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Abstract. Let G be a finite group and Γ(G) the prime graph of
G. Recently people have been using prime graphs to study simple
groups. Naturally we pose a question: can we use prime graphs to
study almost simple groups or non-simple groups? In this paper
some results in this respect are obtained and as follows: G ∼= Sp if
and only if |G| = |Sp| and Γ(G) = Γ(Sp), where p is a prime.
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1. Introduction

Let G be a finite group, π(G) the set of all prime divisors of the order
of G and ω(G) the spectrum of G, that is the set of element orders of G.
The prime graph of G which is denoted by Γ(G) is defined as follows:
the vertex set is π(G) and two distinct primes p and q are joined by an
edge (we write p ∼ q) if and only if pq ∈ ω(G).

Denote by t(G) the maximal number of prime primes in π(G) that are
pairwise non-adjacent in Γ(G). In other words, t(G) is the size of some
independent set with the maximal number of vertices in Γ(G). Recall
that a vertex set is said to be independent if its elements are pairwise
non-adjacent. In graph theory, this number is usually called the indepen-
dence number of the graph. By analogy, we denote by t(r,G) the size of
some independent set of Γ(G) containing r, with the maximal number of
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elements. This number is called the r-independence number. We denote
by ρ(G)(ρ(r,G)) some independent set in Γ(G) (containing r) with the
maximal number of vertices. Thus |ρ(G)| = t(G) and |ρ(r,G)| = t(r,G).
And we write [x] for the integer part of a rational number x.

Gruenberg and Kegel introduced prime graphs (it is also called the
Gruenberg-Kegel graphs) in the middle of 1970’s and gave a character-
ization of finite groups with a disconnected prime graph. We denote
the number of connected components of Γ(G) by s(G). This deep result
and a classification of finite simple groups with s(G) > 1, obtained by
Williams and Kondrat’ev (see [16] and [9]), imply a series of important
corollaries. Vasil’ev and his colleagues proved a series of important re-
sults on prime graphs (see [12-15]) from 2005.

In recent years the known results on prime graphs have been used
to study finite simple groups. There are a series of papers especially
on the recognition of finite groups by spectrum and the recognition or
quasirecognition of finite simple groups by prime graphs, see for example
[1, 6, 7, 8, 10]. Naturally we pose a question: Can we use prime graphs
to study almost simple groups or non-simple groups? Later we found a
paper related to this question (see [2]). In this paper some results in this
respect are obtained as follows: Let G be a finite group. Then G ∼= Sp

if and only if |G| = |Sp| and Γ(G) = Γ(Sp), where p is a prime.

In this paper, all groups are finite. And further unexplained notations
are standard for which we refer the reader to [5], for example.

2. Preliminaries

Lemma 2.1. ([12]). Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥
2. Then then there exists a finite nonabelian simple group S such that
S ≤ G = G/K ≤ Aut(S) for a maximal normalsoluoble subgroup K of
G and t(S) ≥ t(G) − 1. Moreover, for every independent subset ρ of
π(G) with |ρ| ≥ 3 at most one prime in ρ devides the product |K|.|G/S|.
And one of thhe following statements hold:

(1) S ∼= A7 or L2(q) for some q, and t(S) = t(2, S) = 3.
(2) For every prime p]inπ(G) nonadjoint to 2 in Γ(G) a Sylow p-

subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular,
t(2, S) ≥ t(2, G).

(1) S ∼= A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.
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(2) For every prime p ∈ π(G) nonadjacent to 2 in Γ(G) a Sylow p-
subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular,
t(2, S) ≥ t(2, G).

Lemma 2.2. ([3]). Let H be a finite group, N ⊴ H, P ∈ Sylp(N)

and |P | = pk. If H/N is a simple group, t ∈ ω(H/N), (p, t) = 1 and

pt /∈ ω(H). Then |H/N | |
∏k−1

i=0 (p
k − pi).

Lemma 2.3. ([4]). ω(L2(q)) = {p, r | q+1
2 , s | q−1

2 }, where q = pn for
some odd prime p.

3. Main Results

Theorem 3.1. Let G be a finite group. Then G ∼= Sp if and only if
|G| = |Sp| and Γ(G) = Γ(Sp), where p is a prime.

Proof. We first claim that the theorem holds for 2 ≤ p ≤ 107. If G ∼= Sp,
then the conclusion is obvious. Now we assume that |G| = |Sp| and
Γ(G) = Γ(Sp). And we discuss the following cases.

Case 1. If p is equal to 2, 3, or 5, then it is easy to see the truth of
the theorem.

