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Abstract. Let R be a commutative ring with identity.
A proper ideal P of R is an (n − 1, n)-Φm-prime ((n − 1, n)-

weakly prime) ideal if a1, . . . , an ∈ R, a1 · · · an ∈ P\Pm (a1 · · · an ∈
P\{0}) implies a1 · · · ai−1ai+1 · · · an ∈ P , for some i ∈ {1, . . . , n};
(m,n ≥ 2).

In this paper several results concerning (n− 1, n)-Φm-prime and
(n− 1, n)-weakly prime ideals are proved. We show that in a Noe-
therian domain a Φm-prime ideal is primary and we show that in
some well known rings (n − 1, n)-Φm-prime ideals and (n − 1, n)-
prime ideals coincide.
Keywords: Quasi-local ring, prime ideal, almost prime ideal, (n−
1, n)-weakly prime ideal, (n− 1, n)-Φm-prime ideal.
MSC(2010): Primary: 13A15.

1. Introduction

Let R be a commutative ring with 1 ̸= 0. We recall that a prime ideal
P of R is a proper ideal with the property that for a, b ∈ R, ab ∈ P
implies a ∈ P or b ∈ P . Prime ideals play a central role in commutative
ring theory.

Authors [1], defined the notion of a weakly prime ideal, i.e., a proper
ideal P of R with the property that for a, b ∈ R, 0 ̸= ab ∈ P implies
a ∈ P or b ∈ P . So a prime ideal is weakly prime. However, since 0 is
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always weakly prime (by definition), a weakly prime ideal need not be
prime.

The notion of a weakly prime element (i.e., an element p ∈ R such
that (p) is a weakly prime ideal) was introduced by Galovich [9] in his
study of unique factorization rings with zero divisors. He called such
elements “prime”. It is hoped that weakly prime elements and weakly
prime ideals will prove useful in the study of commutative rings with
zero divisors and in particular, factorization in such rings.

The concept of an 2-absorbing ideal (i.e., a proper ideal P of R with
the property that for a, b, c ∈ R, abc ∈ P implies ab ∈ P or ac ∈ P
or bc ∈ P ) was introduced and investigated by Badawi in [5]. He also
introduced the concept of a n-absorbing ideal (i.e., a proper ideal P of
R with the property that for a1, . . . , an+1 ∈ R, a1 · · · an+1 ∈ P implies
a1 · · · ai−1ai+1 · · · an+1 ∈ P for some i ∈ {1, . . . , n + 1}). Thus a 1-
absorbing ideal is just a prime ideal.

Recently, Anderson and Badawi in [2] studied n-absorbing ideals. In
this paper, if n ≥ 2, an (n − 1)-absorbing ideal P of R is called an
(n−1, n)-prime. For principal ideals in an integral domain, this concept
has been studied with respect to nonunique factorization in [4].

Badawi and Darani in [6] introduced the concept of a weakly 2-
absorbing ideal, i.e., a proper ideal P of R with the property that for
a, b, c ∈ R, 0 ̸= abc ∈ P implies ab ∈ P or ac ∈ P or bc ∈ P . In [8], for
n ≥ 2, we defined a proper ideal P of R to be (n − 1, n)-weakly prime
if a1, · · · , an ∈ R, 0 ̸= a1 · · · an ∈ P implies a1 · · · ai−1ai+1 · · · an ∈ P
for some i ∈ {1, . . . , n}. So a (1, 2)-weakly prime ideal is just weakly
prime. For example every proper ideal of a quasi-local ring (R,M) with
Mn = 0 is (n− 1, n)-weakly prime.

In studying unique factorization domains, Bhatwadekar and Sharma
[7] defined the notion of almost prime ideals, i.e., proper ideals P of R
with the property that if for a, b ∈ R, ab ∈ P\P 2, then a ∈ P or b ∈ P .
Thus a weakly prime ideal is almost prime and any proper idempotent
ideal is also almost prime.

