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Abstract. For a given measure space (X,B, µ) we construct all
measure spaces (Y,C , λ) in which (X,B, µ) is embeddable. The
construction is modeled on the ultrafilter construction of the Stone–
Čech compactification of a completely regular topological space.
Under certain conditions the construction simplifies. Examples are
given when this simplification occurs.
Keywords: Ultrafilter, thick subset, set of full outer measure,
topological measure space, Baire measure, Stone–Čech compacti-
fication, realcompactification.
MSC(2010): Primary: 28A05; Secondary: 54D35, 54D60, 28C15.

1. Introduction

A measurable space (X,B) is said to be embedded in a measurable
space (Y,C ) (denoted by (X,B) ⊆ (Y,C )) if X ⊆ Y and

B = {C ∩X : C ∈ C }.

A measure space (X,B, µ) is said to be embedded in a measure space
(Y,C , λ) (denoted by (X,B, µ) ⊆ (Y,C , λ)) if (X,B) ⊆ (Y,C ) and
µ(C∩X) = λ(C) for each C ∈ C . In this note, for a given measure space
(X,B, µ), we construct all measure spaces (Y,C , λ) in which (X,B, µ)
is embedded. Equivalently, for a given measure space (X,B, µ), we
construct all measure spaces (Y,C , λ) which contains (X,B, µ) as a
thick subspace. (Recall that a subset X of a measure space (Y,C , λ) is
said to be thick (or of full outer measure) if λ(C) = 0 for each C ∈ C
such that C ⊆ Y \X, equivalently, if λ∗(Y \X) = 0, where λ∗ denotes
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the inner measure induced by λ. If X is a thick subset of (Y,C , λ) and
if

B = {C ∩X : C ∈ C }

and µ(C∩X) = λ(C) for each C ∈ C , then (X,B, µ) is a measure space
which is embedded in (Y,C , λ). Conversely, if (X,B, µ) is embedded in
(Y,C , λ), then X is a thick subset of (Y,C , λ); see e.g. Theorem 17.A of
[4].) Our construction here is analogous to the ultrafilter construction
of the Stone–Čech compactification of a completely regular topological
space X. (Completely regular topological spaces are always assumed to
be Hausdorff.)

We recall some basic facts, definitions and notation. For details we
refer the reader to [1], [3] and [4]. Let (X,B) be a measurable space.
A non-empty A ⊆ B is called a filter-base in B if for every A,B ∈ A
there exists a non-empty C ∈ A such that C ⊆ A∩B. A filter F in B
is a filter-base such that B ∈ F whenever B ∈ B and F ⊆ B for some
F ∈ F . An ultrafilter in B is a maximal (with respect to ⊆) filter. An
ultrafilter is called free if it has empty intersection, otherwise, it is called
fixed. An ultrafilter is said to have the countable intersection property
(c.i.p., in short) if every countable number of its elements has a non-
empty intersection. It is known that every filter-base in B is contained
in some ultrafilter in B, and that a filter-base A in B is an ultrafilter if
and only if for each B ∈ B if B meets every element of A then B ∈ A .
Note that an ultrafilter F in B has c.i.p. if and only if it is σ-complete,
i.e., it is closed under countable intersections.

Let X be a topological space. By a zero-set in X we mean a set
of the form f−1(0) where f : X → [0, 1] is continuous; the comple-
ment of a zero-set is called a cozero-set; denote Z(f) = f−1(0) and
Coz(f) = X\Z(f). Let Z (X) and Coz(X) denote the set of all zero-sets
and the set of all cozero-sets of X, respectively. Let X be a completely
regular topological space. A compactification of X is a compact Haus-
dorff topological space which containsX as a dense subspace. We denote
by βX the Stone–Čech compactification of X, which always exists, and
is characterized by either of the following properties:

• Every continuous function from X to a compact space is contin-
uously extendible over βX.

• Every continuous function from X to [0, 1] is continuously ex-
tendible over βX.
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• For every Z, S ∈ Z (X) such that Z ∩ S = ∅ we have

clβXZ ∩ clβXS = ∅.
• For every Z, S ∈ Z (X) we have

clβX(Z ∩ S) = clβXZ ∩ clβXS.

Note, in particular, this implies that disjoint zero-sets (and thus disjoint
closed-open subsets) in X have disjoint closures in βX. For a completely
regular topological space X the Hewitt realcompactification υX of X is
the subspace of βX defined by

υX =
∩{

C : C ∈ Coz(βX) and X ⊆ C
}
.

A topological space is said to be realcompact if it is homeomorphic to
a closed subspace of some topological product of the real line. Every
regular Lindelöf topological space is realcompact. It is known that a
completely regular topological space X is realcompact if and only if
X = υX if and only if for every p ∈ βX\X there exists a zero-set Z in
βX such that p ∈ Z and Z ∩X = ∅.

A topological measurable space is a triple (X,O,B) where (X,B) is
a measurable space and (X,O) is a topological space such that O ⊆ B,
i.e., every open set (and thus every Borel set) is measurable.

This note is organized as follows. In Section 2 we construct all measure
spaces (Y,C , λ) in which a given measure space (X,B, µ) is embedded.
In Section 3 we simplify the construction under certain additional condi-
tions on (X,B, µ). Indeed, we prove that if the points ofX are separated
by measurable sets in B and there is no free ultrafilter in B with c.i.p.,
then (X,B, µ) is embeddable in (Y,C , λ) if and only if (Y,C , λ) is ob-
tained from (X,B, µ) by “blowing” certain points ofX up and “pasting”
a certain measurable space toX in a certain way. In Section 4 we provide
examples satisfying the assumption of the theorem in Section 3, i.e., we
find examples of measure spaces (X,B, µ) with no free ultrafilter in B
having c.i.p. It turns out that the class of such measure spaces (X,B, µ)
is reasonably large (e.g., it contains the class of all first-countable real-
compact topological measure spaces, thus in particular, containing all
n-dimensional Lebesgue measure spaces) and behaves very nicely in con-
nection with the standard operations on measure spaces (e.g., we show
that for any σ-finite measure spaces (X,B, µ) and (Y,C , λ) such that in
each of which singletons are measurable, considering the measure space
(X × Y,B × C , µ × λ), there is no free ultrafilter in B × C with c.i.p.
if and only if there is a free ultrafilter with c.i.p. neither in B nor in
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C .) Finally, in Section 5 we give examples of measure spaces (X,B, µ)
having arbitrarily large number of free ultrafilter in B with c.i.p. We
leave some problems open which are formally stated.

2. The construction of measure spaces in which a given
measure space (X,B, µ) is embeddable

The following lemma is well known.

Lemma 2.1. Let (X,B) be a measurable space. Let U be an ultrafilter
in B.

(1) For any B ∈ B either B ∈ U or X\B ∈ U .
(2) Suppose that U has c.i.p. and B1, B2, . . . ∈ B. Then

(2.1)
∞∪
n=1

Bn ∈ U

if and only if Bn ∈ U for some n ∈ N.

Proof. To show (1), note that if B /∈ U for some B ∈ B, then, since U
is an ultrafilter, we have B ∩ U = ∅ for some U ∈ U . Thus U ⊆ X\B,
which implies that X\B ∈ U .

