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A FULL NESTEROV-TODD STEP INFEASIBLE

INTERIOR-POINT ALGORITHM FOR SYMMETRIC

CONE LINEAR COMPLEMENTARITY PROBLEM
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(Communicated by Soghra Nobakhtian)

Abstract. A full Nesterov-Todd (NT) step infeasible interior-point
algorithm is proposed for solving monotone linear complementarity
problems over symmetric cones by using Euclidean Jordan algebra.
Two types of full NT-steps are used, feasibility steps and centering
steps. The algorithm starts from strictly feasible iterates of a per-
turbed problem, and, using the central path and feasibility steps,
finds strictly feasible iterates for the next perturbed problem. By
using centering steps for the new perturbed problem, strictly fea-
sible iterates are obtained to be close enough to the central path
of the new perturbed problem. The starting point depends on two
positive numbers ρp and ρd. The algorithm terminates either by
finding an ϵ-solution or detecting that the symmetric cone linear
complementarity problem has no optimal solution with vanishing
duality gap satisfying a condition in terms of ρp and ρd. The it-
eration bound coincides with the best known bound for infeasible
interior-point methods.
Keywords: Monotone linear complementarity problem, interior-
point algorithms, Euclidean Jordan algebra.
MSC(2010): Primary: 90C33; Secondary: 90C51.

1. Introduction

Let V be an n-dimensional vector space over R. (V, ◦, ⟨., .⟩) is called
an n-dimensional Euclidean Jordan algebra over R with rank r if there
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exists a bilinear map (x, s) → x ◦ s from V × V and an inner prod-
uct ⟨x, s⟩ which is associative. Let K be a symmetric cone such that
K := {x2 : x ∈ V }, the so-called symmetric cone of squares K. Here, we
are concerned with monotone symmetric cone linear complementarity
problem (SCLCP) in the standard form: Given an n-dimensional Eu-
clidean Jordan algebra (V, ◦, ⟨., .⟩) and its associated symmetric cone of
squares K, find (x, s) ∈ K ×K such that

s = Mx+ q, x ◦ s = 0, (SCLCP)

where M ∈ Rn×n and q ∈ Rn are given data.
It is well known that SCLCP is an NP-hard problem for a general

matrix M , even in the case when K = Rn
+ (see [8]). Thus, we need to

restrict ourselves to classes of matrices for which polynomial interior-
point methods (IPMs) exist. The class of monotone matrices appears
most frequently. The monotone property can be formulated as follows:

v = Mu ⇒ ⟨u, v⟩ ≥ 0.(1.1)

This is equivalent to the fact that matrix M is positive semidefinite
with respect to the inner product ⟨., .⟩ in (V, ◦). We make the following
assumption in developing our results.

Assumption 1. The interior-point condition (IPC), i.e., there exist
x, s ∈ intK, intK denotes the interior of K, such that s = Mx+ q holds
for the SCLCP.

Although SCLCP is not an optimization problem, it is closely related
to one. One reason is that optimality conditions of several important op-
timization problems can be formulated in the form of SCLCP. Nesterov
and Todd [11] provided a theoretical foundation for efficient primal-dual
IPMs on a special class of convex optimization, where the associated
cone was self-scaled. Later on, it was observed that the self-scaled cones
were precisely symmetric cones [1]. The application of the Euclidean
Jordan algebra as a basic tool for analyzing complexity proofs of the
IPMs for symmetric cone linear optimization (SCLO) and SCLCP was
started by Faybusovich [2], who extended earlier works of Nesterov and
Todd, and Kojima et al. [11, 9]. Later, Tsuchiya [18] also used Jor-
dan algebraic techniques to analyze primal-dual IPMs for linear second-
order cone optimization. Subsequently, Schmieta and Alizadeh [15, 16]
studied primal-dual IPMs for symmetric cone linear optimization exten-
sively under the framework of Euclidean Jordan algebra. In addition
to Faybusovich’s results [2, 3], Rangarajan [12] proposed the first in-
feasible interior-point method (IIPM) for SCLCP. Recently, Kheirfam
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and Mahdavi-Amiri [7] also introduced a new interior-point algorithm
for SCLCP by modifying the NT-step. The authors proved that the