Case 2. Let p be equal to 7. Then ρ(G) = {3, 5, 7} and ρ(2, G) =
{2, 7}. Thus the conditions of Lemma 2.1 are satisfied and so there exists
a finite nonabelian simple group S such that S ≤ G = G/K ≤ Aut(S)
for a maximal normal soluble subgroup K of G. Note that π(S) ⊆
{2, 3, 5, 7}. Then S ∼= A5, A6, U4(2), L2(7), L2(8), U3(3), A7, L2(49),
U3(5), L3(4), A8, A9, J2, A10, U4(3), S4(7), S6(2) or O

+
8 (2) according to

Table 1 in [17]. If S ∼= A5, then 7 | |K| and it follows that 5 ∼ 7 in Γ(G)
by Lemma 2.2, which is a contradiction. Similarly we can show that
S ≇ A6, L2(7) and L2(8). Note that |S| | |G|. Then we have S ∼= A7.
Hence A7 ≤ G/K ≤ S7. If K ∼= Z2, then every Sylow 7-subgroup of
G acts fixed-point-freely on K and so 7 | 1, which is a contradiction.
Therefore K = 1 and G ∼= S7.

Case 3. Let p be equal to 11. Then ρ(G) = {5, 7, 11} and ρ(2, G) =
{2, 11}. Thus the conditions of Lemma 2.1 are satisfied and it follows
that there exists a finite nonabelian simple group S such that S ≤ G =
G/K ≤ Aut(S) for a maximal normal soluble subgroup K of G and one
of the following statements holds:
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(1) S ∼= A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.
(2) For every prime p ∈ π(G) nonadjacent to 2 in Γ(G) a Sylow p-

subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular,
t(2, S) ≥ t(2, G).

Suppose that (1) holds. If S ∼= A7, then A7 ≤ G/K ≤ S7. So
11 | |K|. By Lemma 2.2, it follows that |A7| | 10, which is a contra-
diction. If S ∼= L2(q), then q = 7 or 11 according to Table 1 in [17].
We know that at least |ρ(G)| − 1 primes in ρ(G) divide |S| by Lemma
2.1 and so q = 11. Hence L2(11) ≤ G/K ≤ Aut(L2(11)). Therefore
7 | |K| and we have |L2(11)| | (7 − 1) by Lemma 2.2. Thus we get a
contradiction. Consequently (1) does not hold and (2) holds.

Let S = H/K. We claim that 7 ∤ |K| and 7 ∤ |G/H|. If 7 | |K|,
then 7 ∼ 11 in Γ(G) by Lemma 2.2 and this is impossible. If 7 | |G/H|,
then |M/H| = 7, where M ≤ G. Hence 7 | (11 − 1) by Lemma 2.2,
which is a contradiction. Thus 7 ∤ |K| and 7 ∤ |G/H|, which implies
that 7 | |S|. Note that 11 is the maximal prime divisor of |S| and by
Table 1 in [17], it follows that S is isomorphic to one of the following
simple groups: L2(11), M11, M12, U5(2), M22, A11, McL, HS, A12,
U6(2). Therefore S ∼= M22 or A11 since 7 | |S| and |S| | |G|. If S ∼= M22,
then M22 ≤ G/K ≤ Aut(M22) and so 5 | |K|. Thus 5 ∼ 11 in Γ(G) by
Lemma 2.2, which is a contradiction. Therefore A11 ≤ G/K ≤ S11. If
K ∼= Z2, then every Sylow 11-subgroup of G acts fixed-point-freely on
K and so 11 | 1, which is a contradiction. And it follows that K = 1
and G ∼= S11.

Case 4. Let p be equal to 19. Then ρ(G) = {11, 13, 17, 19} and
ρ(2, G) = {2, 19}. Thus the conditions of Lemma 2.1 are satisfied. So
there exists a finite nonabelian simple group S such that S ≤ G =
G/K ≤ Aut(S) for a maximal normal soluble subgroup K of G and one
of the following statements holds:

(1) S ∼= A7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.
(2) For every prime p ∈ π(G) nonadjacent to 2 in Γ(G) a Sylow p-

subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular,
t(2, S) ≥ t(2, G).

Suppose that (1) holds. If S ∼= A7, then A7 ≤ G/K ≤ S7. By Lemma
2.1, we know that at least |ρ(G)| − 1 primes in ρ(G) divide |S|, which
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is a contradiction. If S ∼= L2(q), where q = rα and r is an odd prime.
Since π(L2(q)) ⊆ π(G), we get that r ∈ {3, 5, 7, 11, 13, 17, 19}. And from
Lemma 2.1, we know that at least |ρ(G)| − 1 primes in ρ(G) divide |S|.
In the following we will discuss the possibilities of r.

If r = 3, 5, or 7, then at least three primes in ρ(G) divide q2−1
2 and it

follows that at least two primes in ρ(G) divide q+1
2 or q−1

2 . Hence l ∼ s
in Γ(G) for some l, s ∈ {11, 13, 17, 19} by using Lemma 2.3, which is a
contradiction. If r = 11, 13, 17, or 19, then α ≤ 1 since |S| | |G|. It is
evident to see that this is impossible by Lemma 2.1 (b).

