralizes 2.A8 and the full centralizer of this 3-cycle in Ly is the triple
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cover 3.M cL of the McLaughlin group. The normalizer of the group
generated by this 3-cyle is 3.M cL:2.

The existence of this group and its uniqueness up to isomorphism was
shown by Sims [32,33], using coset enumeration and it is often referred
to as the ”Lyons-Sims” group. The group Ly has elements of order
37 and 67 which cannot be found in the monster and is one of the six
sporadic simple groups called the ”pariahs” which are not subgroups
of the monster. The other five ”pariahs” being J1, J3, J4, O

′N and Ru,
the last to be determined in [36] being J1. The group Ly has nine
conjugacy classes of maximal subgroups. One of the maximal subgroups
of the form, G = N .G is a group of order 46500000 = 26.3.56.31, where
N ∼= 53 and G ∼= L(3, 5). The group 53.L(3, 5) is also maximal in the
Baby Monster B. The aim of this paper is to compute the Fischer-
Clifford matrices which together with partial character tables of inertia
factor groups will be used to compute a character table for G. This
work is taken from [31], the notation used is consistent with that of the
ATLAS [9] and ATLAS of group representations V3 [35].

The method used is based on Ficher-Clifford Theory. Let G = N ·G,
where N C G and G/N ∼= G, be a group extension. The character table
of G can be constructed once we have

• the character tables (ordinary or projective) of the inertia factor
groups,
• the fusions of classes of the inertia factors into classes of G,
• the Fischer-Clifford matrices of G = N ·G.

Let ḡ ∈ Ḡ be a lifting of g ∈ G under the natural homomorphism
Ḡ −→ G and let [g] be a conjugacy class of elements of G with represen-
tative g. Let {θ1, θ2, . . . , θt} be a set of representatives of the orbits of Ḡ
on Irr(N) such that for 1 ≤ i ≤ t, we have inertia groups H̄i = IḠ(θi)
with the corresponding inertia factors Hi and let ψi be a projective
character of H̄i with factor set ᾱi such that (ψi)N = θi. For each [g] we
obtain the matrix M(g) given by

M(g) =


M1(g)
M2(g)

...
Mt(g)

 ,

where Mi(g) is the submatrix corresponding to the inertia group H̄i and
its inertia factor Hi. If Hi ∩ [g] = ∅, then Mi(g) will not exist and M(g)
does not contain Mi(g). The size of the matrix M(g) is l× c(g) where l
is the number of α−1

i -regular conjugacy classes of elements of the inertia
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factors Hi’s for 1 ≤ i ≤ t which fuse into [g] in G and c(g) is the number
of conjugacy classes of elements of Ḡ which correspond to the coset ḡN .
Then M(g) is the Fischer-Clifford matrix of Ḡ corresponding to the coset
ḡN . The partial character table of Ḡ on the classes {x1, x2, . . . , xc(g)} is
given by 

C1(g)M1(g)
C2(g)M2(g)

...
Ct(g)Mt(g)


where the Fischer-Clifford matrix M(g) is divided into blocks with each
block corresponding to an inertia group H̄i and Ci(g) is the partial
projective character table of Hi with factor set α−1

i consisting of the

columns corresponding to the α−1
i -regular classes that fuse into [g] in G.

We obtain the characters of Ḡ by multiplying the relevant columns of
the projective characters of Hi with factor set α−1

i by the rows of M(g).
The theory of Fischer-Clifford matrices, which is based on Clifford

Theory (see Clifford [8]), was developed by B. Fischer ( [12], [13] and
[14]). This technique has also been discussed and applied to both split
and non-split extension in several publications, for example in [1–6, 23,
25]. One can read more on Fischer-Clifford theory and projective char-
acters from [11, 22, 24, 34] and [10, 17, 18, 20, 26–28] respectively. For
the theory of characters one can also read Character Theory of Finite
Groups by Isaacs [19].