algorithm stops after at most O(
√
r log rµ0

ϵ ) iterations, being in accord
with the best existing bound for IPMs. Roos [13] proposed a new IIPM
for linear optimization (LO). It differs from the classical IIPMs [8] in
that the new method uses only full steps which has the advantage that
no line searches are needed. Gu et al. [5] extended the full-Newton step
IIPM for LO to full Nesterov-Todd step (NT-step) IIPM for SCLO by
using Jordan algebra.

Here, we consider a generalization of full NT-step IIPMs to SCLCP by
using Euclidean Jordan algebra. The remainder of our work is organized
as follows: In Section 2, we briefly recall some properties of symmetric
cones and their associated Euclidean Jordan algebra. We review the
notions of central path, search directions and NT-steps, where a unified
proof of the quadratic convergence is given in the framework of Euclidean
Jordan algebra. In Section 3, we present our full NT-step IIPM for
SCLCP. The iteration bound coincides with the best known iteration
bound for IIPMs.

2. Preliminaries

2.1. Euclidean Jordan Algebra. Here, we outline some needed main
results on Euclidean Jordan algebra and symmetric cones. For a com-
prehensive study, the reader is referred to [1, 4, 19].

A Jordan algebra V is a finite dimensional vector space endowed with
a bilinear map ◦ : V × V → V satisfying the following properties for all
x, y ∈ V :

• x ◦ y = y ◦ x,
• x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x.

Moreover, a Jordan algebra (V, ◦) is called Euclidean if there exists an
inner product, denoted by “⟨., .⟩”, such that

⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩,
for all x, y, z ∈ V .

A Jordan algebra has an identity element, if there exists a unique
element e ∈ V such that x ◦ e = e ◦ x = x, for all x ∈ V . Throughout
the paper, we assume that V is a Euclidean Jordan algebra with an
identity element e. The set K = {x2 : x ∈ V } is called the cone of
squares of Euclidean Jordan algebra (V, ◦, ⟨., .⟩). A cone is symmetric if
and only if it is the cone of squares of some Euclidean Jordan algebra.
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An element c ∈ V is idempotent if c ◦ c = c. Idempotents x and y are
orthogonal if x ◦ y = 0. An idempotent c is primitive if it is nonzero
and can not be expressed by sum of two other nonzero idempotents.
A set of primitive idempotents {c1, c2, . . . , ck} is called a Jordan frame

if ci ◦ cj = 0, for any i ̸= j ∈ {1, 2, . . . , k} and
∑k

i=1 ci = e. For any
x ∈ V , let r be the smallest positive integer such that {e, x, x2, · · · , xr}
is linearly dependent; r is called the degree of x and is denoted by deg(x).
The rank of V , denoted by rank(V ), is defined as the maximum of deg(x)
over all x ∈ V . The importance of Jordan frame comes from the fact
that any element of Euclidean Jordan algebra can be represented using
some Jordan frame, as explained more precisely in the following spectral
decomposition theorem.

Theorem 2.1. (Theorem III.1.2 in [1]) Let (V, ◦, ⟨., .⟩) be a Euclidean
Jordan algebra with rank(V ) = r. Then, for any x ∈ V , there exists
a Jordan frame {c1, c2, . . . , cr} and real numbers λ1(x), λ2(x), . . . , λr(x)
such that

x =

r∑
i=1

λi(x)ci,

where the λi’s are the eigenvalues of x. The numbers λi(x) (with their
multiplicities) are uniquely determined by x. Furthermore,

Tr(x) =

r∑
i=1

λi(x) and det(x) =

r∏
i=1

λi(x),

where Tr(·) and det(·) stand for the trace and determinant, respectively.

