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Abstract. Assume that A, B are Banach algebras and that m :
A × B → B, m′ : A × A → B are bounded bilinear mappings.
We study the relationships between Arens regularity of m, m′ and
the Banach algebras A, B. For a Banach A-bimodule B, we show
that B factors with respect to A if and only if B∗∗ is unital as an
A∗∗-module. Let Ze′′(B

∗∗) = B∗∗ where e′′ is a mixed unit of A∗∗.
Then B∗ factors on both sides with respect to A if and only if B∗∗

has a unit as A∗∗-module.
Keywords: Arens regularity, bilinear mappings, topological cen-
ter, unital A-module, module action.
MSC(2010): Primary: 46L06, 46L07, 46L10; Secondary: 47L25,
47L50.

1. Introduction

Throughout this paper, A is a Banach algebra and A∗, A∗∗, respec-
tively, are the first and second dual of A. Recall that a left approximate
identity, abbrevaited asLAI, (respectively, right approximate identity,
abbrevaited as RAI) in a Banach algebra A is a net (eα)α∈I in A such
that eαa → a (respectively, aeα → a) for each a ∈ A. We say that
a net (eα)α∈I ⊆ A is a approximate identity, abbrevaited as AI, for
A if it is both an LAI and a RAI for A. If (eα)α∈I in A is bounded
and is an AI for A, then we say that (eα)α∈I is a bounded approxi-
mate identity, abbreviated as BAI, for A. For a ∈ A and a′ ∈ A∗,
we denote by a′a and aa′ respectively, the functionals on A∗ defined by
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⟨a′a, b⟩ = ⟨a′, ab⟩ = a′(ab) and ⟨aa′, b⟩ = ⟨a′, ba⟩ = a′(ba) for all b ∈ A.
The Banach algebra A is embedded in its second dual via the identi-
fication ⟨a, a′⟩ - ⟨a′, a⟩ for every a ∈ A and a′ ∈ A∗. We denote the
set {a′a : a ∈ A and a′ ∈ A∗} and {aa′ : a ∈ A and a′ ∈ A∗} by
A∗A and AA∗, respectively. It is clear that these two sets are subsets of
A∗. Assume that A has a BAI. If the equality A∗A = A∗ (AA∗ = A∗)
holds, then we say that A∗ factors on the left (right). If both equalities
A∗A = AA∗ = A∗ hold, then we say that A∗ factors on both sides.

It is well-known that (see for instance [1]), the second dual A∗∗ of
A endowed with the either Arens multiplications is a Banach algebra.
The constructions of the two Arens multiplications in A∗∗ lead us to the
definition of topological centers for A∗∗ with respect to Arens multipli-
cations. The topological centers of Banach algebras, module actions and
applications of them have been introduced and discussed in many pa-
pers such as [7, 8, 10, 11, 12]. The extension of bilinear maps on normed
spaces and the concept of regularity of bilinear maps have taken a great
deal of attention by many researchers (see for example [1, 2, 5, 7, 12]).
We commence by recalling some definitions as follows.

Let X,Y and Z be normed spaces and m : X ×Y → Z be a bounded
bilinear mapping. Arens in [1] offers two natural extensions m∗∗∗ and
mt∗∗∗t of m from X∗∗ × Y ∗∗ into Z∗∗ as follows
1. m∗ : Z∗ × X → Y ∗, given by ⟨m∗(z′, x), y⟩ = ⟨z′,m(x, y)⟩ where
x ∈ X, y ∈ Y , z′ ∈ Z∗,
2. m∗∗ : Y ∗∗×Z∗ → X∗, given by ⟨m∗∗(y′′, z′), x⟩ = ⟨y′′,m∗(z′, x)⟩ where
x ∈ X, y′′ ∈ Y ∗∗, z′ ∈ Z∗,
3. m∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗, given by ⟨m∗∗∗(x′′, y′′), z′⟩
= ⟨x′′,m∗∗(y′′, z′)⟩ where x′′ ∈ X∗∗, y′′ ∈ Y ∗∗, z′ ∈ Z∗.
The mapping m∗∗∗ is the unique extension of m such that
x′′ → m∗∗∗(x′′, y′′) from X∗∗ into Z∗∗ is weak∗-weak∗ continuous for
every y′′ ∈ Y ∗∗, but the mapping y′′ → m∗∗∗(x′′, y′′) is not in general
weak∗-weak∗ continuous from Y ∗∗ into Z∗∗ unless x′′ ∈ X. Hence the
first topological center of m may be defined as follows

Z1(m)={x′′ ∈ X∗∗ : y′′ → m∗∗∗(x′′, y′′) is weak∗-to-weak∗ continuous}.