Anderson and Bataineh in [3] extended the concepts of prime, weakly
prime and almost prime ideals to Φ-prime ideals as follows:

Let R be a commutative ring and S(R) be the set of all ideals of R.
Let Φ : S(R) → S(R) ∪ {∅} be a function. Then a proper ideal P of
R is called Φ-prime if for a, b ∈ R , ab ∈ P\Φ(P ) implies a ∈ P or
b ∈ P . They defined Φm : S(R) → S(R)∪{∅} with Φm(J) = Jm, for all
J ∈ S(R) (m ≥ 2).
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A proper ideal P of R is (n − 1, n)-Φm-prime if a1, . . . , an ∈ R,
a1 · · · an ∈ P\Pm implies a1 · · · ai−1ai+1 · · · an ∈ P , for some i ∈ {1, . . . ,
n} (m,n ≥ 2). [8]

So a (1, 2)-Φ2-prime ideal is just almost prime. We shall call (1, 2)-
Φm-prime ideals “Φm-prime”.

In this paper we study (n − 1, n)-weakly prime and (n − 1, n)-Φm-
prime ideals, which are generalizations of weakly prime and almost prime
ideals, respectively (n,m ≥ 2).

In Theorem 2.7, we show that in a Noetherian domain a Φn-prime
ideal is primary (n ≥ 2). Furthermore, in Theorem 2.7, we show that in
a one-dimensional quasi-local domain R if every proper principal ideal
of R is a product of Φn-prime ideals, then R is a DVR (n ≥ 2). Then
in Theorem 2.8, we show that in a valuation domain the concepts of
(n− 1, n)-Φn-prime and (n− 1, n)-prime coincide (n ≥ 2).

We assume throughout that all rings are commutative with 1 ̸= 0.
Let R be a ring and I be an ideal of R. Then rad I will denote the
radical of I. We say that I is a radical ideal of R if rad I = I.

An integral domain R is said to be a valuation domain if x|y or y|x,
for every nonzero x, y ∈ R.

We denote the total quotient ring of R by T (R). If I is a nonzero
ideal of a ring R, then I−1 = {x ∈ T (R)|xI ⊆ R}. An integral domain
R is called a Prüfer domain if II−1 = R, for every nonzero finitely
generated ideal I of R.

Some of our results use the R(+)M construction. Let R be a ring
and M be an R-module. Then R(+)M = R×M is a ring with identity
(1, 0) under addition defined by (r,m) + (s, n) = (r + s,m + n) and
multiplication defined by (r,m)(s, n) = (rs, rn+ sm).

2. Results

Example 2.1. Let (R,M) be a quasi-local ring and P be a proper ideal
of R. If P ∩ Mn = 0, then P is an (n − 1, n)-weakly prime ideal of
R. For if 0 ̸= a1 · · · an ∈ P , then a1 · · · an ̸∈ Mn. So there exists an
i ∈ {1, . . . , n} such that ai is a unit of R. So a1 · · · ai−1ai+1 · · · an ∈ P .
Similarly, if P ∩Mn ⊆ Pm, then P is a (n− 1, n)-Φm-prime ideal of R
(m,n ≥ 2).

Example 2.2. Let R =
k[|x, y|]
(x)(x, y)

, where k is a field and suppose M =

(x, y) is the unique maximal ideal of R. Let P = (x). Then P ∩Mn = 0
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n ≥ 2. Therefore, P is (n − 1, n)-weakly prime and so (n − 1, n)-Φm-
prime by Example 1 (m ≥ 2).

Now we show that in a Noetherian domain a Φn-prime ideal is primary
(n ≥ 2).

Lemma 2.3. Let R be an integral domain and J , K be two nonzero
finitely generated ideals of R such that K ̸⊆ J and J ̸⊆ K. If J ∩K is
Φn-prime, then the radical of J equals the radical of K (n ≥ 2).

Proof. We show that K ⊆ rad J . If not, then there exists a prime ideal
P of R minimal over J such that K ̸⊆ P . Choose an element x ∈ K\P .

Clearly, for J (n) = JnRP ∩ R, JnRP = J (n)RP . Since J is finitely
generated, JRP ̸= JnRP . Thus JRP ̸= J (n)RP , and consequently J ̸⊆
J (n). Since J ̸⊆ K and J ̸⊆ J (n), we have J ̸⊆ K ∪ J (n). Choose an
element y ∈ J\(K ∪ J (n)). Then x, y ̸∈ J ∩ K, but xy ∈ J ∩ K. We

claim that xy ̸∈ (J ∩ K)n. Since otherwise xy ∈ Jn ⊆ J (n). However,

x ∈ R\P and xy ∈ J (n) implies y ∈ J (n), which is a contradiction. So
we have xy ∈ J ∩K\(J ∩K)n and x, y ̸∈ J ∩K. This contradicts the
fact that J ∩K is Φn-prime.