Consequently (1) does not hold and (2) holds. Since Γ(G) = Γ(S19),
we get that 19 is the maximal prime divisor of |G| and by Table 1 in
[17], it follows that S is isomorphic to one of the following simple groups:
L2(19), U3(19), U3(8), L3(7), L4(7), J1, J3, L3(11), HN , U4(8), A19,
A20, A21, A22 and 2E6(2). On the other hand, at least three primes in
ρ(G) divide |S| by Lemma 2.1 and so S ≇ L2(19), L3(7), U3(19), U3(8),
L4(7), J1, J3, L3(11), HN and U4(8). If S ∼= 2E6(2), then 236 | |G|,
which is a contradiction. By the same reason, S ≇ A20, A21 and A22.
Therefore S ∼= A19 and A19 ≤ G/K ≤ S19. If K ∼= Z2, then every Sylow
19-subgroup of G acts fixed-point-freely on K and so 19 | 1, which is a
contradiction. And it follows that K = 1 and G ∼= S19.

Similar to Case 3 and Case 4 we can prove the cases for p = 13, 17.

Case 5. Assume that 23 ≤ p ≤ 107. It is not difficult to see that
ρ(G) ≥ 5 and ρ(2, G) = {2, p}. Thus the conditions of Lemma 2.1 are
satisfied. So there exists a finite nonabelian simple group S such that
S ≤ G = G/K ≤ Aut(S) for a maximal normal soluble subgroup K
of G. Also p | |S|. We claim that

∏
r | |S|, where r is a prime and

p
2 < r ≤ p. If not, then there exists a prime r such that p

2 < r < p
and r ∤ |S|. Let S = H/K. Then r | |G/H| or r | |K|. If r | |K|,
then by Lemma 2.2 we get that |S| | (r − 1) since G does not have any
element of order rp. Therefore p | (r − 1), which is a contradiction. If
r | |G/H|, then G has a subgroup L such that H < L and L/H is a
simple group of order r. Consequently we have r | (p−1) by Lemma 2.2
and so p− 1 = r for p

2 < r < p, which is impossible since 23 ≤ p ≤ 107.
Therefore

∏
r | |S|, where r is a prime and p

2 < r ≤ p. So S is not a
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sporadic simple group by comparing the order of all the sporadic sim-
ple groups. By the same reason and |S| | |G| we can get that S is not
a simple group of Lie type. And consequently S ∼= Am. Since p is
the maximal prime divisor of |S| and |S| | |G|, we have m = p. Then
Ap ≤ G/K ≤ Aut(Ap) = Sp. If K ∼= Z2, then every Sylow p-subgroup
of G acts fixed-point-freely on K and so p | 1, which is impossible. Thus
K = 1 and G ∼= Sp for 23 ≤ p ≤ 107.

Now we claim that the theorem holds for p > 107. If G ∼= Sp, then
the conclusion is obvious. In the following we assume that |G| = |Sp|
and Γ(G) = Γ(Sp). And we have the following case.

Case 6. Let p > 107 be a prime. By Corollary 3 of Theorem 2 in [11],

it follows that k(p) − k(p/2) ≥ 3p
10 log(p/2) and so k(p) − k(p/2) ≥ 14 for

p ≥ 211, where k(p) denotes the number of prime numbers not exceeding
p. And it follows that t(G) ≥ 14 for p ≥ 211. In fact, we can get that
t(G) ≥ 14 for 107 < p < 211 by easy calculations. Thus t(G) ≥ 14 for
all p > 107. Note that ρ(2, G) = {2, p}. Then the conditions of Lemma
2.1 are satisfied. So there exists a finite nonabelian simple group S such
that S ≤ G = G/K ≤ Aut(S) for a maximal normal soluble subgroup
K of G. Also p | |S|.

First, S is not a sporadic simple group. Otherwise, according to Table
1 in [15], we know that t(S) ≤ 11. On the other hand, by Lemma 2.1,
it follows that t(S) ≥ t(G) − 1 = |ρ(G)| − 1 ≥ 14 − 1 = 13, which is
a contradiction. Second, S is not a simple group of Lie type. If not,
according to Tables 2-4 in [15], we obtain that S is isomorphic to one of
the following simple groups: 2An−1(q)(n ≥ 7), An−1(q)(n ≥ 7), Bn(q),
Cn(q),Dn(q) and

2Dn(q), where n and q should satisfy the corresponding
conditions in [15, Tables 2-4]. If S ∼= 2An−1(q), then t(S) = [n+1

2 ] ≥
[ 3p
10 log(p/2) ]− 1. Hence n > 3p

10 log(p/2) . By calculations and similar to the

above, it follows that ql||S|(l > p) for all p > 107. And we have ql||G|
for some l > p since |S| | |G|. On the other hand, we know that the
prime divisor with the maximal exponent of |Sp| is 2 and it is easy to
see that 2p ∤ |Sp|. Thus we get a contradiction. Similarly we can prove
that S ≇ An−1(q), Bn(q), Cn(q), Dn(q) and

2Dn(q). Consequently S is
an alternating group. Furthermore, S ∼= Ap and Ap ≤ G/K ≤ Sp. If
K ∼= Z2, then every Sylow p-subgroup of G acts fixed-point-freely on
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K and so p | 1, which is impossible. Thus K = 1 and it follows that
G ∼= Sp for p > 107.

Now the proof of the theorem is complete. □
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