Let now mt : Y ×X → Z be the transpose of m defined by mt(y, x) =
m(x, y) for every x ∈ X and y ∈ Y . Then mt is a continuous bilin-
ear map from Y × X to Z, and so it may be extended as above to
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mt∗∗∗ : Y ∗∗ × X∗∗ → Z∗∗. The mapping mt∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗

in general is not equal to m∗∗∗, see [1]. If m∗∗∗ = mt∗∗∗t, then m is
called Arens regular. The bounded bilinear mapping m is said to be
left (respectively, right) strongly Arens irregular whenever m∗∗∗ and
mt∗∗∗t are equal only on X ×Y ∗∗ (respectively, X∗∗×Y ). The mapping
y′′ → mt∗∗∗t(x′′, y′′) is weak∗-weak∗ continuous for every y′′ ∈ Y ∗∗, but
the mapping x′′ → mt∗∗∗t(x′′, y′′) from X∗∗ into Z∗∗ is not in general
weak∗ − weak∗ continuous for every y′′ ∈ Y ∗∗. So we define the second
topological center of m as

Z2(m) = {y′′ ∈ Y ∗∗ : x′′ → mt∗∗∗t(x′′, y′′) is weak∗-weak∗ continuous}.
It is clear that m is Arens regular if and only if Z1(m) = X∗∗ or Z2(m) =
Y ∗∗. Arens regularity of m is equivalent to the following

lim
i
lim
j
⟨z′,m(xi, yj)⟩ = lim

j
lim
i
⟨z′,m(xi, yj)⟩,

whenever both limits exist for all bounded sequences (xi)i ⊆ X , (yi)i ⊆
Y and z′ ∈ Z∗, see [13].
The mapping m is left strongly Arens irregular if Z1(m) = X and m is
right strongly Arens irregular if Z2(m) = Y .
Let now B be a Banach A-bimodule, and let

πℓ : A×B → B and πr : B ×A → B.

be the left and right module actions of A on B, respectively. Then B∗∗

is a Banach A∗∗-bimodule with module actions

π∗∗∗
ℓ : A∗∗ ×B∗∗ → B∗∗ and π∗∗∗

r : B∗∗ ×A∗∗ → B∗∗.

Similarly, B∗∗ is a Banach A∗∗-bimodule with module actions

πt∗∗∗t
ℓ : A∗∗ ×B∗∗ → B∗∗ and πt∗∗∗t

r : B∗∗ ×A∗∗ → B∗∗.

We may therefore define the topological centers of the left and right
module actions of A on B as follows:

ZB∗∗(A∗∗) = Z(πℓ) = {a′′ ∈ A∗∗ : the map b′′ → π∗∗∗
ℓ (a′′, b′′) : B∗∗ →B∗∗

is weak∗-weak∗ continuous}
Zt
B∗∗(A∗∗) = Z(πt

r) = {a′′ ∈ A∗∗ : the map b′′ → πt∗∗∗
r (a′′, b′′) : B∗∗ →B∗∗

is weak∗-weak∗ continuous}
ZA∗∗(B∗∗) = Z(πr) = {b′′ ∈ B∗∗ : the map a′′ → π∗∗∗

r (b′′, a′′) : A∗∗ →B∗∗

is weak∗-weak∗ continuous}
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Zt
A∗∗(B∗∗) = Z(πt

ℓ)={b′′ ∈ B∗∗ : the map a′′→ πt∗∗∗
ℓ (b′′, a′′) : A∗∗ →B∗∗

is weak∗-weak∗ continuous}
One can also see ready that if B is a left(respectively, right) Banach
A-module and πℓ : A × B → B (respectively, πr : B × A → B) is
left (respectively, right) module action of A on B, then B∗ is a right
(respectively, left) Banach A-module.
We write

ab = πℓ(a, b), ba = πr(b, a), πℓ(a1a2, b) = πℓ(a1, a2b),

πr(b, a1a2) = πr(ba1, a2), π∗
ℓ (a1b

′, a2) = π∗
ℓ (b

′, a2a1),

π∗
r (b

′a, b) = π∗
r (b

′, ab),

for all a1, a2, a ∈ A, b ∈ B and b′ ∈ B∗ when there is no confusion.
Regarding A as a Banach A-bimodule, the operation π : A × A →
A extends to π∗∗∗ and πt∗∗∗t defined on A∗∗ × A∗∗. These extensions
are known, respectively, as the first (respectively, left) and the second
(respectively, right) Arens products, and with each of them, the second
dual space A∗∗ becomes a Banach algebra. In this situation, we shall also
simplify our notations. So the first (respectively, left) Arens product of
a′′, b′′ ∈ A∗∗ shall be simply indicated by a′′b′′ and defined by the three
steps:

⟨a′a, b⟩ = ⟨a′, ab⟩,
⟨a′′a′, a⟩ = ⟨a′′, a′a⟩,
⟨a′′b′′, a′⟩ = ⟨a′′, b′′a′⟩.

for every a, b ∈ A and a′ ∈ A∗. Similarly, the second (respectively, right)
Arens product of a′′, b′′ ∈ A∗∗ shall be indicated by a′′ob′′ and defined
by :

⟨aoa′, b⟩ = ⟨a′, ba⟩,
⟨a′oa′′, a⟩ = ⟨a′′, aoa′⟩,
⟨a′′ob′′, a′⟩ = ⟨b′′, a′oa′′⟩.

for all a, b ∈ A and a′ ∈ A∗.
The regularity of a normed algebra A is defined to be the regularity of
its algebra multiplication when considered as a bilinear mapping. Let
a′′ and b′′ be elements of A∗∗, the second dual of A. By Goldstine’s
Theorem ([6], page 424), there are bounded nets (aα)α and (bβ)β in A
such that a′′ = weak∗- limα aα and b′′ = weak∗- limβ bβ. So it is easy to
see that for all a′ ∈ A∗,

lim
α

lim
β
⟨a′, π(aα, bβ)⟩ = ⟨a′′b′′, a′⟩



509 Haghnejad Azar

and

lim
β

lim
α
⟨a′, π(aα, bβ)⟩ = ⟨a′′ob′′, a′⟩,

where a′′b′′ and a′′ob′′ are the first and second Arens products of A∗∗,
respectively, see [5, 11, 12].
We find the usual first and second topological center of A∗∗, which are