Thus K ⊆ rad J . Similarly, radJ ⊆ rad K. So we have radK =
rad J . □
Theorem 2.4. Let R be a Noetherian domain and P be a Φn-prime
ideal of R. Then P is primary (n ≥ 2).

Proof. If P is not primary, then every minimal primary decomposition of
P must have at least two components. Take a minimal primary decom-
position of P and let Q be a primary component of this decomposition.
If K is the intersection of all other primary components in the decompo-
sition, then P = Q ∩K, where Q ̸⊆ K and K ̸⊆ Q and radQ ̸= rad K.
So by Lemma 2.3, we have a contradiction. □

Next we show that in an integral domain for a proper principal ideal
the concepts (n − 1, n)-Φm-prime and (n − 1, n)-prime are the same
(m,n ≥ 2).

Lemma 2.5. Let c be a nonzero nounit element in an integral domain
R. Let m,n ≥ 2 be two integers. If (c) is not a (n − 1, n)-prime ideal,
then there exist a1, . . . , an ∈ R such that a1 · · · ai−1ai+1 · · · an ̸∈ (c), for
all i ∈ {1, . . . , n} and a1 · · · an ∈ (c) but a1 · · · an ̸∈ (cm).

Proof. Since (c) is not (n− 1, n)-prime, there exist a1, . . . , an ∈ R with
a1 · · · an ∈ (c) but a1 · · · ai−1ai+1 · · · an ̸∈ (c), for i ∈ {1, . . . , n}. If
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a1 · · · an ̸∈ (cm), we are done. So we assume that a1 · · · an ∈ (cm). Let
a′n = an + cm−1.

Then a1 · · · an−1a
′
n ∈ (c) and a1 · · · ai−1ai+1 · · · an−1a

′
n ̸∈ (c) for all

i ∈ {1, . . . , n − 1} and a1 · · · an−1 ̸∈ (c). If a1 · · · an−1a
′
n ∈ (cm), then

a1 · · · , an−1c
m−1 ∈ (cm). So there exists r ∈ R such that a1 · · · an−1c

m−1

= rcm and so a1 · · · an−1 ∈ (c), which is a contradiction. Therefore,
a1 · · · an−1a

′
n ̸∈ (cm). □

Corollary 2.6. Let R be an integral domain and c an element of R.
Then (c) is an (n− 1, n)-Φm-prime ideal of R if and only if (c) is (n−
1, n)-prime (n,m ≥ 2).

Proof. (⇐) If (c) is an (n − 1, n)-prime ideal of R, then it is clear that
(c) is (n− 1, n)-Φm-prime.

(⇒) If c = 0, then (c) is a prime ideal of R and so (c) is an (n− 1, n)-
prime ideal. So we assume that c ̸= 0. If (c) is not (n−1, n)-prime, then
there exist a1, . . . , an ∈ (c)\(cm) such that a1 . . . ai−1ai+1 · · · an ̸∈ (c) for
all i ∈ {1, . . . , n}, by Lemma 2.5, which is a contradiction □
Theorem 2.7. Let R be a quasi-local domain and dimR = 1. If every
proper principal ideal of R is a product of Φn-prime ideals, then R is a
PID (n ≥ 2).

Proof. Let I be a proper principal ideal which is a product of Φn-prime
ideals. Now in a domain R every nonzero principal ideal is invertible and
a factor of an invertible ideal is also invertible. Since R is quasi-local,
an invertible ideal is principal. So I is a product of principal Φn-prime
ideals. So by Corollary 2.6, I is a product of principal prime ideals.
Thus R is a UFD. But a one-dimensional quasi-local UFD is a PID. □

Next we show that in a valuation domain the concepts (n− 1, n)-Φn-
prime and (n− 1, n)-prime are the same (n ≥ 2).

Theorem 2.8. Let V be a valuation domain. Then an ideal P of V is
(n− 1, n)-Φn-prime if and only if it is (n− 1, n)-prime (n ≥ 2).