To show (2), note that (2.1) holds trivially if Bn ∈ U for some n ∈ N.
To show the converse, suppose that (2.1) holds, while Bn /∈ U for each
n ∈ N. For each n ∈ N (since U is an ultrafilter) there exists some
Un ∈ U such that Bn ∩ Un = ∅. Now

∞∩
i=1

Ui ∩
∞∪
n=1

Bn =

∞∪
n=1

( ∞∩
i=1

Ui ∩Bn

)
⊆

∞∪
n=1

(Un ∩Bn) = ∅

contradicting the fact that U has c.i.p. □

Theorem 2.2. Let (X,B, µ) be a measure space. Then (Y,C , λ) is a
measure space in which (X,B, µ) is embedded if and only if there exists
a measurable space (Z,D), a collection {DB : B ∈ B} of non-empty
subsets of D such that

(1) ∅ ∈ D∅;
(2) if B ∈ B, then

{Z\D : D ∈ DB} ⊆ DX\B;
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(3) if B1, B2, . . . ∈ B, then{ ∞∪
n=1

Dn : Dn ∈ DBn

}
⊆ D ∪∞

n=1 Bn
;

and a collection {SU : U ∈ U} of pairwise disjoint non-empty sets,
bijectively indexed by a collection U of ultrafilters in B with c.i.p., where
the sets X, SU for any U ∈ U, and Z are pairwise disjoint, such that

Y = X ∪
∪

U ∈U
SU ∪ Z,

C =
{
B ∪

∪
B∈U ∈U

SU ∪D : B ∈ B and D ∈ DB

}
,

and λ : C → [0,∞] is given by

λ
(
B ∪

∪
B∈U ∈U

SU ∪D
)
= µ(B)

for each B ∈ B and D ∈ DB.

Proof. Suppose that Y , C and λ are defined as in the statement of the
theorem. We show that (Y,C , λ) is a measure space in which (X,B, µ)
is embedded. First, we verify that C is a σ-algebra on Y . By (1) we
have ∅ ∈ C . Let C ∈ C . We show that Y \C ∈ C . Let

C = B ∪
∪

B∈U ∈U
SU ∪D

for some B ∈ B and D ∈ DB. Note that for each U ∈ U we have B /∈ U
if and only if X\B ∈ U ; this is because if B /∈ U then X\B ∈ U by
Lemma 2.1; the converse is trivial. Therefore

Y \C =
(
X ∪

∪
U ∈U

SU ∪ Z
)
\
(
B ∪

∪
B∈U ∈U

SU ∪D
)

= (X\B) ∪
( ∪

U ∈U
SU \

∪
B∈U ∈U

SU

)
∪ (Z\D)

= (X\B) ∪
∪

B/∈U ∈U

SU ∪ (Z\D)

= (X\B) ∪
∪

X\B∈U ∈U

SU ∪ (Z\D).
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By (2) we have Z\D ∈ DX\B. Thus Y \C ∈ C . Now, to show that C is
closed under countable unions, let C1, C2, . . . ∈ C . Then

Cn = Bn ∪
∪

Bn∈U ∈U
SU ∪Dn

where Bn ∈ B and Dn ∈ DBn for each n ∈ N. Using Lemma 2.1, we
have

∞∪
n=1

Cn =

∞∪
n=1

(
Bn ∪

∪
Bn∈U ∈U

SU ∪Dn

)
=

∞∪
n=1

Bn ∪
∞∪
n=1

∪
Bn∈U ∈U

SU ∪
∞∪
n=1

Dn

=
∞∪
n=1

Bn ∪
∪

∪∞
n=1 Bn∈U ∈U

SU ∪
∞∪
n=1

Dn.

By (3) we have
∞∪
n=1

Dn ∈ D ∪∞
n=1 Bn

.

Thus
∞∪
n=1

Cn ∈ C .

This shows that C is a σ-algebra on Y . Next, we show that λ is a
measure on C . Note that λ(∅) = 0. If C1, C2, . . . ∈ C are disjoint, then
using the above results and notation we have

λ
( ∞∪

n=1

Cn

)
= µ

( ∞∪
n=1

Bn

)
=

∞∑
n=1

µ(Bn) =

∞∑
n=1

λ(Cn).

This shows that (Y,C , λ) is a measure space. Now we show that (X,B, µ)
is embedded in (Y,C , λ). Obviously, by our definitions we have X ⊆ Y
and C ∩X ∈ B for each C ∈ C . Conversely, for each B ∈ B, since by
our assumption DB is non-empty, we have B = C ∩X for some C ∈ C .
Thus

B = {C ∩X : C ∈ C }.
Also, it is obvious that λ(C) = µ(C ∩ X) for each C ∈ C . Therefore
(X,B, µ) is embedded in (Y,C , λ).
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Now, suppose that (Y,C , λ) is a measure space in which (X,B, µ) is
embedded. We show that (Y,C , λ) can be constructed as in the previous
part. Note that X ⊆ Y . Define

Z = {p ∈ Y \X : p ∈ C ⊆ Y \X for some C ∈ C }
and

D = {C ∩ Z : C ∈ C }.
Then obviously (Z,D) is a measurable space. Define

DB = {C ∩ Z : C ∈ C and C ∩X = B}
for each B ∈ B. Obviously DB ⊆ D and DB is non-empty for each B ∈
B. We verify that conditions (1)–(3) of the theorem hold. Condition
(1) holds trivially. To show condition (2), note that if D ∈ DB for some
B ∈ B then D = C ∩ Z, where C ∈ C and C ∩X = B. Thus

Z\D = Z\(C ∩ Z) = Z ∩ (Y \C).

Now, since
(Y \C) ∩X = X\(C ∩X) = X\B

we have Z\D ∈ DX\B. Therefore

{Z\D : D ∈ DB} ⊆ DX\B.

To show condition (3), let Bn ∈ B and Dn ∈ DBn for each n ∈ N. Then
Dn = Cn ∩Z where Cn ∈ C and Cn ∩X = Bn for each n ∈ N. We have

∞∪
n=1

Dn =

∞∪
n=1

(Z ∩ Cn) = Z ∩
∞∪
n=1

Cn

and

X ∩
∞∪
n=1

Cn =

∞∪
n=1

(X ∩ Cn) =

∞∪
n=1

Bn

where
∞∪
n=1

Cn ∈ C .

Thus
∞∪
n=1

Dn ∈ D ∪∞
n=1 Bn

,

i.e., { ∞∪
n=1

Dn : Dn ∈ DBn

}
⊆ D ∪∞

n=1 Bn
.
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This shows conditions (1)–(3). For each p ∈ (Y \X)\Z let

Up = {C ∩X : p ∈ C ∈ C }.

Claim 1. For each p ∈ (Y \X)\Z the set Up is an ultrafilter in B which
has c.i.p.

Proof of Claim 1. First note that

(2.2) (Y \X)\Z = {y ∈ Y \X : C∩X ̸= ∅ for each C ∈ C with y ∈ C}.

Let p ∈ (Y \X)\Z. By (2.2) we have ∅ /∈ Up. It is obvious that ∅ ̸=
Up ⊆ B and that Up is closed under finite intersections. Now, suppose
that U ⊆ B for some U ∈ Up and B ∈ B. Then U = C ∩X for some
C ∈ C such that p ∈ C, and B = G ∩ X for some G ∈ C . If p /∈ G
then p ∈ Y \G ∈ C . Thus p ∈ C ∩ (Y \G) ∈ C and therefore by (2.2)
and the choice of p the set C ∩ (Y \G) ∩X is non-empty. But this is a
contradiction, as

C ∩X ∩ (Y \G) = U ∩ (Y \G) ⊆ B ∩ (Y \G) = (G ∩X) ∩ (Y \G) = ∅.

