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GENERALIZED FRAMES IN HILBERT SPACES

A. NAJATI® AND A. RAHIMI

Communicated by Heydar Radjavi

ABSTRACT. Here, we develop the generalized frame theory. We in-
troduce two methods for generating g-frames of a Hilbert space H.
The first method uses bounded linear operators between Hilbert
spaces. The second method uses bounded linear operators on f2
to generate g-frames of H. We characterize all the bounded linear
mappings that transform g-frames into other g-frames. We also
characterize similar and unitary equivalent g-frames in term of the
range of their linear analysis operators. Finally, we generalize the
fundamental frame identity to g-frames and derive some new re-
sults.

1. Introduction

Through out this paper, H and K are separable Hilbert spaces and
{H; : i € I} is a sequence of separable Hilbert spaces, where [ is a subset
of Z. L(H,H;) is the collection of all bounded linear operators from H
toHi,and A={A; € L(H,H;):i€l},©®@={0; € L(H,H;):1€T}.

A is called a generalized frame or simply g-frame of the Hilbert space
H with respect to {H; : ¢ € I} if for any vector f € H,

(1.1) AP < D INFIP < BIFI

iel
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where the g-frame bounds A and B are positive constants. A is called
a Parseval g-frame of H with respect to {H; : i € [} if A= B =11in
(1.1). We say a sequence { A; € L(H,K) :i € 1} is a g-frame of H with
respect to I whenever H; = K, for each ¢ € I. We also simply say a
g-frame for H whenever the space sequence {H; : i € I} is clear. This
notation has been introduced by W. Sun in [6]. It is an extension of
frames that conclude all previous extensions of frames. Specially, if A is
a g-frame of H, then any vector f € H can be represented as [6]:

(1.2) f=) MASTY,
i€l
where S™! is the inverse of the positive linear operator S on H, defined
by:
(1.3) Sf = AjAif.
i€l
S is called the g-frame operator for A.

Definition 1.1. Let A be a g-frame of H. A g-frame © of H is called
a dual g-frame of A if it satisfies:

f=Y AOif, VfeH

iel

It is easy to show that if ® is a dual g-frame of A, then A will be a
dual g-frame of ©.

Let A be a g-frame of H with g-frame operator S. Then, (1.2) shows
that {A;S™1 € L(H,H;) : i € 1} is a dual g-frame of A. {A;S71 €
L(H,H;):i€l}is called canonical dual g-frame of A. Among all dual
g-frames of A, the canonical dual g-frame has the following property [6].

Proposition 1.2. Let A be a g-frame of H and AS = N;S™1, for all
i € 1. Then, for any g; € H; satisfying f = > ;o1 Ajgi, we have,

Do lgill? =D IATAIP + Y llgi — AL FI

il icl icl
2. Mapping from H to K for the construction of g-frames

For a given g-frame A of H, we will obtain g-frames of L. One
approach is to construct a sequence {©; = A,U* € LK, H;) : i € 1},



Generalized frames in Hilbert spaces 99

where U is a bounded linear operator from H to K. The following
theorem gives us a necessary and sufficient condition for { ©; = A;U* €
LK, H;):i €1} tobe a g-frame of K.

The following results generalize the results in Aldroubi [1] in the case
of g-frames with analogous proofs, and we omit the details.

Theorem 2.1. Let A be a g-frame of H with g-frame bounds A and B
satisfying 0 < A < B < oo. If U : H — K is a bounded linear operator,
then { N;U* € LK, H;) 1 € 1} is a g-frame of K if and only if there
exists 6 > 0 such that for any f € I, |[U*f|| = d||f]l-

Corollary 2.2. Let A be a g-frame of H with g-frame operator S. If
K CH is a closed subspace and if P : H — K is the orthogonal projec-
tion, then { \;P € L(K,H;):i €T} and {\;S™'P € LK, H;):i€ 1}
are dual g-frames of K. Moreover, the g-frame bounds A and B of A
are also g-frame bounds for { ;P € L(K,H;):i € 1}.

Corollary 2.3. Let A be a g-frame for H with g-frame bounds satisfying
0< A< B<o. IfU:H — K is co-isometry, then { \;\U* € L(IC, H;) :
i € 1} is a g-frame for K with the same bounds.

3. Mapping on /3 for the construction of g-frames of H

Let {A; € L(H,K) : i € I} be a g-frame of H. We want to know
which conditions on the numbers (u;;); jer will imply that the linear
operators,

(3.1) O, H—K, Oif =Y uyhf, Viel,

JeI
are well defined and constitute a g-frame for H. Aldroubi in [1] has
answered this question about frames.