2. Construction of G ∼= 53.L(3, 5) and G ∼= L(3, 5)

From the ATLAS of group representation [35] we get two 111 × 111
matrices a, b over GF (5), with o(a) = 2, o(b) = 5, o(ab) = 14 and
Ly =< a, b >. From [35] we get Programme I, which computes the
generators of the 3rd maximal subgroup of Ly as used in [31]. Here we
use, a = input[1] and b = input[2] and we obtain x̄ = output[1] and ȳ =
output[2], where o(x̄) = 2, o(ȳ) = 3, o(x̄ȳ) = 31 andG =< x̄, ȳ > . From
[35] we see that o(x̄ȳx̄ȳ2) = 25 and if we let gen[1] = (x̄ȳx̄ȳ2)5, then
o(gen[1]) = 5, we also get that gen[2] = ȳgen[1]ȳ−1, gen[3] = x̄gen[2]x̄−1

and N = 53 =< gen[1], gen[2], gen[3] > . Let λi = gen[i], i = 1, 2, 3. We
use GAP to compute the conjugacy classes of G and also the fusion of
its classes into Ly. These are given in Table 1. The conjugacy classes of
G are represented in the well-known format of coset analysis technique
applied to both spilt and non-split group extensions. This technique has
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been used by various authors and several MSc and PhD students of the
first author, such as Mpono [22,23], Rodrigues [29] and Whitely [34].

Table 1: Conjugacy Classes of 53.L(3, 5)

[g]L(3,5) [x]53.L(3,5) C53.L(3,5)(x) −→ Ly

1A 1A 46500000 1A
5A 375000 5A

2A 2A 2400 2A

10A 600 10A

3A 3A 120 3A

15A 30 15B

4A 4A 480 4A

4B 4B 480 4A

4C 4C 80 4A

20A 20 20A

5B 2500 5A
5A 5C 1250 5B

5D 1250 5B

5B 25A 25 25A

6A 6A 120 6B
30A 30 30B

8A 8A 24 8B

8B 8B 24 8B

10B 100 10A

10A 10C 50 10B
10D 50 10B

12A 12A 24 12B

12B 12B 24 12B

20A 20B 20 20A

20B 20C 20 20A

24A 24A 24 24C

24B 24B 24 24B

24C 24C 24 24B

24D 24D 24 24C

31A 31A 1 31B

31B 31B 31 31A

31C 31C 31 31E

31D 31D 31 31D

31E 31E 31 31C

31F 31F 31 31B

31G 31G 31 31A

31H 31H 31 31E

31I 31I 31 31D

31J 31J 31 31C
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Since for the application of Fischer-Clifford theory we are required to
act G and G on N and on Irr(N), we should represent these groups in
terms of 3 × 3 matrices over GF (5). We used the technique which was
developed for determining these actions (see for example [31]). For this
purpose we regard N as a vector space V of dimension 3 over GF (5).
For us to be able to act on a three dimensional vector space V it be-
comes necessary to rewrite generators of G from 111 × 111 matrices to
3 × 3 matrices. To do this we have to act G on N by letting the two
generators of G, x̄ and ȳ, to act on the generators of N , λi, i = 1, 2, 3
by conjugation, using GAP [15]. Writing these as maps we get :

x̄ : λ1 → λ4
1, λ2 → λ3, λ3 → λ2;

ȳ : λ1 → λ2, λ2 → λ1λ2λ
4
3, λ3 → λ2

2λ
4
3;

and in 3× 3 matrix form over GF (5) we obtain matrices

x =

 4 0 0
0 0 1
0 1 0

 , y =

 0 1 0
1 1 4
0 2 4

 .

We let G =< x, y >. Then G ∼= L(3, 5) which means that the action
of G on N is isomorphic to L(3, 5).

3. Inertia factors of Ḡ

We use GAP [15] to compute the permutation character of Ly acting
on 53.L(3, 5). That is
χ(Ly|53.L(3, 5)) = 1a+ 45694a+ 381766a+ 1534500aa+ 3028266a+

4226695aa+ 11834746a+ 18395586abc+ 19212250a+ 21312500ab
+22609664abc+27252720aabbcd+28787220aa+29586865a+33813560aa+
38734375a + 43110144abcde + 45648306b + 45694000ab + 56022921a +
64906250a+ 71008476a.

We then use Programme C from [31] to compute the orbit lengths of
the actions on N and on Irr(N). We let G act on a full row vector space
V of dimension 3 over GF (5). We get two orbits on N of lengths 1 and
124. By Brauer’s Theorem [7] when G acts on Irr(N), we also get two
inertia groups H1 and H2 of index 1 and 124 in G, respectively.
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Since the affine subgroup of GL(3, 5) is of the form 52:GL(2, 5), which
also sits maximally inside L(3, 5) (note that GL(3, 5) = 4 × L(3, 5)),
we can easily see that the affine subgroup of L(3, 5) is of the form
52:SL(2, 5) ∼= 52:(2.A5). Thus the full inertia groups are H̄i = 53.Hi, i =
1, 2, where H1 = L(3, 5) and H2 = 52:(2.A5). We used GAP [15] to cal-
culate the character table of H2. We give the fusion of H2 into L(3, 5)
in Table 2.