ZA∗∗(A∗∗) = Z(π) = {a′′ ∈ A∗∗ : b′′ → a′′b′′ is weak∗-weak∗

continuous},

Zt
A∗∗(A∗∗) = Z(πt) = {a′′ ∈ A∗∗ : a′′ → a′′ob′′ is weak∗-weak∗

continuous}.
An element e′′ of A∗∗ is said to be a mixed unit if e′′ is a right unit for
the first Arens multiplication and a left unit for the second Arens mul-
tiplication. That is, e′′ is a mixed unit if and only if, for each a′′ ∈ A∗∗,
a′′e′′ = e′′oa′′ = a′′. By ([3], page 146), an element e′′ of A∗∗ is a mixed
unit if and only if it is a weak∗ cluster point of some BAI (eα)α∈I in A.
A functional a′ in A∗ is said to be wap (weakly almost periodic) on A if
the mapping a → a′a from A into A∗ is weakly compact. In [13], Pym
showed that this definition is equivalent to the following condition.
For every two nets (ai)i and (bj)j in A1 = {a ∈ A : ∥ a ∥≤ 1}, we have

lim
i
lim
j
⟨a′, aibj⟩ = lim

j
lim
i
⟨a′, aibj⟩,

whenever both iterated limits exist. The collection of all wap functionals
on A is denoted by wap(A). Also we have a′ ∈ wap(A) if and only if
⟨a′′b′′, a′⟩ = ⟨a′′ob′′, a′⟩ for every a′′, b′′ ∈ A∗∗.
Throughout the paper, for two normed spaces A and B, B(A,B) is the
set of all bounded linear operators from A into B.
In the next section, we investigate the relationships between the Arens
regularity of some bilinear mappings and Banach algebras, particulary,
under some conditions, for bounded bilinear mappings m : A×B → B,
m′ : A×A → B, we show that m or m′ are Arens regular (respectively,
irregular) if and only if A or B are Arens regular (respectively, irregular).
We also give some results in special Banach algebras such as L1(G),
M(G), L∞(X) and C(X) whenever G is a locally compact group and
X is a semigroup. In Section 3, we extend some results from [11] into
module actions along with some new results.
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2. Arens regularity of some bilinear forms

In Theorem 2.1 and Theorem 2.6 of this section, we introduce some
special bilinear mappings from A×B or A×A into B. We establish some
relationships between the Arens regularity of these bilinear mappings
and Arens regularity of A or B with some applications in group algebras.

Theorem 2.1. Let A be a normed space and B be a Banach algebra.
Let T ∈ B(A,B) and m be the bilinear mapping from A × B into B
such that for every a ∈ A and b ∈ B we have m(a, b) = T (a)b. Then the
following statements are true.
a) If B is Arens regular, then m is Arens regular.
b) If T is surjective, then we have
i) B is Arens regular if and only if m is Arens regular.
ii) If m is left strongly Arens irregular, then B is left strongly Arens
irregular.
iii) If T is injective, then B is left strongly Arens irregular if and only
if m is left strongly Arens irregular.

Proof. a) By the definition of m∗∗∗, we have m∗∗∗(a′′, b′′) = T ∗∗(a′′)b′′

and mt∗∗∗t(a′′, b′′) = T ∗∗(a′′)ob′′ where a′′ ∈ A∗∗ and b′′ ∈ B∗∗. Since
Z1(B

∗∗) = B∗∗, the mapping b′′ → T ∗∗(a′′)b′′ = m∗∗∗(a′′, b′′) is
weak∗-weak∗ continuous for all a′′ ∈ A∗∗. Also since Z2(B

∗∗) = B∗∗, the
mapping a′′ → T ∗∗(a′′)ob′′ = mt∗∗∗t(a′′, b′′) is weak∗-weak∗ continuous
for all b′′ ∈ B∗∗. Hence m is Arens regular.
b) i) Let m be Arens regular. Then Z1(m) = A∗∗. Let b′′1, b

′′
2 ∈ B∗∗

and (b′′α)α ∈ B∗∗ such that b′′α
w∗
→ b′′2. Since T is surjective, there is an

a′′ ∈ A∗∗ such that T ∗∗(a′′) = b′′1. Then we have

b′′1b
′′
2 = T ∗∗(a′′)b′′2 = m∗∗∗(a′′, b′′2) = weak∗- lim

α
m∗∗∗(a′′, b′′α)

= weak∗- lim
α

T ∗∗(a′′)b′′α = weak∗- lim
α

b′′1b
′′
α.

Hence Z1(B
∗∗) = B∗∗ consequently B is Arens regular.

b) ii) Let m be left strongly Arens irregular. Then Z1(m) = A. For
b′′1 ∈ Z1(B

∗∗) the mapping b′′2 → b′′1b
′′
2 is weak∗-weak∗ continuous. Also

since T is surjective, there exists a′′ ∈ A∗∗ such that T ∗∗(a′′) = b′′1 and
the mapping b′′2 → T ∗∗(a′′)b′′2 = m∗∗∗(a′′, b′′2) is weak

∗-weak∗ continuous.
Hence a′′ ∈ Z1(m) = A. Consequently we have b′′1 = T ∗∗(a′′) ∈ B. It
follows that Z1(B

∗∗) = B.
b) iii) Let B be left strongly Arens irregular. So Z1(B

∗∗) = B. For
a′′ ∈ Z1(m) the mapping b′′ → m∗∗∗(a′′, b′′) is weak∗-weak∗ continuous
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and consequently T ∗∗(a′′) ∈ Z1(B
∗∗) = B. Since T is bijective, a′′ ∈ A.