Notation 3.1. Let us define,
L*(H,I) = {{fi}ie[ fieH and )il < oo }7
i€l

with the inner product given by <{fi}i€1,{gi}i€[> = > ierlfing). It
is clear that L2(H,I) is a separable Hilbert space with respect to the
pointwise operations.
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Definition 3.2. Let A be a g-frame for H. The synthesis operator for
A is the linear operator,

(Z@H) — M, Tal{fitier) = ZA* (fi)-

i€l i€l

We call the adjoint Ty of the synthesis operator, the analysis operator.
The analysis operator is the linear operator,

Ty : HH(Z@H> o TA(f) = A{Aif bier-

i€l
Throughout this paper, for a given g-frame A of H, we denote by Tz
and T, respectively, the synthesis and analysis operators for A.

The following proposition is similar to a result of [1] with an analogous
proof, and we omit the details.

Proposition 3.3. Let {A; € L(H,K) : i € I} be a g-frame of H and
assume that the bi-infinite matriz U = (u;j); jer defines a bounded linear
operator on L*(IC, I). Then, the linear operators { ©; € L(H,K) :i € I}
in (3.1) are well defined and constitute a g-frame for H if and only if
there exists a constant § > 0 such that

(3:2) U3 > dl|z(13, Vo€ Rry,

where Ty is the synthesis operator of { \; € L(H,K):i e I}.

The condition (3.2) can also be written as:
2
SIS wishsf| = 6> 1A vren.
icl  jeJ jeJ

The proof of the next proposition is a modification of the analogous
proof for frames [see 4, Prop. 5.5.8].

Proposition 3.4. Let {A; € L(H,K) : i € 1} be a g-frame of H
with g-frame bounds A and B. If the numbers (u;;); jer satisfy the two
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conditions,

< 00,

b:= supz ‘ ZulkuT]

kel ser el

.3 2 I
6 := inf (Z luik|” — Z ‘ Zuzkuzj ) >0,
iel j#k i€l

then {©; € L(H,K) : i € I} defined by (3.1) is a g-frame of H with
g-frame bounds aA and bB.

Proof. Let f € ‘H. Then,

> H ZuijAijQ => (Z > witE(A; f, Akf>>

i€l jel i€l kel jel
=N uanlPIAR AP+ DD 0D wigmw (A f, Axf)-
i€l kel i€l kel j#£k
Let

(%) := Z Z Z Wi Uik AN f, A f).

icl kel jk

Then, by Cauchy-Schwarz’s inequality we get,

< 30D ARSI D e

kel j#k i€l
Therefore,
2
SIS wishs | = D0 fwarlPIAs1? - 1(4)
el jel i€l kel
SN o) ot}
kel iel £k el

> aAllfII*.
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For the upper g-frame bound we have,

S| S| < 303 lalIAn A1 + 1)

iel - jel iel kel
S IWE (SIS o) W)
kel icl j#k i€l
= SIS
kel jel el
<bB||f|*.

The converse of Proposition 3.3 is also true; i.e., any two g frames of
‘H are related by a linear operator U on (Eze I @HZ)g that satisfies
2

condition (3.2).

Proposition 3.5. Let A and © be two g-frames for H. Then, there is
a bounded linear operator,

U: (Z;@Hi)b — (;@Hi)ba
1€ 1€
such that for any f € H,
Tof = UTh/.

Proof. Since A is a g-frame, then X = Tx(H) is a closed subspace
of (Zz‘el@Hi)g . Therefore, T§ : H — X is bijective and so it is
2

invertible. By the open mapping Theorem, (T )~! is bounded. Let Uy =
TE(TH) ™ X — (ZiEI®Hi)Z . It is obvious that Uj is bounded on

2
X and we can extend it on <Zi6[ @HOZ by:

2
U if X
Ulw) = o) e X

0 ifreX

Then, for each f € H we have,
UTAf =TS(Tx) 'Taf =TS S
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4. Similar and unitary equivalence g-frames

The definitions of similar and unitary equivalent frames give rise to
definitions of similar and unitary equivalent g-frames.

Definition 4.1. Let A and © be two g-frames of H.

(1) We say that A and © are similar if there is a bounded linear
invertible operator T' : H — H such that ©; = A;T, for all i € I.

(2) We say that A and © are unitary equivalent if there is a unitary
linear operator T' : H — H such that ©;, = A;T, for all i € [I.

(3) We say that A is isometrically equivalent to © if there is an
isometric linear operator 1" : H — H such that ©; = A;T, for all
1€1.