Table 2. The fusion of 52:2.A5 into L(3, 5)

[x]52:2.A5
−→ [g1]L(3,5)

1a 1A

2a 2A

3a 3A
4a 4C

5a 5A

5b 5B
5c 5B

5d 5A

5e 5B
5f 5B

5g 5A
6a 6A
10a 10A

10b 10A

4. Projective character Table of 52:2.A5

From the fusions and orbit lengths and centralizer orders, we compute
the Fischer-Clifford matrix M(1A) of Ḡ, that is

M(1A) =

[
1 1

124 −1

]
.

Having computed M(1A) we want to determine the type of partial
character tables we are going to use for our computations. We will show
that the partial projective character table of H2 is required. We follow
the methods used in [1,4] and we use the character table of Ly =< a, b >.
Let Irr(Ly) = {Ψi : 1 ≤ i ≤ 53}, where the notation is the same as
the one used in the ATLAS [9]. From the list we take the values of
Ψ2, Ψ3, Ψ4 on 1A and 5A .
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CG(x) 46500000 375000
[x]Ly 1A 5A
Ψ2 2480 -20
Ψ3 2480 -20
Ψ4 45694 69

Let γ1, γ2 be the rows of the Fischer-Clifford matrix M(1A). Then

< (Ψ2)N , 1N >=
1

125
(2480− 20.124) = 0.

Since < (Ψ2)N , 1N >= 0, we get that 2480 = 0+20.124, so that (Ψ2)N =
0.γ1 + 20.γ2. Let [x1, · · · , xt] be the transpose of the partial entries
for the ordinary characters of H2 = 52:2.A5 on 1A ∈ L(3, 5). Then
C2(1A)M(1A) is a t×2 matrix with entries on the first column 124x1 =
2480. Hence x1 = 20. But from the ordinary character table of H2 =
52:2.A5 one can see that there is no character of degree 20. Similarly

< (Ψ4)N , 1N >=
1

125
(45694− 69.124) = 434,

which gives us x1 = 365 and this is a very large character degree that is
not possible for H2 = 52:2.A5, and this holds for the remaining charac-
ters. Hence we have to use the projective character table of H2. There
are three primes dividing the order of H2 namely 2, 3 and 5. Using the
fact that H2 = 52:2.A5 is a perfect group, we use GAP to determine
its Schur multiplier (one can also use MAGMA which has a programme
that computes the Schur multiplier in general). These are also given as
Programmes J and J ′ in [31]. The p - Sylow subgroups corresponding to
p = 2 and 3 are cyclic , using methods from [1,4] the Schur multipliers of
both p-Sylow subgroups are trivial. Hence the Schur multiplier of H2 is
the cyclic group of order 5. The projective characters of H2 with factor
set α−1 where α5 ∼ 1 is given in Table 3. Note that from this table we
can see that 5a, 5b, 5c, 5e, 5f are all not α regular classes and we have a
total of nine α regular classes.

Let ω = −E(5) − E(5)4, and ω∗ = 1 − ω = −E(5)2 − E(5)3. Then
ω + ω∗ = 1, ω∗ω = ωω∗ = −1, ω2 + (ω∗)2 = 3, ω3 + (ω∗)3 = 4. In
fact we get a Fibonacci sequence, with fi+1 = fi + fi−1, i ≥ 2, where
fi = ωi + (ω∗)i. This helps us to compute the Fischer-Clifford matrices
and character table of G = 53.L(3, 5).
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Table 3. The projective character table of 52:2.A5

with factor set α−1

1a 5a 2a 4a 3a 6a 5b 5c 5d 10a 5e 5f 5g 10b

χ1 5 0 1 1 1 1 0 0 1 1 0 0 1 1

χ2 15 0 3 -1 0 0 0 0 ω ω 0 0 ω∗ ω∗

χ3 15 0 3 -1 0 0 0 0 ω∗ ω∗ 0 0 ω ω
χ4 20 0 4 0 1 1 0 0 -1 -1 0 0 -1 -1

χ5 20 0 4 0 1 -1 0 0 -1 1 0 0 -1 1
χ6 25 0 5 1 -1 -1 0 0 0 0 0 0 0 0

χ7 10 0 2 0 -1 1 0 0 −ω ω 0 0 -ω∗ ω∗

χ8 10 0 2 0 -1 1 0 0 -ω∗ ω∗ 0 0 −ω ω
χ9 30 0 6 0 0 0 0 0 1 -1 0 0 1 -1

Table 4. The Fischer-Clifford matrices of 53.L(3, 5)