We conclude Z1(m) = A. □
In Theorem 2.1, if we replace the left strongly Arens irregularity of

A, B and m with the right strongly Arens irregularity of them, then the
results hold.
The following definition, introduced by Ülger [16], has an important role
in showing some sufficient conditions for the Arens regularity of tensor
product A⊗̂B where A and B are Banach algebra.
Suppose that A and B are Banach algebras. We recall that a bilinear
form m : A×B → C is biregular if for any two pairs of sequences (ai)i,

(ãj)j in A1 and (bi)i, (b̃j)j in B1, we have

lim
i
lim
j

m(aiãj , bib̃j) = lim
j

lim
i
m(aiãj , bib̃j)

provided that these limits exist.

Corollary 2.2. Let B be a unital Banach algebra and suppose that A
is subalgebra of B. If A is not Arens regular, then A⊗̂B is not Arens
regular.

Proof. Let m : A × B → C be the bilinear form that was introduced
in Theorem 2.1 where T : A → B is natural inclusion. Since A is not
Arens regular, m is not biregular. Consequently by ([16], Theorem 3.4),
A⊗̂B is not Arens regular. □
Example 2.3. Let C(X) be the Banach algebra of all continuous bounded
functions on X = [0, 1] with the supremum norm and the convolution as
multiplication defined by

f ∗ g(x) =
∫ x

0
f(x− t)g(t)dt where 0 ≤ x ≤ 1.

Let T : C(X) → L∞(X) be the natural inclusion and m : C(X) ×
L∞(X) → L∞(X) be defined by m(f, g) = f ∗ g where f ∈ C(X) and
g ∈ L∞(X). By [2], L∞(X) is Arens regular and by Theorem 2.1, we
conclude that m is Arens regular.
Similarly since c0 is Arens regular, see [1, 5], by using Theorem 2.1, it
is clear that the bounded bilinear mapping (f, g) → f ∗ g from ℓ1 × c0
into c0 is Arens regular.

For a Banach algebra A, we recall that a bounded linear operator
T : A → A is said to be a left (respectively, right) multiplier if for
all a, b ∈ A, T (ab) = T (a)b (respectively, T (ab) = aT (b)). We denote
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by LM(A) (respectively, RM(A)) the set of all left (respectively, right)
multipliers of A. The set LM(A) (respectively, RM(A)) is a normed
subalgebra of the algebra L(A) of bounded linear operator on A.
Now, we define a new concept which is an extension of the left (re-
spectively, right) multiplier from a Banach algebra to module actions.
We show that some relationships hold between this concept and Arens
regularity of some bilinear mappings.

Definition 2.4. Let B be a left Banach (respectively, right) A-module
and T ∈ B(A,B). Then T is called extended left (respectively, right)
multiplier if

T (a1a2) = πr(T (a1), a2) (resp. T (a1a2) = πℓ(a1, T (a2)))for all a1, a2 ∈ A

We denote by LM(A,B) [respectively, RM(A,B)] the set of all left
(respectively, right) multiplier extension from A into B.

Example 2.5. Let a′ ∈ A∗. Then the mapping Ta′ : a → a′a (respectively
Ra′ a → aa′) from A into A∗ is a left (respectively, right) multiplier,
that is, Ta′ ∈ LM(A,A∗) (Ra′ ∈ RM(A,A∗)). It is also clear that Ta′ is
weakly compact if and only if a′ ∈ wap(A).

Theorem 2.6. Let B be a left (respectively, right) Banach A-module
and T ∈ B(A,B) be a continuous map. Assume that m : A×A → B is
the bilinear mapping such that m(a1, a2) = T (a1a2). Then we have the
following assertions
i) If A is Arens regular, then m is Arens regular.
ii) If m is left (right) strongly Arens irregular, then A is left (respectively,
right) strongly Arens irregular.
iii) If T ∈ LM(A,B), then T ∗∗(Z1(m)) ⊆ ZA∗∗(B∗∗).
iv) If T ∈ LM(A,B), then T ∗∗ ∈ LM(A∗∗, B∗∗) .
v) Suppose that B is Banach algebra and T is an embedding. Then, B
is Arens regular if and only if m is Arens regular.

Proof. i) An easy calculation shows that

m∗∗∗(a′′1, a
′′
2) = T ∗∗(a′′1a

′′
2) , mt∗∗∗t(a′′1, a

′′
2) = T ∗∗(a′′1oa

′′
2).