Thus p ∈ G and therefore B = G ∩ X ∈ Up. This shows that Up is a
filter in B. To show that Up is an ultrafilter, let B ∈ B be such that
B ∩ U is non-empty for each U ∈ Up. Let B = C ∩X for some C ∈ C .
If p /∈ C then p ∈ Y \C and thus (Y \C)∩X ∈ Up, which is not possible,
as (Y \C)∩X misses B. Therefore p ∈ C and thus B = C ∩X ∈ Up. To
show that Up has c.i.p., let U1, U2, . . . ∈ Up. Then Un = Cn ∩X where
p ∈ Cn ∈ C for each n ∈ N. Then

p ∈
∞∩
n=1

Cn ∈ C

and thus
∞∩
n=1

Un =

∞∩
n=1

(X ∩ Cn) = X ∩
∞∩
n=1

Cn ∈ Up.

Therefore
∞∩
n=1

Un ̸= ∅.

This proves the claim.

Let

U =
{
Up : p ∈ (Y \X)\Z

}
.
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Then U is a collection of ultrafilters in B with c.i.p. For each U ∈ U
define

SU =
{
p ∈ (Y \X)\Z : Up = U

}
.

Note that SU , for each U ∈ U, is non-empty, as U = Up for some
p ∈ (Y \X)\Z and thus p ∈ SU . Also, for any distinct U ,V ∈ U we
have SU ∩ SV = ∅, as p ∈ SU ∩ SV implies that U = Up = V . Thus

{SU : U ∈ U}

is a bijectively indexed collection of pairwise disjoint non-empty sets.
Note that by our definitions the sets X, SU where U ∈ U and Z are
pairwise disjoint. Let

Y ′ = X ∪
∪

U ∈U
SU ∪ Z

C ′ =
{
B ∪

∪
B∈U ∈U

SU ∪D : B ∈ B and D ∈ DB

}
and λ′ : C ′ → [0,∞] be given by

λ′
(
B ∪

∪
B∈U ∈U

SU ∪D
)
= µ(B)

where B ∈ B and D ∈ DB. By the first part we know that (Y ′,C ′, λ′)
is a measure space in which (X,B, µ) is embedded. We verify that

(Y,C , λ) = (Y ′,C ′, λ′).

By our definition it is obvious that Y ′ ⊆ Y . To show the reverse inclu-
sion, let p ∈ Y . If either p ∈ X or p ∈ Z then p ∈ Y ′. If p ∈ (Y \X)\Z,
then since Up ∈ U and by our definition p ∈ SUp , we have p ∈ Y ′. Thus
Y ⊆ Y ′ and therefore Y = Y ′. Next, we verify that C = C ′.

Claim 2. Let C ∈ C and B = C ∩X. Then∪
B∈U ∈U

SU = C ∩
(
(Y \X)\Z

)
.

Proof of Claim 2. Suppose that p ∈ SU for some U ∈ U such that
B ∈ U . If p /∈ C then p ∈ Y \C ∈ C and thus

(Y \C) ∩X ∈ Up = U .

But this is not possible, as (Y \C) ∩X misses C ∩X = B. Thus p ∈ C.
Also, since SU ⊆ (Y \X)\Z it is obvious that p ∈ (Y \X)\Z. To show
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the reverse inclusion, note that for each p ∈ C ∩ ((Y \X)\Z) since p ∈ C
we have B = C ∩X ∈ Up and p ∈ SUp . This proves the claim.

Now, let C ′ ∈ C ′. Then

C ′ = B ∪
∪

B∈U ∈U
SU ∪D.

for some B ∈ B and D ∈ DB. Thus, by the way we have defined DB

we have D = C ∩ Z, for some C ∈ C such that C ∩X = B. By Claim
2 we have

C ′ = B∪
∪

B∈U ∈U
SU ∪D = (C∩X)∪

(
C∩

(
(Y \X)\Z

))
∪(C∩Z) = C ∈ C .

Therefore C ′ ⊆ C . To show the reverse inclusion let C ∈ C . Let
B = C ∩X ∈ B and D = C ∩ Z. Then D ∈ DB, by the way we have
defined DB, and thus by Claim 2 we have

C = (C ∩X)∪
(
C ∩

(
(Y \X)\Z

))
∪ (C ∩Z) = B ∪

∪
B∈U ∈U

SU ∪D ∈ C ′.

Therefore C ⊆ C ′, which together with the above shows that C = C ′.
The fact that λ = λ′ is trivial, as by the above for each C ∈ C we have

λ(C) = µ(C ∩X) = λ′(C).

This completes the proof. □
Let (Y,C , λ) be a measure space in which (X,B, µ) is embedded.

Assume the representation and notation given in Theorem 2.2. Then

Y = X ∪
∪

U ∈U
SU ∪ Z

where (by the proof of Theorem 2.2)

Z = {p ∈ Y \X : p ∈ C ⊆ Y \X for some C ∈ C }.
Thus∪

U ∈U
SU = (Y \X)\Z

= {p ∈ Y \X : C ∩X ̸= ∅ for each C ∈ C with p ∈ C}.
We verify that∪

U ∈U is free

SU =

{
p ∈ (Y \X)\Z : p is separated from each x ∈ X by sets in C

}
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and consequently∪
U ∈U is fixed

SU =

{
p ∈ (Y \X)\Z : p is not separated from some x ∈ X by sets in C

}
.

To show this, let p ∈ SU for some free U ∈ U. Let x ∈ X. Since U is
free, we have x /∈ U for some U ∈ U . Let D ∈ DU . Then

C = U ∪
∪

U∈V ∈U
SV ∪D ∈ C

is such that p ∈ C and x /∈ C. Conversely, let p ∈ (Y \X)\Z be such
that it can be separated from each x ∈ X by a measurable set in C . Let
U ∈ U be such that p ∈ SU . Suppose that U is not free. Let x ∈

∩
U .

Let
C = B ∪

∪
B∈V ∈U

SV ∪D ∈ C ,

where B ∈ B and D ∈ DB, be such that p ∈ C and x /∈ C. Then, since
p ∈ SU , we have B ∈ U , and thus x ∈ B, which is not possible, as
B ⊆ C. Therefore U is free.

Thus, in the absence of free ultrafilters in B, each p ∈ Y \X (depend-
ing on whether p ∈ Z or p /∈ Z) either “separates” from the whole X
by a (null) set in C , or tightly “sticks” to some point x of X so that it
cannot be separated from x by any measurable set in C . In the next sec-
tion we restrict our attention to measure spaces (X,B, µ) having no free
ultrafilter in B with c.i.p. As we will see, this assumption considerably
simplifies our construction.

3. The case of measure spaces (X,B, µ) with no free ultrafilter
in B having c.i.p.

In this section we show that for certain classes of measure spaces
(X,B, µ), the structure of measure spaces (Y,C , λ) in which (X,B, µ)
is embedded is expressible in a simpler way: They are simply obtained
by “blowing” certain points of X up and “pasting” a certain measur-
able space to X in a certain way. This we prove in the next theorem.
Examples of measure spaces satisfying this assumption are given in the
next section.