Proof. (⇒) Let a1, · · · , an ∈ R and a1 · · · an ∈ P .
Assume a1 · · · ai−1ai+1 · · · an ̸∈ P , for all i ∈ {1, . . . , n}. So (ai) ̸⊆ P ,

for all i ∈ {1, . . . , n}. Since V is a valuation domain, we have P ⊆ (ai)
for all i ∈ {1, . . . , n}. So Pn ⊆ (a1 · · · an). If Pn ̸= (a1 · · · an) then
a1 · · · an ∈ P\Pn. Since P is (n − 1, n)-Φn-prime, this implies that
a1 · · · ai−1ai+1 · · · an ∈ P for some i ∈ {1, . . . , n}, which is a contradic-
tion. So we have (a1 · · · an) = Pn. Then P being a factor of a principal
ideal is principal. Thus by Corollary 2.6, P is (n− 1, n)-prime.
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(⇐) This holds for any ring. □

The next example shows that in a Prüfer domain R, the above result
is not necessarily true.

Example 2.9. Let R be the ring of all algebraic integers. Then every
radical ideal of R is idempotent. So let M ̸= N be two maximal ideals
of R. Then MN = M ∩N and (MN)2 = MN . So MN is (n − 1, n)-
Φn-prime but not a prime ideal (n ≥ 2).

Let R be a commutative ring. Two elements a, b ∈ R are associates,
denoted a ∼ b, if a|b and b|a. A nonzero nounit a ∈ R is n-irreducible
if a = a1 · · · an implies a ∼ a1 · · · ai−1ai+1 · · · an for some i ∈ {1, . . . , n}
(n ≥ 2).

Theorem 2.10. Let R be a ring and P be a proper ideal of R. Suppose
that every nonzero element of P is n-irreducible. Then P is (n− 1, n)-
weakly prime and hence (n− 1, n)-Φm-prime (n,m ≥ 2).

Proof. Let a1 · · · an ∈ P \ {0}, where a1, . . . , an ∈ R. So a1 · · · an is
n-irreducible and hence (a1 · · · an) = (a1 · · · ai−1ai+1 · · · an) for some i ∈
{1, . . . , n}. So a1 · · · ai−1ai+1 · · · an ∈ P . □

Corollary 2.11. Let (R,M) be a quasi-local ring and x ∈ M . If x is
n-irreducible and xM = 0, then (x) is (n− 1, n)-weakly prime (n ≥ 2).

Proof. Suppose that x is n-irreducible and xM = 0. Then every nonzero
element of (x) is an associate of x and hence n-irreducible. So, by
Theorem 2.10, (x) is (n− 1, n)-weakly prime. □

Let R be a commutative ring and A be an R-module and D = R(+)A.
We observe that for an ideal I of R and a positive integer n ≥ 1,
(I(+)A)n = In(+)In−1A.

Theorem 2.12. Let R be a ring and A be an R-module. Let P be a
proper ideal of R. Then P ′ = P (+)A is an (n − 1, n)-Φn-prime ideal
of D = R(+)A if and only if P is (n − 1, n)-Φn-prime and for all i ∈
{1, . . . , n}, a1, . . . , an ∈ R and m1, . . . ,mn ∈ A, with a1 · · · an ∈ Pn and
a1 · · · ai−1ai+1 · · · an ̸∈ P , the second component of (a1,m1) · · · (an,mn)
is in Pn−1A; (n ≥ 2).

Proof. (⇐) Suppose that (a1,m1) · · · (an,mn) ∈ (P (+)A)\(P (+)A)n.
So (a1,m1) · · · (an,mn) ∈ (P (+)A)\(Pn(+)Pn−1A).
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So a1 · · · an ∈ P . If a1 · · · an ̸∈ Pn, then (n− 1, n)-Φn-primeness of P
gives a1 · · · ai−1ai+1 · · · an ∈ P for some i ∈ {1, . . . , n}. Hence

(a1,m1) · · · (ai−1,mi−1)(ai+1,mi+1) · · · (an,mn) ∈ P ′.