Since A is Arens regular, the mapping a′′2 → a′′1a
′′
2 is weak∗-weak∗ con-

tinuous for all a′′1 ∈ A∗∗. Also the mapping a′′1 → a′′1oa
′′
2 is weak∗-weak∗

continuous for all a′′2 ∈ A∗∗. Hence both mappings a′′2 → T ∗∗(a′′1a
′′
2) =

m∗∗∗(a′′1, a
′′
2) and a′′1 → T ∗∗(a′′1oa

′′
2) = mt∗∗∗t(a′′1, a

′′
2) are weak∗-weak∗

continuous for all a′′1 ∈ A∗∗ and a′′2 ∈ A∗∗, respectively. We conclude
that Z1(m) = Z2(m) = A∗∗.
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ii) Let a′′1 ∈ Z1(A
∗∗). Then the mapping a′′2 → a′′1a

′′
2 is weak∗-weak∗

continuous. Consequently, the mapping a′′2 → T ∗∗(a′′1a
′′
2) = m∗∗∗(a′′1, a

′′
2)

is weak∗-weak∗ continuous. Hence a′′1 ∈ Z1(m) = A.
iii) Let a′′1 ∈ Z1(m). Then the mapping

a′′2 → m∗∗∗(a′′1, a
′′
2) = T ∗∗(a′′1)a

′′
2

is weak∗-weak∗ continuous from A∗∗ into B∗∗. It follows that T ∗∗(a′′1) ∈
ZA∗∗(B∗∗).
iv) If we set m(a1, a2) = T (a1a2) (respectively, = T (a1)a2) for all
a1, a2 ∈ A, then m∗∗∗(a′′1, a

′′
2) = T ∗∗(a′′1a

′′
2) (respectively, = T ∗∗(a′′1)a

′′
2)

for all a′′1, a
′′
2 ∈ A∗∗. Thus, we conclude that T ∗∗(a′′1a

′′
2) = T ∗∗(a′′1)a

′′
2 for

all a′′1, a
′′
2 ∈ A∗∗.

v) Letm be Arens regular and b′′1, b
′′
2 ∈ B∗∗ and let (b′′α)α ∈ B∗∗ such that

b′′α
w∗
→ b′′2. We set a′′1, a

′′
2 ∈ A∗∗ and (a′′α)α ∈ A∗∗ such that T ∗∗(a′′1) = b′′1 ,

T ∗∗(a′′2) = b′′2 and T ∗∗(a′′α) = b′′α. Then

b′′1b
′′
2 = T ∗∗(a′′1)T

∗∗(a′′2) = T ∗∗(a′′1a
′′
2) = m∗∗∗(a′′1, a

′′
2)

= weak∗- lim
α

m∗∗∗(a′′1, a
′′
α) = weak∗- lim

α
T ∗∗(a′′1a

′′
α)

= weak∗- lim
α

T ∗∗(a′′1)T
∗∗(a′′α) = weak∗- lim

α
b′′1b

′′
α,

where by the open mapping theorem, we have a′′α
w∗
→ a′′2. Consequently

Z1(B
∗∗) = B∗∗.

Conversely, let B be Arens regular and a′′1, a
′′
2 ∈ A∗∗ and (aα)α ∈ A∗∗

such that a′′α
w∗
→ a′′2. Then

m∗∗∗(a′′1, a
′′
2) = T ∗∗(a′′1a

′′
2) = weak∗ − lim

α
T ∗∗(a′′1a

′′
α)

= weak∗- lim
α

m∗∗∗(a′′1, a
′′
α).

It follow that Z1(m) = A∗∗. Thus m is Arens regular. □
Example 2.7. Assume that T : c0 → ℓ∞ is the natural inclusion map
and m : c0 × c0 → ℓ∞ be the bilinear mapping such that m(f, g) = f ∗ g,
for all f, g ∈ c0. Since c0 is Arens regular, m is Arens regular. Similarly
the bilinear mapping m : C(G) × C(G) → L∞(G) defined by formula
(f, g) → f ∗ g, for all f, g ∈ C(G) is Arens regular whenever G is
compact.

For normed spaces X,Y, Z,W let m1 : X×Y → Z and m2 : X×W →
Z be bounded bilinear mappings. If h : Y → W is a continuous linear
mapping such that m1(x, y) = m2(x, h(y)) for all x ∈ X and y ∈ Y , then
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we say that m1 factors through m2, see [2]. We say that the continuous
bilinear mapping m : X × Y → Z factors if m is onto Z, see [7].

Theorem 2.8. Let A and B be Banach algebras and B be a Banach
A-bimodule. Let T ∈ B(A,B) be a continuous homomorphism. If T
is weakly compact, then the bilinear mapping m(a1, a2) = T (a1a2) from
A×A into B is Arens regular.

Proof. Let m′ be the bilinear mapping that we introduced in Theorem
2.1. Then m(a1, a2) = m′(a1, T (a2)) for all a1, a2 ∈ A. Consequently
m factors through m′. So by ([2], Theorem 2), we conclude that m is
Arens regular. □
Example 2.9. Suppose that T : L1(G) → M(G) is the natural inclu-
sion. Then the bilinear mapping m : L1(G) × L1(G) → M(G) defined
by m(f, g) = f ∗ g for all f, g ∈ L1(G) is Arens regular whenever G is
finite, see [18]. Also the left strongly Arens irregularity of m implies that
L1(G) is also left strongly Arens irregular, see [10, 11].

3. Unital A-modules and module actions

In [11], Lau and Ülger showed that for a Banach algebra A, A∗ fac-
tors on the left if and only if A∗∗ is unital with respect to the first Arens
product. In this section we extend this result to module actions.
We say that A∗∗ has a weak∗ bounded left approximate identity, ab-
brevaited as W ∗BLAI with respect to the first Arens product, if there
is a bounded net as (eα)α ⊆ A such that for all a′′ ∈ A∗∗ and a′ ∈ A∗,
we have ⟨eαa′′, a′⟩ → ⟨a′′, a′⟩. The definition of W ∗RBAI is similar
and if A∗∗ has both W ∗LBAI and W ∗RBAI, then we say that A∗∗ has
W ∗BAI.
Assume that B is a Banach A-bimodule. Then we define the set AB as
the linear span of the set {ab : a ∈ A, b ∈ B}. We say that B factors
on the left (right) if B = BA (B = AB) and B factors on both sides, if
B = BA = AB.