Theorem 3.1. Let (X,B, µ) be a measure space. Suppose that the
points of X are separated by measurable sets in B and that there is
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no free ultrafilter in B with c.i.p. Then (Y,C , λ) is a measure space
in which (X,B, µ) is embedded if and only if there exists a measurable
space (Z,D), a collection {DB : B ∈ B} of non-empty subsets of D such
that

(1) ∅ ∈ D∅;
(2) if B ∈ B, then

{Z\D : D ∈ DB} ⊆ DX\B;

(3) if B1, B2, . . . ∈ B, then{ ∞∪
n=1

Dn : Dn ∈ DBn

}
⊆ D ∪∞

n=1 Bn
;

and a collection {Tu : u ∈ U} of pairwise disjoint non-empty sets, bijec-
tively indexed by a subset U of X, where the sets X, Tu for any u ∈ U ,
and Z are pairwise disjoint, such that

Y = X ∪
∪
u∈U

Tu ∪ Z,

C =
{
B ∪

∪
u∈B∩U

Tu ∪D : B ∈ B and D ∈ DB

}
and λ : C → [0,∞] is given by

λ
(
B ∪

∪
u∈B∩U

Tu ∪D
)
= µ(B)

for each B ∈ B and D ∈ DB.

Proof. Suppose that (Y,C , λ) is a measure space in which (X,B, µ) is
embedded. Assume the representation given for (Y,C , λ) in Theorem
2.2. Assume the notation of Theorem 2.2. By our assumption for each
U ∈ U the set

∩
U is non-empty. Note that

∩
U is a singleton, as

if x, z ∈
∩

U and x ̸= z, then by our assumption x ∈ B and z /∈ B
for some B ∈ B. Now X\B ∈ B intersects each element of U , thus
X\B ∈ U . This contradicts the fact that x /∈ X\B. Let∩

U = {uU }.

Define
U = {uU : U ∈ U}.

Claim 1. For each U ∈ U we have

U = {B ∈ B : uU ∈ B}.
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Proof of Claim 1. Let U ∈ U. Obviously, uU ∈ B for each B ∈ U .
Conversely, if B ∈ B is such that uU ∈ B then B ∈ U . As otherwise,
B ∩ G = ∅ for some G ∈ U . Thus G ⊆ X\B ∈ B which implies that
X\B ∈ U . This contradicts the fact that uU /∈ X\B and proves the
claim.

For each u ∈ U there exists some U ∈ U such that u = uU . Note that
by Claim 1 such a U is unique; let Tu = SU . The collection

{Tu : u ∈ U}

consists of non-empty sets which are pairwise disjoint and bijectively
indexed (as any distinct u, v ∈ U are of the form u = uU and v = uV

for some distinct U ,V ∈ U).

Claim 2. For each B ∈ B we have∪
u∈B∩U

Tu =
∪

B∈U ∈U
SU .

Proof of Claim 2. Suppose that B ∈ U ∈ U. By Claim 1 we have
uU ∈ B ∩ U . Note that TuU = SU . To show the reverse inclusion, let
u ∈ B ∩ U . Let U ∈ U be such that u = uU . Then, by our definition
Tu = SU . Note that by Claim 1 we have B ∈ U . This proves the claim.

Note that if B = X then Claim 2 implies that∪
u∈U

Tu =
∪

U ∈U
SU .

From the above the desired representation of (Y,C , λ) follows.
Conversely, suppose that Y , C and λ are given as in the statement

of the theorem. Assume the notation of the theorem. For each u ∈ U
define

Uu = {B ∈ B : u ∈ B}.

Claim 3. For each u ∈ U the set Uu is an ultrafilter in B with c.i.p.

Proof of Claim 3. Let u ∈ U . Obviously, ∅ ̸= Uu ⊆ B, ∅ /∈ Uu and Uu

is closed under finite intersections. Also, note that if G ⊆ B for some
G ∈ Uu and B ∈ B, then B ∈ Uu. Thus Uu is a filter in B. To show
that Uu is an ultrafilter, suppose that B ∈ B is such that B ∩G is non-
empty for each G ∈ Uu. If B /∈ Uu then u /∈ B. Thus u ∈ X\B ∈ B
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and X\B ∈ Uu. But X\B misses B, which is a contradiction. Therefore
B ∈ Uu. The fact that Uu has c.i.p. is obvious. This proves the claim.

Let
U = {Uu : u ∈ U}.

Note that each U ∈ U is of the form Uu for some unique u ∈ U . This
is because if Uu = U = Uv for some distinct u, v ∈ U , then by our
assumption u ∈ B and v /∈ B for some B ∈ B. Thus B ∈ Uu\Uv.
Therefore Uu ̸= Uv, which is a contradiction. For each U ∈ U define
SU = Tu, where u ∈ U is such that U = Uu. The collection

{SU : U ∈ U}
consists of non-empty sets which are pairwise disjoint and bijectively
indexed (as distinct elements of U are assigned to distinct elements of
U).

Claim 4. For each B ∈ B we have∪
B∈U ∈U

SU =
∪

u∈B∩U
Tu.

Proof of Claim 4. Let u ∈ B∩U . Then, by our definition of Uu we have
B ∈ Uu ∈ U. Also, by our definition Tu = SUu . To show the reverse
inclusion, let B ∈ U ∈ U. Let u ∈ U be such that U = Uu. Then, by
our definition SU = Tu. But since B ∈ Uu, by our definition we have
u ∈ B, and thus u ∈ B ∩ U . This proves the claim.

Note that if B = X then Claim 4 implies that∪
U ∈U

SU =
∪
u∈U

Tu.

From the above and Theorem 2.2 the result follows. □

4. Examples of measure spaces (X,B, µ) with no free
ultrafilter in B having c.i.p.

In this section we give examples of measure spaces (X,B, µ) for which
the assumption of Theorem 3.1 holds, i.e., measure spaces (X,B, µ) for
which there is no free ultrafilter in B with c.i.p. The following gives some
equivalent ways to express this condition. The equivalence of conditions
(1) and (2) in the following proposition is well known; we include the
proof in here for the sake of completeness.
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Proposition 4.1. Let (X,B) be a measurable space. Then the following
are equivalent:

(1) There is no free ultrafilter in B with c.i.p.
(2) For every {0, 1}-valued measure µ on B whose null sets cover X

we have µ ≡ 0.
(3) For every {0, 1}-valued measure µ on B whose null sets cover

X, if C ⊆ B is non-empty and such that
∪

C ∈ B, then

µ
(∪

C
)
= sup

C∈C
µ(C).

Proof. That (2) implies (3) is trivial. (1) implies (2). Let µ be a non-
trivial {0, 1}-valued measure on B whose null sets cover X. Define

F =
{
B ∈ B : µ(B) = 1

}
.

We show that F is a free ultrafilter in B with c.i.p. If F,G ∈ F , then
since

µ(F ∪G) = µ(F\G) + µ(G)

and µ(G) = 1, we have µ(F\G) = 0. Therefore

µ(F ∩G) = µ(F\G) + µ(F ∩G) = µ(F ) = 1

and thus F ∩ G ∈ F . Obviously, if F ⊆ B for some F ∈ F and
B ∈ B, then B ∈ F . Therefore, F is a filter in B. To show that F
is an ultrafilter, let B ∈ B be such that B ∩ F is non-empty for each
F ∈ F . If B /∈ F , then µ(B) = 0, and thus, since µ(X\B) = 1, we
have X\B ∈ F . But this is not possible, as B misses X\B. Therefore
B ∈ F . To show that F has c.i.p., let F1, F2, . . . ∈ F . Without any
loss of generality we may assume that F1 ⊇ F2 ⊇ · · · . If

∞∩
n=1

Fn /∈ F

then

µ
( ∞∩

n=1

Fn

)
= 0.