Now assume that a1 · · · an ∈ Pn.
If a1 . . . ai−1ai+1 · · · an ̸∈ P for all i ∈ {1, . . . , n}, then by hypothesis

the second component of (a1,m1) · · · (an,mn) is in Pn−1A.
So (a1,m1) · · · (an,mn) ∈ Pn(+)Pn−1A = (P (+)A)n, a contradiction.
(⇒) Suppose that P ′ = P (+)A is (n−1, n)-Φn-prime. Let a1 · · · an ∈

P\Pn, where a1, . . . , an ∈ R. Then

(a1, 0) · · · (an, 0) = (a1 · · · an, 0) ∈ (P (+)A)\(P (+)A)n.

So (a1 · · · ai−1ai+1 · · · an, 0) ∈ P (+)A, for some i ∈ {1, . . . , n}. Hence
a1 · · · ai−1ai+1 · · · an ∈ P . Thus P is (n− 1, n)-Φn-prime.

Next suppose that a1 · · · an ∈ Pn, and a1 · · · ai−1ai+1 · · · an ̸∈ P for
all i ∈ {1, . . . , n} and that the second component of (a1,m1) · · · (an,mn)
is not in Pn−1A. Then

(a1,m1) · · · (ai−1,mi−1)(ai+1,mi+1) · · · (an,mn) ̸∈ P ′,

for all i ∈ {1, . . . , n} and (a1,m1) · · · (an,mn) ∈ P ′\P ′n, a contradiction.
□

Corollary 2.13. Let R be a ring and P be a proper ideal of R such that
PA = A. Then P (+)A is an (n− 1, n)-Φn-prime ideal of R(+)A if and
only if P is an (n− 1, n)-Φn-prime ideal of R (n ≥ 2).

Proof. Since PA = A we have Pn−1A = A. So by the Theorem 2.12 we
have the corollary. □

Let R be a ring and A be an R-module. We know from [10, Theorem
25.1 (3)] that every prime ideal of D = R(+)A is of the form P (+)A,
for some prime ideal P of R.

Next we show that unlike the case for prime ideals, an (n − 1, n)-
weakly prime or (n−1, n)-Φm-prime ideal of D = R(+)A need not have
the form I(+)A (n ≥ 2).

Example 2.14. If F is a field and V is a F -vector space, then D =
F (+)V is a quasi-local ring with unique maximal ideal M = 0(+)V and
M2 = 0.

If V ′ is a proper subspace of V , then 0(+)V ′ is (n−1, n)-weakly prime
and so (n− 1, n)-Φm-prime ideal of D (n,m ≥ 2).
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If P is an (n − 1, n)-prime ideal of a ring R, then there are n − 1
almost prime ideals of R that are minimal over P (see[2, Theorem 2.5]).

In Theorem 2.15 we show that for every m ≥ 2, there is a ring R
and a nonzero (n− 1, n)-weakly prime ideal P of R such that there are
exactly m prime ideals of R that are minimal over P . Also, we show
that there exists a ring R and a nonzero (n − 1, n)-weakly prime ideal
P of R such that P is not (n− 1, n)-prime (n ≥ 2).

Theorem 2.15. Let m ≥ 2 be an integer. Then there is a ring R and a
nonzero (n− 1, n)-weakly prime ideal P of R such that there are exactly
m prime ideals of R that are minimal over P ; (n ≥ 2).

Proof. Let m ≥ 2 and R = Z8 × · · · × Z8 (m times). Let A = {0, 4} be
an ideal of Z8. For every x = (a1, . . . , am) ∈ R, define xA = a1A. Then
A is an R-module.

Now consider the ring D = R(+)A and P = {(0, . . . , 0)}(+)A. It is
easy to show that P is nonzero weakly prime and so an (n−1, n)-weakly
prime ideal of D (n ≥ 2).

Since every prime ideal of D is of the form P ′(+)A for some prime
ideal P ′ of R, by [10, Theorem 25.1 (3)], we conclude that there are
exactly m prime ideals of D that are minimal over P . □

Let R be a ring and S be a subset of R. S is a multiplicatively closed
subset of R if a, b ∈ S implies ab ∈ S, where a, b ∈ R.

We say that S is an (n−1, n)-weakly multiplicatively closed subset of
R if a1, . . . , an ∈ R and a1 · · · ai−1ai+1 · · · an ∈ S, for all i ∈ {1, . . . , n}
imply a1 · · · an ∈ S ∪ {0}.

Moreover, we say that S is an (n − 1, n)-Φm-multiplicatively closed
subset of R if a1, . . . , an ∈ R and a1 · · · ai−1ai+1 · · · an ∈ S for all i ∈
{1, . . . , n} imply a1 · · · an ∈ S ∪ (R\S)m (n,m ≥ 2).