The following proposition characterizes unitary equivalence Parseval
g-frames. It generalizes a result of Balan[2] in the case of Parseval g-
frames

Proposition 4.2. Let A and © be two Parseval g-frames of H. Then,
(i) Rrg € Ry if and only if A is isometrically equivalent to ©. Fur-
thermore, if U : H — H is an isometry such that ©; = AU, fori € 1,
then,

(4.1) kerU* = TA(RTX N (RTé)L).
(ii) Rry, = Ry if and only if A and © are unitary equivalent.

Proof. (i) (Necessity). Suppose that Rry C Rrz. It is clear that
Rry and Rr; are closed subspaces of (Zle 1D Hi)e . Let P =TR{Tx
and Q = T§Te. So, Rp = Rr; and R = RTé. Siilce A and © are

Parseval g-frames of H, then P and @) are orthogonal projections from
(Zief@Hi)€2 onto Rr; and Rry, respectively. Let U = TaTg :
‘H — H and let f € H. Then,
UUf=TeTaATaTef =TeTof = .
Hence, U is an isometry. Also, f =>..;©;0;f and
Uf =TeTxf =To({Aif}ier) = Y OAf.

i€l
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So, f=>,0;\;Uf. By Proposition 1.2,

STINUFIP =D 10t 1* + > IIAUf — 6|

el i€l i€l

Since yer [MUFI2 = [UFI2 = £ and e 012 =[£I then
NUf = ©;f, for any i € I. Therefore, A;U = ©; and consequently
TiU =T},

(Sufficiency). Suppose that there exists an isometry U : H — H such
that ©; = AU, for ¢ € I. Then, for any f € H,

Tof ={Oifticr = {AiUf}icr = TAUf,
and so Tg = TR U. Therefore, Rrg C Ry
For the second part of (i), since T’y is isometric, then we have,

RTX = Tj{(ker U* D RU) = Tz(ker U*) ® RTXU
So, we have,
(4.2) ker U* = Ta(Ryy N (Rrg)™).

(ii) If Ry = Ry, then by (4.2) we obtain that U is invertible. Since U
is isometric, then U is unitary. Conversely, let U : H — H be a unitary
linear operator such that ©; = A;U, for i € I. Since TAU = T§, then
Ry = Ry

For the general case, we have the following proposition.

Proposition 4.3. Let A and © be two g-frames of H. Then,

(i) Rrg © Ry if and only if there exists a bounded linear operator
U:H — H such that ©; = AU for i € I. Furthermore (4.1) holds.

(ii) Rry = Ry if and only if A and © are similar.

Proof. Let us denote by Sx and Sg the g-frame operators of A and ©,
respectively.
(i) (Necessity). Suppose that Rry C Rry. Since Ryy and Rry are

closed subspaces of (Ele I @Hi)fz’ then Ry = [ker Ta]* and Rry =
[ker Tg]*. Therefore, kerTp C kerTg. Denote by Tas and Te’, the
synthesm operators for Parseval g-frames A’ := {A] = A Sa }16 7 and

={0, =6, S }zeb respectively. Then, Tg: = S T@ and T =
SX%TA. So, kerTg: = kerTg and kerThr = kerTx. By Proposition
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4.2, there exists an isometry V : H — H such that ©, = ALV, for all
_1
i € 1. Hence ©; = A;S,?V S§. Therefore, the result follows by letting
11
U=5,°V53.
(Sufficiency.) Tt is straightforward.
For the second part of (i), by Proposition 4.2, we have,

1 1
ker U* = S3 ker V* = SETar(Rrz, N (Rrz,)") = Ta(Rry N (Rag) ™).
(ii) (Necessity). If Rry = Rz, then Rry, = Rry,. Therefore, by part
(i) of Proposition 4.2, V is unitary and consequently U* is onto. Hence,
ker U = [Ry+]*+ = {0}. Also, by part (i), U is onto. Therefore, U is

invertible.
(Sufficiency ). It is straightforward.

Proposition 4.4. Let A be a g-frame of H and let © be a sequence of
bounded linear operators. Suppose that there exist constants A\, u € [0,1)
such that

3 | eisn- A
i€l

)

< )\HZA;‘kfi
icl

for any {fitier € (Ziel @H,)e?. Then,
(i) ® is a g-frame of H.
(ii)) A and © are similar.

+MHZ®ffi
i€l

Proof. (i) See [5].
(ii) It is clear that ker Tg@ = ker Tx. Therefore, (ii) follows from Propo-
sition 4.3.

5. g-frame identity

Here, we generalize the frame identity to the situation of g-frames.
We also give some results related to g-frame identity. The following
identity has been introduced in [3].