Thus (with the empty intersection interpreted as X) we have

(4.1) 1 = µ
(
X\

∞∩
n=1

Fn

)
= µ

( ∞∪
n=1

(Fn−1\Fn)
)
=

∞∑
n=1

µ(Fn−1\Fn).
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Now, each Gn = Fn−1\Fn, where n ∈ N, misses Fn ∈ F and thus
Gn /∈ F ; therefore µ(Gn) = 0. This contradicts (4.1) and shows that

∞∩
n=1

Fn ∈ F .

To show that F is free, let x ∈ X. By our assumption x ∈ B for some
B ∈ B such that µ(B) = 0. Thus µ(X\B) = 1. But X\B ∈ F and
x /∈ X\B. Therefore

∩
F = ∅.

(3) implies (1). Suppose that there exists a free ultrafilter F in B
with c.i.p. Define µ : B → {0, 1} such that µ(B) = 1 if B ∈ F and
µ(B) = 0 if B /∈ F . To show that µ is a measure, first note that
µ(∅) = 0. Let B1, B2, . . . ∈ B be pairwise disjoint. Suppose that

∞∪
n=1

Bn /∈ F .

Then Bn /∈ F for some n ∈ N. Therefore

(4.2) µ
( ∞∪

n=1

Bn

)
=

∞∑
n=1

µ(Bn)

as each side is identical to 0. Suppose that
∞∪
n=1

Bn ∈ F .

By Lemma 2.1 this implies that Bn ∈ F for some n ∈ N. Note that
for each n ̸= i ∈ N, since Bi ∩ Bn = ∅ we have Bi /∈ F . Thus (4.2)
holds, as in this case each side is identical to 1. This shows that µ is a
measure. Since F is free, for each x ∈ X there exists some F ∈ F such
that x /∈ F . Thus x ∈ X\F , and since X\F /∈ F we have µ(X\F ) = 0.
Therefore the null sets of B cover X. Now, let

C = {X\F : F ∈ F}.
Then since F is free, we have

∪
C = X, and therefore by our assumption

sup
F∈F

µ(X\F ) = sup
C∈C

µ(C) = µ
(∪

C
)
= µ(X) = 1.

But this is not possible, as if F ∈ F then X\F /∈ F , as it misses F ,
and thus µ(X\F ) = 0. □
Theorem 4.2. Let (X,B) be a measurable space. If X is countable
then there is no free ultrafilter in B with c.i.p.
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Proof. Let X = {x1, x2, . . .} and let F be a free ultrafilter in B. Since
F is free for each n ∈ N there is some Fn ∈ F such that xn /∈ Fn. Then

∞∩
n=1

Fn = ∅

and thus F does not have c.i.p. □

Theorem 4.3. Let (Y,C ) be a measurable space. Let X ∈ C and

B = {C ∈ C : C ⊆ X},
i.e., X ∈ C and (X,B) is embedded in (Y,C ). If there is no free
ultrafilter in C with c.i.p. then there is no free ultrafilter in B with
c.i.p.

Proof. Simply note that if F is a free ultrafilter in B with c.i.p., then

G = {G ∈ C : G ⊇ F for some F ∈ F}
is a filter in C which is an ultrafilter (as if C ∈ C meets each G ∈ G
then, since F ⊆ G , the set (X ∩C) ∩ F = C ∩ F is non-empty for each
F ∈ F and thus X ∩C ∈ F which implies that C ∈ G , as X ∩C ⊆ C)
and it is free (as F ⊆ G and thus

∩
G ⊆

∩
F and F is free) and has

c.i.p. (as F has, and if G1, G2, . . . ∈ G then

∞∩
n=1

Gn ⊇
∞∩
n=1

Fn,

where for each n ∈ N, the element Fn ∈ F is such that Fn ⊆ Gn). □

Theorem 4.4. Let (X,B) ⊆ (Y,C ) and let Y \X be countable. If there
is no free ultrafilter in B with c.i.p. then there is no free ultrafilter in
C with c.i.p.

Proof. Let

Y \X = {y1, y2, . . .}.
Let H be a free ultrafilter in C with c.i.p. Since H is free, for any
n ∈ N there exists some Hn ∈ H such that yn /∈ Hn. Let

A = {H ∩X : H ∈ H } ⊆ B.

Note that ∅ /∈ A , as otherwise H ∩X = ∅ for some H ∈ H . Now

H ∩
∞∩
n=1

Hn = ∅,
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as

H ∩
∞∩
n=1

Hn ⊆ (X ∩H) ∪
(
(Y \X) ∩

∞∩
n=1

Hn

)
= ∅

contradicting the fact that H has c.i.p. Thus A is a filter-base in B,
as A is closed under finite intersections. Let F be an ultrafilter in B
such that A ⊆ F . Then since∩

F ⊆
∩

A =
∩

H ∩X

(and H is free), F is free. To show that F has c.i.p., let F1, F2, . . . ∈ F .
Let Fn = Cn ∩X where Cn ∈ C for each n ∈ N. Let n ∈ N. For each
H ∈ H , since H ∩X ∈ A ⊆ F we have

Cn ∩H ∩X = Fn ∩H ∩X ∈ F .

Therefore H ∩ Cn is non-empty and thus (since H is an ultrafilter)
Cn ∈ H . Now, since

∞∩
n=1

Cn ∩
∞∩
n=1

Hn ⊆
(
X ∩

∞∩
n=1

Cn

)
∪
(
(Y \X) ∩

∞∩
n=1

Hn

)
=

∞∩
n=1

(X ∩ Cn) =
∞∩
n=1

Fn

and H has c.i.p., we have
∞∩
n=1

Fn ̸= ∅.

Therefore F has c.i.p. □

If (X,B) and (Y,C ) are measurable spaces, we denote by B ×C the
smallest σ-algebra on X × Y containing the set

{B × C : B ∈ B and C ∈ C }

of all measurable rectangles in X × Y .

Theorem 4.5. Let (X,B) and (Y,C ) be measurable spaces such that in
each of them singletons are measurable. Then the following are equiva-
lent:

(1) There is no free ultrafilter in B × C with c.i.p.
(2) Neither there is a free ultrafilter in B with c.i.p. nor there is a

free ultrafilter in C with c.i.p.
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Proof. (1) implies (2). Let F be a free ultrafilter in B with c.i.p. Fix
some y ∈ Y and let

A =
{
F × {y} : F ∈ F

}
.

Then A is a filter-base in B×C , as ∅ /∈ A and A is closed under finite
intersections. Let H be an ultrafilter in B × C such that A ⊆ H .
Then ∩

H ⊆
∩

A =
(∩

F
)
× {y} = ∅

and H is also free. We verify that H has c.i.p. Let H1,H2, . . . ∈ H .
Let

Hy
n =

{
x ∈ X : (x, y) ∈ Hn

}
for each n ∈ N. Then Hy

n, for each n ∈ N, being the y-section of the
measurable set Hn of B × C is measurable in X. Note that for each
n ∈ N and F ∈ F , since F × {y} ∈ H , we have

Hn ∩
(
F × {y}

)
̸= ∅,

and thus Hy
n ∩ F is non-empty. Therefore, since F is an ultrafilter, we

have Hy
n ∈ F for each n ∈ N. Since F has c.i.p., we have

∞∩
n=1

Hy
n ̸= ∅.