Definition 3.1. Let B be a left Banach A−module and e be a left unit
element of A. We say that e is a left unit (respectively, weak left unit)
for A-module B if πℓ(e, b) = b (respectively, ⟨b′, πℓ(e, b)⟩ = ⟨b′, b⟩ for all
b′ ∈ B∗) where b ∈ B. The definition of right unit (respectively, weak
right unit) is similar.
We say that a Banach A-bimodule B is a unital as an A-module if B
has the same left and right unit. Thus in this case, we say that B is



515 Haghnejad Azar

unital as A-module.
Let B be a left Banach A-module and (eα)α ⊆ A be a LAI (respectively,
weakly left approximate identity, abbrevaited as (WLAI)) for A. Then
(eα)α is said to be a left approximate identity, abbrevaited as (LAI) (re-
spectively, weakly left approximate identity, abbrevaited as (WLAI)) for

B, if for each b ∈ B, we have πℓ(eα, b) → b ( respectively, πℓ(eα, b)
w→ b).

The definition of the right approximate identity (= RAI) (respectively,
weakly right approximate identity, abbrevaited as (WRAI)) is similar.
We say that (eα)α is an approximate identity, abbrevaited as (AI) (re-
spectively, weakly approximate identity, abbrevaited as (WAI)) for B, if
B has the same left and right approximate identity (respectively, weakly
left and right approximate identity).
Let (eα)α ⊆ A be weak∗ left approximate identity for A∗∗. Then (eα)α
is weak∗ left approximate identity (W ∗LAI) as A∗∗-module for B∗∗, if

for all b′′ ∈ B∗∗, we have π∗∗∗
ℓ (eα, b

′′)
w∗
→ b′′. The definition of the weak∗

right approximate identity, abbrevaited as (W ∗RAI) is similar. We say
that (eα)α is a weak∗ approximate identity, abbrevaited as (W ∗AI) for
B∗∗, if B∗∗ has the same weak∗ left and right approximate identity.

Example 3.2. Let G be a locally compact group. We know that Lp(G),
for 1 ≤ p ≤ ∞, is a Banach M(G)− bimodule under the convolution as
multiplication. Thus Lp(G) is a unital M(G)− bimodule.

Theorem 3.3. Assume that A is a Banach algebra and A has a BAI
(eα)α. Then we have the following assertions.
i) Let B be a right Banach A-module. Then B factors on the left if and
only if B has a WRAI.
ii) Let B be a left Banach A-module. Then B factors on the right if and
only if B has a WLAI.
iii) B factors on both side if and only if B has a WAI.

Proof. i) Suppose that B = BA. Let b ∈ B and b′ ∈ B∗. Then there are
x ∈ B and a ∈ A such that b = xa. Therefore

⟨b′, πr(b, eα)⟩ = ⟨b′, πr(xa, eα)⟩ = ⟨π∗
r (b

′, x), aeα⟩ → ⟨π∗
r (b

′, x), a⟩
= ⟨b′, πr(x, a)⟩ = ⟨b′, b⟩.

It follows that πr(b, eα)
w→ b, and so B has a WRAI.

For the converse, since BA is a weakly closed subspace of B, so by Cohen
factorization theorem, see [5], the result is immediate.
ii) The proof is similar to that of (i).
iii) This is clear. □
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In Theorem 3.3, if we set B = A, then we obtain Lemma 2.1 from
[11].

Theorem 3.4. Assume that B is a left Banach A-module and A∗∗ has
a right unit e′′. Then, B factors on the left if and only if e′′ is a right
unit for A∗∗-module B∗∗.

Proof. Since A∗∗ has a right unit e′′, there is a BRAI (eα)α for A such

that eα
w∗
→ e′′, see [3]. Let BA = B and b ∈ B. Thus, there is x ∈ B and

a ∈ A such that b = xa. Then for all b′ ∈ B∗, we have

⟨π∗∗
r (e′′, b′), b⟩ = ⟨e′′, π∗

r (b
′, b)⟩ = lim

α
⟨eα, π∗

r (b
′, b)⟩

= lim
α
⟨π∗

r (b
′, b), eα⟩ = lim

α
⟨b′, πr(b, eα)⟩

= lim
α
⟨b′, πr(xa, eα)⟩ = lim

α
⟨π∗

r (b
′, x), aeα⟩

= ⟨π∗
r (b

′, x), a⟩ = ⟨b′, πr(x, a) = ⟨b′, b⟩.
Thus π∗∗

r (e′′, b′) = b′. Now let b′′ ∈ B∗∗. Then we have

⟨π∗∗∗
r (b′′, e′′), b′⟩ = ⟨b′′, π∗∗

r (e′′, b′)⟩ = ⟨b′′, b′⟩.

We conclude that π∗∗∗
r (b′′, e′′) = b′′. Hence it follows that B∗∗ has a right

unit.
Conversely, assume that e′′ is a right unit for B∗∗. Let b ∈ B and b′ ∈ B∗.
Then we have

⟨b′, πr(b, eα)⟩ = ⟨π∗
r (b

′, b), eα)⟩ → ⟨π∗
r (b

′, b), e′′⟩ = ⟨e′′, π∗
r (b

′, b)⟩

= ⟨π∗∗
r (e′′, b′), b⟩ = ⟨b, π∗∗

r (e′′, b′)⟩ = ⟨π∗∗∗
r (b, e′′), b′⟩

= ⟨b′, b⟩.