Since “ ◦ ” is a bilinear map, for every x ∈ V , there exists a matrix
L(x) such that for every y ∈ V, x ◦ y = L(x)y. Moreover, we define

P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x). The map P (x) is called the quadratic rep-
resentation of V , which is an essential concept in the theory of Jordan
algebra and plays an important role in the analysis of interior-point
algorithms. An element x ∈ V is called invertible if there exists a
y =

∑m
i=0 αix

i for some finite m < ∞ and real numbers αi such that
x ◦ y = y ◦ x = e, and denoted as x−1. An element x ∈ V is invert-
ible if and only if P (x) is invertible. In this case, P (x)x−1 = x and
P (x)−1 = P (x−1).

Let x =
∑r

i=1 λi(x)ci be the spectral decomposition of x. It is possible
to extend the definition of any real valued continuous function f(·) to
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elements of Jordan algebra via their eigenvalues, i.e., F : V → V is given
by

F (x) =

r∑
i=1

f(λi(x))ci.

In particular, we have the square root, x
1
2 =

r∑
i=1

√
λi(x)ci, wherever

x ∈ K, and undefined otherwise, the inverse, x−1 =
∑r

i=1 λi(x)
−1ci,

wherever λi ̸= 0, for all i = 1, 2, . . . , r, and undefined otherwise.
The next lemma contains a result of crucial importance in the design

of IPMs within the framework of Jordan algebra.

Lemma 2.2. (Lemma 2.2 in [2]) Let x, s ∈ K. Then, Tr(x ◦ s) ≥ 0,
and we have Tr(x ◦ s) = 0 if and only if x ◦ s = 0.

For any x, y ∈ V , x and y are said to be operator commutable if L(x)
and L(y) commute, i.e., L(x)L(y) = L(y)L(x). In other words, x and y
operator commutable if for all z ∈ V , x ◦ (y ◦ z) = y ◦ (x ◦ z) (see [15]).

Theorem 2.3. (Lemma X.2.2 in [1]) Let x, y ∈ V . The elements x and
y operator commutable if and only if they share a Jordan frame, that is,

x =

r∑
i=1

λi(x)ci and y =

r∑
i=1

λi(y)ci,

for Jordan frame {c1, c2, . . . , cr}.

For any x, y ∈ V , we define the canonical inner product of x, y ∈ V
as follows

⟨x, y⟩ = Tr(x ◦ y),
and the Frobenius norm of x as follows

∥x∥F =
√

⟨x, x⟩ =
√

Tr(x2).

It follows that

∥x∥F =
√
Tr(x2) =

√√√√ r∑
i=1

λ2
i (x) = ∥λ(x)∥.

Note that Tr(·) is associative, and we have

⟨L(x)y, z⟩ = Tr((x◦y)◦z) = Tr((y◦x)◦z) = Tr(y◦(x◦z)) = ⟨y, L(x)z⟩,
showing that L(x) is a self-adjoint operator. As the definition of P (x)
depends only on L(x) and L(x2), both of which are self-adjoint, P (x)
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is also self-adjoint. Let λmin(x) and λmax(x) denote the smallest and
largest eigenvalue of x, respectively. Then

|λmin(x)| ≤ ∥x∥F , |λmax(x)| ≤ ∥x∥F and |⟨x, y⟩| ≤ ∥x∥F ∥y∥F .
The following lemma shows the existence and uniqueness of a scaling
point w corresponding to any points x, s ∈ intK such that P (w) takes
s into x. This lemma plays a fundamental role in the design of the
interior-point algorithms for SCLCP.

Lemma 2.4. (Lemma 3.2 in [3]) Let x, s ∈ intK. Then, there exists a
unique w ∈ intK such that

x = P (w)s.

Moreover,

w = P (x
1
2 )
(
P (x

1
2 )s

)− 1
2
[
= P (s−

1
2 )
(
P (s

1
2 )x

) 1
2
]
.