Now since ( ∞∩
n=1

Hy
n

)
× {y} ⊆

∞∩
n=1

Hn

it follows that
∞∩
n=1

Hn ̸= ∅.

A similar argument can be used in the case when there is a free ultrafilter
in C with c.i.p.

(2) implies (1). Let H be a free ultrafilter in B × C with c.i.p. Let

A = {B ∈ B : B × C ∈ H for some C ∈ C }.
Then A is a filter-base in B, as ∅ /∈ A and it is closed under finite
intersections. Let F be an ultrafilter in B such that A ⊆ F .

Claim. For each F ∈ F we have F × Y ∈ H .

Proof of the claim. Otherwise, if F × Y /∈ H for some F ∈ F , then
since H is an ultrafilter, we have (F × Y ) ∩H = ∅ for some H ∈ H .
Thus H ⊆ (X\F )× Y and therefore (X\F )× Y ∈ H . But this implies
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that X\F ∈ A , and thus X\F ∈ F , which is not possible, as it misses
F ∈ F .

Now, we show that F has c.i.p. Let F1, F2, . . . ∈ F . By the above
Fn × Y ∈ H for each n ∈ N and thus, since H has c.i.p.,

∞∩
n=1

(Fn × Y ) ̸= ∅.

But
∞∩
n=1

(Fn × Y ) =
( ∞∩

n=1

Fn

)
× Y.

Therefore
∞∩
n=1

Fn ̸= ∅.

By our assumption F is not free, i.e.,
∩

F is non-empty. Let p ∈
∩

F .
Then {p} ∈ B meets each F ∈ F , and thus, since F is an ultrafilter we
have {p} ∈ F . By the claim {p}× Y ∈ H . Similarly, there exists some
q ∈ Y such that X × {q} ∈ H . Now{

(p, q)
}
=

(
{p} × Y

)
∩
(
X × {q}

)
∈ H

and thus, since {(p, q)} ∩ H is non-empty for each H ∈ H , we have
(p, q) ∈

∩
H , which is a contradiction. □

Let X be a completely regular topological space. Recall that the
σ-algebra of Baire subsets of X (denoted by B∗(X)) is the smallest σ-
algebra in X containing Z (X). By a Baire measure on X we mean a
finite measure on B∗(X). The support of a Baire measure µ on X is
defined to be the set{

x ∈ X : µ(U) > 0 for every U ∈ Coz(X) such that x ∈ U
}

and is denoted by supp(µ).
The following Lemma is well known. (See [2].)

Lemma 4.6. Let X be a completely regular topological space. Then the
following are equivalent:

(1) X is realcompact.
(2) Each {0, 1}-valued non-trivial Baire measure on X has a non-

empty support.
(3) Each ultrafilter in Z (X) with c.i.p. is fixed.
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Theorem 4.7. Let (X,O,B) be a first-countable realcompact topological
measurable space. Then there is no free ultrafilter in B with c.i.p.

Proof. We prove the theorem in two different ways. Our first approach,
which is rather direct, is more topological; our second approach makes
use of the characterization given in Lemma 4.6.

First approach. Suppose to the contrary that there exists a free ultrafil-
ter F in B with c.i.p. Note that the collection B of all measurable sets
can be considered as a base for a topology on X, as it is closed under
finite intersections and covers X. Denote by OB the topology generated
by B on X. Since (X,O) is Hausdorff and O ⊆ B, the topological space
(X,OB) is Hausdorff and therefore completely regular, as the elements
of B are closed-open in (X,OB). Let

ϕ : β(X,OB) → β(X,O)

continuously extend

idX : (X,OB) → (X,O).

Since

{clβ(X,OB)F : F ∈ F}
has the finite intersection property, as F has, by compactness we have

G =
∩

{clβ(X,OB)F : F ∈ F} ̸= ∅.

Let p ∈ G. Note that since F is free we have p /∈ X, as otherwise

p ∈ X ∩ clβ(X,OB)F = F

for each F ∈ F .

Claim. If V is an open neighborhood of ϕ(p) in β(X,O) then V ∩X ∈
F .

Proof of the claim. Suppose the contrary, i.e., suppose that V ∩X /∈ F .
Note that V ∩X ∈ O ⊆ B. Since F is an ultrafilter, V ∩X ∩F = ∅ for
some F ∈ F . Since V ∩X ∈ B and F ∈ B, the sets V ∩X and F are
closed-open in (X,OB), and therefore

clβ(X,OB)(V ∩X) ∩ clβ(X,OB)F = clβ(X,OB)(V ∩X ∩ F ) = ∅.

By the choice of p we have

p /∈ clβ(X,OB)(V ∩X).
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Let W be an open neighborhood of p in β(X,OB) such that W∩V ∩X =
∅. By continuity of ϕ there exists an open neighborhood U of p in
β(X,OB) such that ϕ(U) ⊆ V . Then (since ϕ|X = idX) we have

U ∩W ∩X = ϕ(U ∩W ∩X) ⊆ ϕ(U) ∩W ∩X ⊆ V ∩W ∩X = ∅.
But this is a contradiction, as U ∩W , being a non-empty open subset
of β(X,OB), meets X. Thus V ∩X ∈ F .

Next, we show that ϕ(p) /∈ X. Suppose the contrary. By our assumption,
there exists a countable base

{Vn : n ∈ N}
at ϕ(p) in (X,O). By the claim, Vn ∈ F for each n ∈ N. Now, since F
has c.i.p., for each F ∈ F we have

F ∩
{
ϕ(p)

}
= F ∩

∞∩
n=1

Vn ̸= ∅.

Thus ϕ(p) ∈
∩

F , which is a contradiction, as F is free. Therefore
ϕ(p) ∈ β(X,O)\X. Since, by our assumption (X,O) is realcompact,
there exists a zero-set Z in β(X,O) such that ϕ(p) ∈ Z and Z ∩X = ∅.
Let Z = f−1(0) for some continuous f : β(X,O) → [0, 1]. Now, for each
n ∈ N the set f−1([0, 1/n)) is an open neighborhood of ϕ(p) in β(X,O),
thus by the claim

f−1
(
[0, 1/n)

)
∩X ∈ F .

Since F has c.i.p. we have

Z ∩X = f−1(0) ∩X =

∞∩
n=1

f−1
(
[0, 1/n)

)
∩X ̸= ∅

which contradicts the choice of Z.

Second approach. Suppose to the contrary that there exists a free ultra-
filter F in B with c.i.p. Define ν : B → {0, 1} such that ν(B) = 0 if
B /∈ F and ν(B) = 1 if B ∈ F . Then (arguing as in the proof of Propo-
sition 4.1 (3)⇒(1)) ν is a measure. Note that B contains the set B∗(X)
of Baire subsets of X (as each zero-set in X, being a Gδ, is contained in
B). Denote

µ = ν|B∗(X) : B∗(X) → {0, 1}.
Then µ is a non-trivial Baire measure on X, and since we are assuming
that X is realcompact, by Lemma 4.6 it has non-empty support. Let
x ∈ supp(µ) and let {Cn : n ∈ N} be a local base at x in X. Without
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any loss of generality (since X is completely regular) we may assume
that Cn ∈ Coz(X) for each n ∈ N and C1 ⊇ C2 ⊇ · · · . Then

µ(Cn) → µ
( ∞∩

n=1

Cn

)
.