M(1A) =

[
1 1

124 −1

]
M(2A) =

[
1 1
4 −1

]
M(3A) =

[
1 1
−4 1

]
M(4C) =

[
1 1
4 −1

]
M(5A) =

 1 1 1
10 −5ω∗ −5ω
10 −5ω −5ω∗

 M(10A) =

 1 1 1
2 −ω −ω∗
2 −ω∗ −ω


M(6A) =

[
1 1
−4 1

]
All Others =

[
1
]

5. Fischer-Clifford matrices of G

Having computed the projective character table of H2 (see Table 3),
we get the α-regular conjugacy classes. These together with the fusions
of 52:2.A5 into L(3, 5) given in Table 2 help us to compute the sizes of
the Fischer-Clifford matrices of G. We use the projective characters,
the fusions, the centralizer orders of G and properties of Fisher-Clifford
matrices, to compute the Fischer - Clifford matrices, which are given in
Table 4.

To compute the character table of 53.L(3, 5), as an example consider
the following. Let C1(5A) and C2(5A) be the partial character tables of
the inertia factors for the classes that fuse to 5A ∈ L(3, 5). The portions
of the character table of G = 53.L(3, 5) corresponding to the coset 5A
are (note that 5d of H2 fuses to 5A of L(3, 5)):
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C1(5A)M1(5A) =



1
5
6
6
6

−4
−4
−4
−4
−4
−4
−4
−4
−4
−4
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
0
5
5
5

11



[1 1 1] =



1 1 1
5 5 5
6 6 6
6 6 6
6 6 6

−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−4 −4 −4
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1
0 0 0
5 5 5
5 5 5
5 5 5

11 11 11



,

C2(5A)M2(5A) =



1 1
A A∗

A∗ A
−1 −1
0 0

−A −A∗

−A∗ −A
−1 −1
1 1


[

10 −5A∗ −5A
10 −5A −5A∗

]
=



20 −5 −5
10 10 −15
10 −15 10

−20 5 5
0 0 0

−10 −10 15
−10 15 −10
−20 5 5
20 −5 −5


.

The fusion of G to Ly together with the restriction of characters of
Ly to G forces the signs of the Fischer-Clifford matrices and the orders
of the elements of the conjugacy classes of G.

6. Power maps and character Table of G

We used a programme written in GAP (see Programe E in [31])to-
gether with the fusion map from G to Ly and computed the power
maps of elements of G. These are given in Table 5. The character table
of 53.L(3, 5) is given in Table 6.
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Table 5. The Power Maps of elements of 53.L(3, 5)

[g]L(3,5) [x]53.L(3,5) 2 3 5 31 [g]L(3,5) [x]53.L(3,5) 2 3 5 31

1A 1A 1A 1A 1A 1A 2A 2A 1A 2A 2A 2A
5A 5A 5A 1A 5A 10A 5A 10A 2A 10A

3A 3A 3A 1A 3A 3A 4A 4A 2A 4A 4A 4A

15A 15A 5A 1A 15A 4B 4B 2A 4A 4A 4A
4C 4C 2A 4C 4C 4C

5A 5B 5B 5B 1A 5B 5B 25A 25A 25A 5A 25A
5C 5C 5C 1A 5C
5D 5D 5D 1A 5D

6A 6A 3A 2A 6A 6A 10A 10B 5A 10B 2A 10B

30A 15A 5A 6A 30A 10C 5A 10C 2A 10C
10D 5A 10D 2A 10D

8A 8A 4A 8A 8A 8A 8B 8B 4B 8B 8B 8B

12A 12A 6A 4A 12A 12A 12B 12B 6A 4B 12B 12B

20A 20A 10A 20A 4A 20A 20B 20B 10A 20B 4B 20B

24A 24A 12A 8A 24A 24A 24B 24B 12B 8B 24B 24B

24C 24C 12A 8A 24C 24C 24D 24D 12B 8B 24D 24D

31A 31A 31A 31A 31A 1A 31B 31B 31B 31B 31B 1A
31C 31C 31C 31C 31C 1A 31D 31D 31D 31D 31D 1A
31E 31E 31E 31E 31EA 1A 31F 31B 31F 31F 31F 1A