Theorem 5.1. Let {f;}icr be a Parseval frame of H. For any J C I
and all f € H, we have:

POLUNAIE DAY
e e

2

D SIITAAIE DY
ieJe iceJe
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Let A be a g-frame of H. For any J C I, let Sy : H — H be a linear
operator defined by:

Si(f) =Y _AiAif, VfeH.
e

We begin with the following key lemma.

Lemma 5.2. Suppose that T : H — H is a bounded and self-adjoint
linear operator. Let a,b,c € R and U = aT? + bT + cI.
(i) If a > 0, then

4ac — b2
inf (Uf,f)>—.
||fH=1< h:f) 4a
(ii) If a < 0, then

dac — b2
sup (Uf, f) £ ———.
=1 4a

Proof. (i) By elementary computations, we have,

b \2 dac—b?
U_¢T+%Q-wa—L
Since (T + £1)? > 0, then
dac — b2
>
= 4qa
Then, for all f € H,
dac—b% .
> .
Wi )=
So,
dac — b2
inf (Uf,f)> —.
IIfHZ1< 59 4a

(ii) It follows from (i).

The following theorem generalizes Theorem 5.1 for Parseval g-frames.
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Theorem 5.3. Let A be a Parseval g-frame of H. Then, for any J C I
and all f € H, we have:

(5.1) SN+ S fI1P =D At + 1S5 £1I7,

ieJ ieJe
3
(5.2) D AP+ 1185 £ = S 1F11,
ieJ
1
(5.3) 0<8;—85<1I,
(5.4) Sl <8j+85. <L

Proof. Let S : H — H be the g-frame operator of A. Then, S =1 and
f=85f+ Sy f, forall f € H. Let f € H. Then,

S INF I+ 1USse fI? = (Safo f) + (Ssef, Sef)

ieJ
= ((Ss+ 8301, )
={((1-5,+59)1.f)
= {(Sge +SDf 1)
= > AP+ IS £

icJe

This proves (5.1). Since Sy [AfI? + [Sef2 = (52 — 85 + D)f, f),
then the inequality (5.2) follows by Lemma 5.2. To prove (5.3), we have
S7S5e =85Sy, forall J CI.S00< 85555 = SJ—S?]. Also, by Lemma,
5.2 we have S; — S?] < %I.

To prove (5.4), we have 53 + Sgc =1-25;5;. = 253 —28;+1, for
all J C I. By Lemma 5.2, we get that S?,+S§C > %I. Since Sy — S?; >0
(by (5.3)), then we have S% +53. < I+25;—25%. So, the result follows
from Lemma 5.2.
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Corollary 5.4. Let A be a g-frame of H with g-frame operator S. Then,
for any J C I and for all f € 'H, we have,

(5.5)
SINFIP+ D T IAST Sy fIP =D IAf I+ 1S~ S £,
e el eJe el
(5.6)
- 3 31—
DA+ D AT S fIP = 4SS £) = LIS IR,
i€ el
1
(5.7) 0<S;—8;5718; < 15
1
(5:8) 55 < 578718, — Sse871S e < g .

Proof. Let ©; = AiS_%, for each 7 € I. Then, © is a Parseval g-frame
of H. For any J C I, let S; : H — 'H be a linear operator defined by:

Sif=)_0i6if, VfeHn.
i€
So, Sy = S_%SJS_%. Hence, it follows from (5.1) of Theorem 5.3 that
(5.9) Y _lOuflP+ D l10:Sse fIP =D l0:f 1>+ 05,117,
icJ iel ieJe iel
for all f € H. Replacing f by S%f in (5.9), we get (5.5). Applying (5.2)
for the Parseval g-frame @, we get,
et 1P+ 155 f17 =
ieJ

Since (Sf,f) > [IS7Y|7 || fI|?, then replacing f by S%f in the last
inequality, we get (5.6). To prove (5.7), it follows from (5.3) that
OSS{;—S?,S %I. Hence,

IFI%, VfeH.

>~ w

0<S72(S;—S;5°1S8,)8 2 < -1,

e e

which is equivalent to (5.7). Finally, we have from (5.4),

1. 9 2 _3
(5.10) 51 < 53+ 8% < ik
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Since S; = S_%SJS_% and Sjc = S_%SJCS_%, then we get (5.8) from
(5.10). O

Corollary 5.5. Let {fi}ier be a Parseval frame of H. Then, for any
J C1I and oll f € H, we have:

2 1
VAT DAY T P
ieJ ieJ
1 9 2 2 3 9
SIS0t ]+ | o s < SR
ieJ ieJe
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