But this is a contradiction, as (since x ∈ supp(µ)) µ(Cn) = 1 for each
n ∈ N, and since F is free,

∞∩
n=1

Cn = {x} /∈ F ;

as otherwise, x ∈ F for each F ∈ F , as {x} ∩ F is non-empty, and thus
(by our definition of ν)

µ
( ∞∩

n=1

Cn

)
= 0.

□

Obviously, every n-dimensional Euclidean space Rn, where n ∈ N, is
realcompact. Thus, from Theorem 4.7 we obtain the following.

Corollary 4.8. Let (Rn,M ) be the Lebesgue measurable space, where
n ∈ N. Then there is no free ultrafilter in M with c.i.p.

Recall that a cardinal ζ is said to be measurable if there is a non-
trivial {0, 1}-valued measure defined on the power set P(X) of a set
X of cardinality ζ which vanishes at singletons. The following is well
known.

Theorem 4.9. In the measurable space (X,B), let B = P(X). Then
the following are equivalent:

(1) There is no free ultrafilter in B with c.i.p.
(2) X is of non-measurable cardinality.

Our next theorem is sort of converse to Theorem 4.7. We need, how-
ever, some definitions and some lemmas first.

Let X be a completely regular topological space. For an open subset
U of X the extension of U to βX is defined by

ExXU = βX\clβX(X\U).

The following lemma is well known (see Lemma 7.1.13 of [1] or Lemma
3.1 of [6]).
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Lemma 4.10. Let X be a completely regular topological space and let
U and V be open subsets of X. Then

(1) X ∩ ExXU = U , and thus clβXExXU = clβXU .
(2) ExX(U ∩ V ) = ExXU ∩ ExXV .

The following lemma is proved by E. G. Skljarenko in [5]. It is redis-
covered by E. K. van Douwen in [6].

Lemma 4.11. Let X be a completely regular topological space and let
U be an open subset of X. Then

bdβXExXU = clβXbdXU.

Lemma 4.12. Let X be a completely regular topological space. If B is
a subset of X with compact boundary then

clβXB\X = ExX(intXB)\X.

Proof. Since bdXB is compact, we have

clβXbdXB ⊆ bdXB ⊆ X,

and therefore

clβXB\X = clβX(intXB ∪ bdXB)\X
= (clβX intXB ∪ clβXbdXB)\X
= (clβX intXB\X) ∪ (clβXbdXB\X) = clβX intXB\X.

By Lemma 4.10 we have

clβX intXB\X = clβXExX(intXB)\X
=

(
ExX(intXB) ∪ bdβXExX(intXB)

)
\X

=
(
ExX(intXB)\X

)
∪
(
bdβXExX(intXB)\X

)
.

But by Lemma 4.11, we have

bdβXExX(intXB) = clβXbdX(intXB).

On the other hand bdX(intXB) ⊆ bdXB. Thus

clβXbdX(intXB) ⊆ bdXB ⊆ X.

Combining these, we obtain the result. □
Note that if U is an open subset of a completely regular topological

space X, then (since X is dense in βX) we have

clβXU = clβX(U ∩X).

We use this simple observation in the following.
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Theorem 4.13. Let (X,O,B) be a completely regular topological mea-
surable space. Suppose that each B ∈ B has compact boundary in X. If
there is no free ultrafilter in B with c.i.p. then X is realcompact.

Proof. Suppose the contrary, i.e., suppose that X is not realcompact.
Then X ̸= υX. Let p ∈ υX\X. Let

F = {B ∈ B : p ∈ clβXB}.
We show that F is a free ultrafilter in B with c.i.p., contradicting our
assumption. Note that ∅ ̸= F ⊆ B and ∅ /∈ F . Suppose that F,G ∈ F .
Then, by Lemmas 4.10 and 4.12 we have

p ∈ (clβXF ∩ clβXG)\X
= (clβXF\X) ∩ (clβXG\X)

=
(
ExX(intXF )\X

)
∩
(
ExX(intXG)\X

)
=

(
ExX(intXF ) ∩ ExX(intXG)

)
\X

= ExX(intXF ∩ intXG)\X
= ExX

(
intX(F ∩G)

)
\X = clβX(F ∩G)\X.

Therefore p ∈ clβX(F ∩G)\X and thus F ∩G ∈ F . Next, suppose that
F ⊆ B for some B ∈ B and F ∈ F . Then

p ∈ clβXF ⊆ clβXB

and thus B ∈ F . This shows that F is a filter in B. To show that F is
an ultrafilter, let B ∈ B be such that B∩F is non-empty for each F ∈ F .
If B /∈ F then p /∈ clβXB. Thus p ∈ clβX(X\B), i.e., X\B ∈ F . But
this is not possible, as X\B misses B. Therefore B ∈ F . To show that
F is free, let x ∈ X. Then (since p /∈ X) there exist some disjoint open
neighborhoods U and V of p and x in βX, respectively. Then

p ∈ clβXU = clβX(U ∩X)

and thus (since U ∩X ∈ O ⊆ B) we have x /∈ U ∩X ∈ F . Therefore
x /∈

∩
F . Thus

∩
F = ∅ and F is free. To show that F has c.i.p.,

let F1, F2, . . . ∈ F . Then p ∈ clβXFn for each n ∈ N and thus, since by
Lemma 4.12 we have

clβXFn\X = ExX(intXFn)\X
it follows that p ∈ ExX(intXFn). For each n ∈ N, let fn : βX → [0, 1]
be continuous and such that

fn(p) = 0 and fn|
(
βX\ExX(intXFn)

)
≡ 1.
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Then

p ∈ Z =

∞∩
n=1

Z(fn) ∈ Z (βX).

If Z ∩ X = ∅ then Z ⊆ βX\υX, which is a contradiction, as p ∈ υX.
Thus, using Lemma 4.10 we have

∅ ̸= Z ∩X =

∞∩
n=1

Z(fn) ∩X

⊆
∞∩
n=1

ExX(intXFn) ∩X =

∞∩
n=1

intXFn ⊆
∞∩
n=1

Fn.

Therefore
∞∩
n=1

Fn ̸= ∅.

This show that F has c.i.p. □

Remark 4.14. In the case when X is normal, using Lemma 4.6, one
can give an alternative proof for Theorem 4.13. To show this assume
that there exists a non-trivial {0, 1}-valued Baire measure ν on X whose
support is empty. Let

F =
{
B ∈ B : ν∗(X\B) = 0

}
in which ν∗ is the outer measure induced by ν. We verify that F is a
free ultrafilter in B with c.i.p. Obviously, F is non-empty (as X ∈ F )
and ∅ /∈ F (as ν is non-trivial). Note that for any F,G ∈ F since

ν∗
(
X\(F ∩G)

)
= ν∗

(
(X\F ) ∪ (X\G)

)
≤ ν∗(X\F ) + ν∗(X\G) = 0

we have F ∩G ∈ F . Also, if F ⊆ B for some F ∈ F and B ∈ B (since
X\B ⊆ X\F ) we have

ν∗(X\B) ≤ ν∗(X\F ) = 0

and thus B ∈ F . Therefore F is a filter in B. To show that F is an
ultrafilter, let B ∈ B be such that B ∩ F is non-empty for each F ∈ F .
Since supp(ν) = ∅, for each x ∈ X there exists some Ux ∈ Coz(X)
such that x ∈ Ux and ν(Ux) = 0. By compactness of bdXB there exist
x1, . . . , xn ∈ X such that

bdXB ⊆
n∪

i=1

Uxi .
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Let

U =

n∪
i=1

Uxi ∈ Coz(X).