Consequently πr(b, eα)
w→ πr(b, e

′′) = b, and so b ∈ BA
w
. Since BA is

a weakly closed subspace of B, so by the Cohen factorization theorem,
b ∈ BA. □

Definition 3.5. Let B be a Banach A-bimodule and a′′ ∈ A∗∗. We
define the sets Zt

a′′(B
∗∗) (or Zt

a′′(π
t
ℓ)) and Za′′(B

∗∗) (or Za′′(π
t
r)) re-

spectively, as follows

Zt
a′′(B

∗∗) = Zt
a′′(π

t
ℓ) = {b′′ ∈ B∗∗ : πt∗∗∗t

ℓ (a′′, b′′) = π∗∗∗
ℓ (a′′, b′′)},

Za′′(B
∗∗) = Za′′(π

t
r) = {b′′ ∈ B∗∗ : πt∗∗∗t

r (b′′, a′′) = π∗∗∗
r (b′′, a′′)}.
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It is clear that ∩
a′′∈A∗∗

Zt
a′′(B

∗∗) = Zt
A∗∗(B∗∗) = Z(πt

ℓ),

∩
a′′∈A∗∗

Za′′(B
∗∗) = ZA∗∗(B∗∗) = Z(πr).

Theorem 3.6. Assume that A is a Banach algebra and A∗∗ has a mixed
unit e′′. Then we have the following assertions.
i) Let B be a left Banach A-module. Then, B∗ factors on the left if and
only if B∗∗ has a left unit e′′.
ii) Let B be a right Banach A-module and Ze′′(π

t
r) = B∗∗. Then, B∗

factors on the right if and only if B∗∗ has a right unit e′′.
iii) Let B be a Banach A-bimodule and Ze′′(π

t
r) = B∗∗. Then, B∗ factors

on both sides if and only if B∗∗ has a unit e′′.

Proof. i) Let (eα)α ⊆ A be a BAI for A such that eα
w∗
→ e′′. Suppose

that B∗A = B∗. Thus for all b′ ∈ B∗, there are a ∈ A and x′ ∈ B∗ such
that x′a = b′. Then for all b′′ ∈ B∗∗, we have

⟨π∗∗∗
ℓ (e′′, b′′), b′⟩ = ⟨e′′, π∗∗

ℓ (b′′, b′)⟩ = lim
α
⟨π∗∗

ℓ (b′′, b′), eα⟩

= lim
α
⟨b′′, π∗

ℓ (b
′, eα)⟩ = lim

α
⟨b′′, π∗

ℓ (x
′a, eα)⟩

= lim
α
⟨b′′, π∗

ℓ (x
′, aeα)⟩ = lim

α
⟨π∗∗

ℓ (b′′, x′), aeα⟩

= ⟨π∗∗
ℓ (b′′, x′), a⟩ = ⟨b′′, π∗

ℓ (x
′, a)⟩ = ⟨b′′, b′⟩.

Thus π∗∗∗
ℓ (e′′, b′′) = b′′. Consequently B∗∗ has left unit.

Conversely, Let e′′ be a left unit for B∗∗ and b′ ∈ B∗. Then for all
b′′ ∈ B∗∗, we have

⟨b′′, b′⟩ = ⟨π∗∗∗
ℓ (e′′, b′′), b′⟩ = ⟨e′′, π∗∗

ℓ (b′′, b′)⟩

= lim
α
⟨π∗∗

ℓ (b′′, b′), eα⟩ = lim
α
⟨b′′, π∗

ℓ (b
′, eα)⟩.

Thus we conclude that weak- limα π
∗
ℓ (b

′, eα) = b′. So by the Cohen fac-
torization Theorem, the proof is immediate.
ii) Suppose that AB∗ = B∗. Thus for all b′ ∈ B∗, there are a ∈ A and
x′ ∈ B∗ such that ax′ = b′. Assume (eα)α ⊆ A is a BAI for A such that
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eα
w∗
→ e′′. Let b′′ ∈ B∗∗ and (bβ)β ⊆ B such that bβ

w∗
→ b′′. Then

⟨π∗∗∗
r (b′′, e′′), b′⟩ = lim

β
⟨π∗∗∗

r (bβ, e
′′), b′⟩ = lim

β
lim
α
⟨b′, πr(bβ, eα)⟩

= lim
β

lim
α
⟨ax′, πr(bβ, eα)⟩ = lim

β
lim
α
⟨x′, πr(bβ, eα)a⟩

= lim
β

lim
α
⟨x′, πr(bβ, eαa)⟩ = lim

β
lim
α
⟨π∗

r (x
′, bβ), eαa)⟩

= lim
β
⟨π∗

r (x
′, bβ), a)⟩ = ⟨b′′, b′⟩.

We conclude that
π∗∗∗
r (b′′, e′′) = b′′

for all b′′ ∈ B∗∗.
Conversely, suppose that π∗∗∗

r (b′′, e′′) = b′′ where b′′ ∈ B∗∗ and (bβ)β ⊆ B

such that bβ
w∗
→ b′′. Let (eα)α ⊆ A be a BAI for A such that eα

w∗
→ e′′.