31G 31G 31G 31G 31G 1A 31H 31H 31H 31H 31H 1A
31I 31I 31I 31I 31I 1A 31J 31J 31J 31J 31J 1A
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Table 6. The character table of 53.L(3, 5)

1A 2A 3A 4A 4B 4C 5A 5B

1a 5a 2a 10a 3a 15a 4a 4b 4c 20a 5b 5c 5d 25a

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 30 30 6 6 0 0 6 6 2 2 5 5 5 0

χ3 31 31 7 7 1 1 -5 -5 -1 -1 6 6 6 1
χ4 31 31 -5 -5 1 1 A /A 1 1 6 6 6 1
χ5 31 31 -5 -5 1 1 /A A 1 1 6 6 6 1
χ6 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1
χ7 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ8 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1
χ9 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1
χ10 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ11 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1
χ12 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1
χ13 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ14 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1
χ15 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ16 124 124 4 4 1 1 4 4 0 0 -1 -1 -1 -1
χ17 124 124 4 4 1 1 4 4 0 0 -1 -1 -1 -1
χ18 124 124 4 4 1 1 -4 -4 0 0 -1 -1 -1 -1

χ19 124 124 4 4 1 1 -4 -4 0 0 -1 -1 -1 -1
χ20 124 124 -4 -4 -2 -2 B -B 0 0 -1 -1 -1 -1
χ21 124 124 -4 -4 -2 -2 -B B 0 0 -1 -1 -1 -1

χ22 124 124 -4 -4 1 1 -B B 0 0 -1 -1 -1 -1
χ23 124 124 -4 -4 1 1 B -B 0 0 -1 -1 -1 -1
χ24 124 124 -4 -4 1 1 -B B 0 0 -1 -1 -1 -1

χ25 124 124 -4 -4 1 1 B -B 0 0 -1 -1 -1 -1
χ26 125 125 5 5 -1 -1 5 5 1 1 0 0 0 0
χ27 155 155 11 11 -1 -1 -1 -1 -1 -1 5 5 5 0

χ28 155 155 -1 -1 -1 -1 C /C 1 1 5 5 5 0
χ29 155 155 -1 -1 -1 -1 /C C 1 1 5 5 5 0
χ30 186 186 -6 -6 0 0 6 6 -2 -2 11 11 11 1
χ31 620 -5 4 -1 -4 1 0 0 -4 1 20 -5 -5 0

χ32 1860 -15 12 -3 0 0 0 0 4 -1 10 10 -15 0
χ33 1860 -15 12 -3 0 0 0 0 4 -1 10 -15 10 0
χ34 2480 -20 16 -4 -4 1 0 0 0 0 -20 5 5 0

χ35 3100 -25 20 -5 4 -1 0 0 -4 1 0 0 0 0
χ36 1240 -10 -8 2 4 -1 0 0 0 0 -10 -10 15 0
χ37 1240 -10 -8 2 4 -1 0 0 0 0 -10 15 -10 0

χ38 2480 -20 -16 4 -4 1 0 0 0 0 -20 5 5 0

χ39 3720 -30 -24 6 0 0 0 0 0 0 20 -5 -5 0
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The character table of 53L(3, 5)(continued)

6A 8A 8B 10A 12A 12B 20B 20C 24A 24B 24C 24D

6a 30a 8a 8b 10b 10c 10d 12a 12b 20b 20c 24a 24b 24c 24d

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0

χ3 1 1 -1 -1 2 2 2 1 1 0 0 -1 -1 -1 -1
χ4 1 1 D -D 0 0 0 -1 -1 F /F D -D D -D
χ5 1 1 -D D 0 0 0 -1 -1 /F F -D D -D D

χ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ16 1 1 2 2 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1

χ17 1 1 -2 -2 -1 -1 -1 1 1 -1 -1 1 1 1 1
χ18 1 1 E -E -1 -1 -1 -1 -1 1 1 -D D -D D
χ19 1 1 -E E -1 -1 -1 -1 -1 1 1 D -D D -D

χ20 2 2 0 0 1 1 1 -E E -D D 0 0 0 0
χ21 2 2 0 0 1 1 1 E -E D -D 0 0 0 0
χ22 -1 -1 0 0 1 1 1 -D D D -D G /G -G -/G

χ23 -1 -1 0 0 1 1 1 D -D -D D /G G -/G -G
χ24 -1 -1 0 0 1 1 1 -D D D -D -G -/G G /G
χ25 -1 -1 0 0 1 1 1 D -D -D D -/G -G /G G
χ26 -1 -1 -1 -1 0 0 0 -1 -1 0 0 -1 -1 -1 -1