Then

clXB\U ⊆ clXB\bdXB ⊆ intXB

and thus (since we are assuming that X is normal) by the Urysohn
Lemma there exists a continuous f : X → [0, 1] such that

f |(X\intXB) ≡ 0 and f |(clXB\U) ≡ 1.

Now, if B /∈ F (by the definition of F ) we have ν∗(X\B) = 1. Thus,
since X\B ⊆ Z(f) we have

ν
(
Z(f)

)
= ν∗

(
Z(f)

)
= 1

and therefore

ν
(
Coz(f)

)
= 1− ν

(
Z(f)

)
= 0.

Now, since

B ⊆ clXB ⊆ (clXB\U) ∪ U ⊆ Coz(f) ∪ U = Coz(f) ∪
n∪

i=1

Uxi

we have

ν∗
(
X\(X\B)

)
= ν∗(B) ≤ ν

(
Coz(f)

)
+

n∑
i=1

ν(Uxi) = 0.

Therefore (by the definition of F ) X\B ∈ F , which is not possible, as it
misses B. This contradiction shows that F is an ultrafilter. It remains
to show that F has c.i.p. But this follows easily, as if F1, F2, . . . ∈ F ,
then since

ν∗
(
X\

∞∩
i=1

Fi

)
= ν∗

( ∞∪
i=1

(X\Fi)
)
≤

∞∑
i=1

ν∗(X\Fi) = 0

we have
∞∩
i=1

Fi ∈ F .

Finally, note that F is free, as for each x ∈ X since ν(Ux) = 0 (with
Ux as defined in the above) we have X\Ux ∈ F , and thus x /∈

∩
F .
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Theorem 4.15. Let (Y,U ,C ) be a first-countable Hausdorff topological
measurable space. Let (X,B) ⊆ (Y,C ) and let Y \X be Lindelöf. If there
is no free ultrafilter in B with c.i.p. then there is no free ultrafilter in
C with c.i.p.

Proof. For each y ∈ Y , let

{V y
n : n ∈ N}

be an open base at y in Y . Suppose to the contrary that there exists a
free ultrafilter H in C with c.i.p.

Claim 1. For each y ∈ Y there exist some ny ∈ N and Hy ∈ H such
that V y

ny ∩Hy = ∅.

Proof of Claim 1. Suppose the contrary, i.e., suppose that for some
y ∈ Y the set V y

n ∩H is non-empty for each n ∈ N and H ∈ H . Note
that since H is an ultrafilter in C this implies that V y

n ∈ H for each
n ∈ N. Since Y is Hausdorff, we have

∞∩
n=1

V y
n = {y},

and since H has c.i.p., we have

H ∩ {y} = H ∩
∞∩
n=1

V y
n ̸= ∅

i.e., y ∈ H for each H ∈ H , contradicting the fact that H is free. This
shows Claim 1.

Claim 2. H ∩X is non-empty for each H ∈ H .

Proof of Claim 2. Suppose the contrary, i.e., suppose that H ⊆ Y \X
for some H ∈ H . Since

Y \X ⊆
∪

{V y
ny

: y ∈ Y \X}

and Y \X is Lindelöf, we have

Y \X ⊆
∞∪
i=1

V yi
nyi
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for some y1, y2, . . . ∈ Y \X. Now, by Claim 1 we have

H ∩
∞∩
j=1

Hyj ⊆
( ∞∪

i=1

V yi
nyi

)
∩

∞∩
j=1

Hyj

=
∞∪
i=1

(
V yi
nyi

∩
∞∩
j=1

Hyj

)
⊆

∞∪
i=1

(V yi
nyi

∩Hyi) = ∅

contrary to the fact that H has c.i.p.

Let

A = {H ∩X : H ∈ H }.
Then A ⊆ B (as (X,B) ⊆ (Y,C ) and H ⊆ C ) and by Claim 2 we
have ∅ /∈ A . Since A is obviously closed under finite intersections, as
H is so, A is a filter-base in B. Let F be an ultrafilter in B such that
A ⊆ F . Since H is free, we have∩

F ⊆
∩

A =
∩

H ∩X = ∅

i.e., F also is free. To show that F has c.i.p., let F1, F2, . . . ∈ F . Let
Fn = Cn∩X where Cn ∈ C for each n ∈ N. For each n ∈ N and H ∈ H ,
since H ∩X ∈ A ⊆ F , we have

∅ ̸= H ∩X ∩ Fn = H ∩X ∩ Cn ⊆ H ∩ Cn

and thus, since H is an ultrafilter in C , we have Cn ∈ H . Now, for
each H ∈ H , since H has c.i.p., we have

H ∩
∞∩
n=1

Cn ̸= ∅,

and therefore
∞∩
n=1

Cn ∈ H .

By Claim 2 we have
∞∩
n=1

Fn =

∞∩
n=1

Cn ∩X ̸= ∅.

This shows that F is a free ultrafilter in B with c.i.p., which is a con-
tradiction. □

Note that in the above proof we only need Y to be first-countable at
the points of Y \X.
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5. Examples of measure spaces (X,B, µ) with an arbitrarily
large number of free ultrafilters in B having c.i.p.

Example 5.1. Let ζ be a cardinal. Then there exists a measure space
(Z,D , ν) having at least ζ free ultrafilters in D with c.i.p.

Proof. Let (X,B, µ) be a measure space in which µ is a non-trivial
{0, 1}-valued measure which (is defined and) vanishes at singletons. Let
(Y,C , λ) be a σ-finite measure space in which singletons are measurable
and such that card(Y ) ≥ ζ. By Proposition 4.1 there exists a free
ultrafilter F in B with c.i.p. To see this, simply let

A =
{
{x} : x ∈ X

}
and observe that (since µ is non-trivial)

µ
(∪

A
)
= µ(X) = 1 ̸= 0 = sup

x∈X
µ(x) = sup

A∈A
µ(A).

For each y ∈ Y , let Hy be an ultrafilter in B × C such that{
F × {y} : F ∈ F

}
⊆ Hy.

By the proof of Theorem 4.5 the ultrafilter Hy, for each y ∈ Y , is free
and has c.i.p. Note that Hy’s are distinct if y ∈ Y are distinct. The
measure space (X × Y,B × C , µ× λ) has the desired property. □

6. Questions

We conclude this article with the following questions.

Question 6.1. In Theorem 4.7, does the converse hold? More pre-
cisely, for a first-countable topological measurable space (X,O,B) does
the non-existence of any free ultrafilter in B with c.i.p. imply its real-
compactness?

Question 6.2. It is known that each finite measure space can be em-
bedded in a perfect measure space. Even more, each finite measure space
can be embedded in a compact (in the sense of Marczewski) measure
space. Find the corresponding choices of U, SU where U ∈ U, (Z,D)
and {DB : B ∈ B} in Theorem 2.2 for any such embeddings.
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