It is well-known that P is a prime ideal of R if and only if R \ P is a
multiplicatively closed subset of R. In the next theorems we show that
this result is true for (n − 1, n)-weakly prime ((n − 1, n) − ϕm-prime)
ideals and (n − 1, n)-weakly multiplicatively closed ((n − 1, n) − ϕm-
multiplicatively closed) subsets of R.

Theorem 2.16. Let R be a ring and P be a proper ideal of R. P is an
(n − 1, n)-weakly prime ideal of R if and only if R\P is an (n − 1, n)-
weakly multiplicatively closed subset of R (n ≥ 2).

Proof. (⇒) Let P be a (n−1, n)-weakly prime ideal of R and a1, . . . , an ∈
R with a1 · · · ai−1ai+1 · · · an ∈ R\P for all i ∈ {1, . . . , n}. If a1, . . . , an ∈
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R\P , then we are done. So assume that a1, . . . , an ∈ P . If a1 · · · an ̸=
0, then we have a1 · · · ai−1ai+1 · · · an ∈ P for some i ∈ {1, . . . , n}, a
contradiction. Thus a1 · · · an ∈ R\P ∪ {0}.

Therefore, R\P is an (n− 1, n)-weakly multiplicatively closed subset
of R.

(⇐) Let R\P be an (n−1, n)-weakly multiplicatively closed subset of
R and a1, . . . , an ∈ R with a1 · · · an ∈ P\{0}. If a1 · · · ai−1ai+1 · · · an ̸∈
P for all i ∈ {1, . . . , n}, then a1 · · · an ∈ (R\P )∪ {0}, which is a contra-
diction. So there exists an i ∈ {1, . . . , n} such that a1 · · · ai−1ai+1 · · · an ∈
P . □

Theorem 2.17. Let R be a ring and P be a proper ideal of R. P is an
(n− 1, n)-Φm-prime ideal of R if and only if R\P is an (n− 1, n)-Φm-
multiplicatively closed subset of R (n,m ≥ 2).

Proof. (⇒) Let P be an (n−1, n)-Φm-prime ideal of R and a1, . . . , an ∈
R with a1 · · · ai−1ai+1 · · · an ∈ R\P , for all i ∈ {1, . . . , n}. If a1 · · · an ∈
R\P , then we are done. So assume that a1 · · · an ∈ P . If a1 · · · an ̸∈ Pm,
then we have a1 · · · ai−1ai+1 · · · an ∈ P for some i ∈ {1, . . . , n}, which is
a contradiction.

So a1 · · · an ∈ (R\P ) ∪ Pm. Therefore, R\P is an (n − 1, n)-Φm-
multiplicatively closed subset of R.

(⇐) Let R\P be an (n− 1, n)-Φm-multiplicatively closed subset of R
and a1, . . . , an ∈ R with a1 · · · an ∈ P\Pm. If a1 · · · ai−1ai+1 · · · an ̸∈ P
for all i ∈ {1, . . . , n}, then a1 · · · an ∈ (R\P )∪Pm, which is a contradic-
tion. So there exists an i ∈ {1, . . . , n} such that a1 · · · ai−1ai+1 · · · an ∈
P . Thus P is an (n− 1, n)-Φm-prime ideal of R. □

A well-known result of Krull states that if S is a multiplicatively closed
subset of R and I is an ideal of R maximal with respect to I ∩ S = ∅,
then I is an prime ideal of R.

A similar result does not hold for (n − 1, n)-weakly multiplicatively
closed and (n− 1, n)-Φn-multiplicatively closed sets (n ≥ 2).

Example 2.18. Let R =
Z

2n+2Z
, I =

2n+1Z

2n+2Z
and S = {1, 2n}. Then

S is both an (n − 1, n)-weakly multiplicatively closed and an (n − 1, n)-
Φn-multiplicatively closed subset of R and I is maximal with respect to
I ∩ S = ∅, but I is neither (n − 1, n)-Φn-prime nor (n − 1, n)-weakly

prime since 2
n−1 × 4 ∈ I\In but 2

n−1 ̸∈ I and 2
n ̸∈ I (n ≥ 2).
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