χ27 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
χ28 -1 -1 -D D -1 -1 -1 1 1 D -D -D D -D D
χ29 -1 -1 D -D -1 -1 -1 1 1 -D D D -D D -D

χ30 0 0 0 0 -1 -1 -1 0 0 1 1 0 0 0 0
χ31 4 -1 0 0 4 -1 -1 0 0 0 0 0 0 0 0
χ32 0 0 0 0 2 -3 2 0 0 0 0 0 0 0 0

χ33 0 0 0 0 2 2 -3 0 0 0 0 0 0 0 0
χ34 4 -1 0 0 -4 1 1 0 0 0 0 0 0 0 0
χ35 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

χ36 4 -1 0 0 2 -3 2 0 0 0 0 0 0 0 0
χ37 4 -1 0 0 2 2 -3 0 0 0 0 0 0 0 0

χ38 -4 1 0 0 4 -1 -1 0 0 0 0 0 0 0 0

χ39 0 0 0 0 -4 1 1 0 0 0 0 0 0 0 0
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The character table of 53.L(3, 5)(continued)

31A 31B 31C 31D 31E 31F 31G 31H 31I 31J

31a 31b 31c 31d 31e 31f 31g 31h 31i 31j

χ1 1 1 1 1 1 1 1 1 1 1
χ2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ3 0 0 0 0 0 0 0 0 0 0
χ4 0 0 0 0 0 0 0 0 0 0
χ5 0 0 0 0 0 0 0 0 0 0

χ6 H /H L /L K /K J /J I /I
χ7 /H H /L L K /L /K /K /I I
χ8 I /I H /H L /L K /K J /J

χ9 /I I /H H /L L /K K /J J
χ10 J /J I /I H /H L /L K /K
χ11 /J J /I I /H H /L L /K K
χ12 K /K J /J I /I H /H /L L
χ13 /K K /J J /I I /H H /L L

χ14 L /L K /K J /J I /I H /H
χ15 /L L /K K /J J /I I /H H
χ16 0 0 0 0 0 0 0 0 0 0

χ17 0 0 0 0 0 0 0 0 0 0
χ18 0 0 0 0 0 0 0 0 0 0
χ19 0 0 0 0 0 0 0 0 0 0

χ20 0 0 0 0 0 0 0 0 0 0
χ21 0 0 0 0 0 0 0 0 0 0
χ22 0 0 0 0 0 0 0 0 0 0

χ23 0 0 0 0 0 0 0 0 0 0
χ24 0 0 0 0 0 0 0 0 0 0
χ25 0 0 0 0 0 0 0 0 0 0
χ26 1 1 1 1 1 1 1 1 1 1

χ27 0 0 0 0 0 0 0 0 0 0
χ28 0 0 0 0 0 0 0 0 0 0
χ29 0 0 0 0 0 0 0 0 0 0

χ30 0 0 0 0 0 0 0 0 0 0
χ31 0 0 0 0 0 0 0 0 0 0
χ32 0 0 0 0 0 0 0 0 0 0

χ33 0 0 0 0 0 0 0 0 0 0
χ34 0 0 0 0 0 0 0 0 0 0
χ35 0 0 0 0 0 0 0 0 0 0

χ36 0 0 0 0 0 0 0 0 0 0
χ37 0 0 0 0 0 0 0 0 0 0

χ38 0 0 0 0 0 0 0 0 0 0

χ39 0 0 0 0 0 0 0 0 0 0

A = -1+6*E(4) = -1+6*ER(-1) = -1+6i
B = 4*E(4) = 4*ER(-1) = 4i
C = -5+6*E(4) = -5+6*ER(-1) = -5+6i
D = E(4) = ER(-1) = i
E = 2*E(4) = 2*ER(-1) = 2i
F = -1+E(4) = -1+ER(-1) = -1+i

G = −E(24)11 + E(24)19

H = E(31) + E(31)5 + E(31)25

I = E(31)3 + E(31)13 + E(31)15

J = E(31)8 + E(31)9 + E(31)14

K = E(31)11 + E(31)24 + E(31)27

L = E(31)2 + E(31)10 + E(31)19
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