Since Ze′′(π
t
r) = B∗∗, for all b′ ∈ B∗, we have

⟨b′′, b′⟩ = ⟨π∗∗∗
r (b′′, e′′), b′⟩ = ⟨b′′, π∗∗

r (e′′, b′)⟩ = lim
β
⟨π∗∗

r (e′′, b′), bβ⟩

= lim
β
⟨e′′, π∗

r (b
′, bβ)⟩ = lim

β
lim
α
⟨π∗

r (b
′, bβ), eα⟩

= lim
β

lim
α
⟨π∗

r (b
′, bβ), eα⟩ = lim

β
lim
α
⟨b′, πr(bβ, eα)⟩

= lim
α

lim
β
⟨b′, πr(bβ, eα)⟩ = lim

α
lim
β
⟨π∗∗∗

r (bβ, eα), b
′⟩

= lim
α

lim
β
⟨bβ, π∗∗

r (eα, b
′)⟩ = lim

α
⟨b′′, π∗∗

r (eα, b
′)⟩.

It follows that weak- limα π
∗∗
r (eα, b

′) = b′. So by the Cohen factorization
theorem, we are done.
iii) This is clear. □

In Theorem 3.6, if we set B = A, then we obtain Proposition 2.10
from [11].

Corollary 3.7. Let B be a Banach A-bimodule and A∗∗ has a mixed
unit e′′.
a) Let Ze′′(π

t
r) = B∗∗. Then we have the following assertions

i) If B∗ factors on the left but not on the right, then πℓ ̸= πt
r.

ii) If B∗ factors on the left and πℓ = πt
r , then B∗ factors on the right .

iii) e′′ is a right unit for B∗∗ if and only if (eα)α is a W ∗RAI for B∗∗

whenever eα
w∗
→ e′′.

b) Let Zt
e′′(π

t
ℓ) = B∗∗. Then we have the following assertions
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i) If B∗ factors on the right but not on the left, then πr ̸= πt
ℓ.

ii) If B∗ factors on the right and πr = πt
ℓ , then B∗ factors on the left .

iii) e′′ is a left unit for B∗∗ if and only if (eα)α is a W ∗LAI for B∗∗

whenever eα
w∗
→ e′′.

c) Let Zℓ
e′′(πℓ) = Zr

e′′(πr) = B∗∗. Then we have the following assertions
i) If B∗ factors on the one side, but not on the other side, then πr ̸= πt

ℓ
and πℓ ̸= πt

r.
ii) e′′ is a unit for B∗∗ if and only if (eα)α is a W ∗AI for B∗∗ whenever

eα
w∗
→ e′′.

Proof. a) i) Let B∗ factor on the right but not on the left . By Theorem
3.5, e′′ is a right unit for B∗∗. Thus we have π∗∗∗

r (b′′, e′′) = b′′ for
all b′′ ∈ B∗∗. If we set πℓ = πt

r, then π∗∗∗
ℓ (e′′, b′′) = πt∗∗∗

r (e′′, b′′) =
πt∗∗∗t
r (b′′, e′′) = π∗∗∗

r (b′′, e′′) = b′′ for all b′′ ∈ B∗∗. Consequently, e′′ is
left unit for B∗∗. Then by Theorem 3.5, B∗ factors on the left which is
impossible.
ii) The proof similar to that of (i).

iii) Since eα
w∗
→ e′′, weak∗- limα π

∗∗∗
r (b′′, eα) = π∗∗∗

r (b′′, e′′) for all b′′ ∈
B∗∗. Hence the proof is complete.
The proofs of (b) and (c) are the same and are immediately followed. □

Assume that Zt
e′′(π

t
ℓ) = Ze′′(πr) = B∗∗. Let πr = πt

ℓ and πℓ = πt
r.

Using Corollary 3.7, we know that if B∗ factors on the one side, then
B∗ factors on the other side. On the other hand, if we set πℓ = πt

r and
Ze′′(πr) = B∗∗ where e′′ is a mixed unit for A∗∗, then, by using this
corollary, B∗ factors on the right if and only if B factors on the left.

Questions.
Suppose that B is a Banach A-bimodule. Under which conditions the
following results hold?
i) B factors on the left if and only if B∗∗ has a left unit.
ii) B factors on the one side if and only if B∗ factors on the same side.

Acknowledgments

I would like to thank the referee for his/her careful reading of my paper
and many valuable suggestions.



Arens regularity of bilinear forms 520

References

[1] R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951)
839–848.

[2] N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings,
Proc. Amer. Math. Soc. 84 (1982), no. 4, 525–532.

[3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New
York-Heidelberg, 1973.

[4] H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, The second transpose of
a derivation, J. London. Math. Soc. (2) 2 64 (2001), no. 3, 707–721.

[5] H. G. Dales, Banach Algebra and Automatic Continuity, Oxford University
Press, New York, 2000.

[6] N. Dunford and J. T. Schwartz, Linear Operators, I, John Wiley & Sons, Inc.,
New York, 1988.

[7] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia
Math. 1 (2007), no. 3, 237–254.

[8] K. Haghnejad Azar and M. Ghanji, Factorization properties and topological
centers of module actions and ∗-involution algebras, Univ. Bucharest Sci. Bull.
Ser. A Appl. Math. Phys. 75 (2013), no. 1, 35–46.

[9] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag,
Berlin-Göttingen-Heidelberg, 1963.

[10] A. T. Lau and V. Losert, On the second conjugate algebra of L1(G) of a locally
compact group, J. London Math. Soc. (2) 37 (1988), no. 3, 464–480.
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