The point w is called the scaling point of x and s. Hence, there exists
ṽ ∈ intK such that

ṽ = P (w)−
1
2x = P (w)

1
2 s,

which is the so-called NT-scaling of Rn. We say that two elements x ∈ V
and y ∈ V are similar, as denoted by x ∼ y, if and only if x and y share
the same set of eigenvalues. We say x ∈ K if and only if λi ≥ 0 and
x ∈ intK if and only if λi > 0, for all i = 1, 2, . . . , r. We also say x is
positive semidefinite (positive definite) if x ∈ K (x ∈ intK).

In what follows, we list some results regarding similarity.

Lemma 2.5. (Proposition 3.2.4 in [19]) Let x, s ∈ intK, and w be the
scaling point of x and s. Then(

P (x
1
2 )s

) 1
2 ∼ P (w

1
2 )s.

Lemma 2.6. (Proposition 21 in [15]) Let x, s, u ∈ intK. Then

(i) P (x
1
2 )s ∼ P (s

1
2 )x.

(ii) P
(
(P (u)x)

1
2

)
P (u−1)s ∼ P (x

1
2 )s.

To analyze our IIPM, we need some inequalities, which are recalled
in the following lemmas.

Lemma 2.7. (Lemma 30 in [15]) Let x, s ∈ intK. Then

∥P (x)
1
2 s− e∥F ≤ ∥x ◦ s− e∥F .
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Lemma 2.8. (Lemma 2.9 in [12]) Given x ∈ intK, we have

∥x− x−1∥F ≤ ∥x2 − e∥F
λmin(x)

.

Lemma 2.9. (Lemma 2.15 in [5]) If x ◦ s ∈ intK, then det(x) ̸= 0.

Lemma 2.10. (Theorem 4 in [17]) Let x, s ∈ intK. Then

λmin(P (x)
1
2 s) ≥ λmin(x ◦ s).

Lemma 2.11. (Lemma 8 in [7]) Let x, s ∈ V with Tr(x ◦ s) ≥ 0. Then

∥x ◦ s∥F ≤ 1

2
√
2
∥x+ s∥2F .

2.2. The central path. The basic idea of IPMs is to replace the second
equation in SCLCP, the so-called complementary condition for SCLCP,
by the parameterized equation x ◦ s = µe, with µ > 0. Thus, one may
consider

s = Mx+ q, x, s ∈ K,
x ◦ s = µe.

(2.1)

For each µ > 0, the system (2.1) has a unique solution (x(µ), s(µ)) (un-
der given assumptions), and we call (x(µ), s(µ)) the µ-center of SCLCP.
The set of µ-centers (with µ running through all positive real numbers)
gives a homotopy path, which is called the central path of SCLCP [4].
If µ → 0, then the limit of the central path exists, and since the limit
points satisfy the complementarity condition, the limit yields a solution
of SCLCP.

2.3. The new search directions. IPMs follow the central path ap-
proximately and find an approximate solution of SCLCP by letting µ go
to zero. At a given feasible iterate (x, s) with x, s ∈ intK, we are to find
displacements ∆x and ∆s such that

s+∆s = M(x+∆x) + q,
(x+∆x) ◦ (s+∆s) = µe.

(2.2)

Neglecting the term ∆x ◦∆s corresponding to the left-hand side of the
second equation, we obtain

−M∆x+∆s = 0,
x ◦∆s+ s ◦∆x = µe− x ◦ s.(2.3)

Due to the fact that x and s are not operator commutable in general,
i.e., L(x)L(s) ̸= L(s)L(x), this system does not always have a unique
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solution. It is well known that this difficulty can be resolved by applying
a scaling scheme. This is given in the following lemma.

Lemma 2.12. (Lemma 28 in [15]) Let u ∈ intK. Then

x ◦ s = µe ⇔ P (u)x ◦ P (u)−1s = µe.

Now, replacing the second equation in (2.2) by P (u)(x+∆x)◦P (u)−1(s+
∆s) = µe, and applying the Newton method and neglecting the term
P (u)∆x ◦ P (u)−1∆s, we obtain the system

−M∆x+∆s = 0,
P (u)−1s ◦ P (u)∆x+ P (u)x ◦ P (u)−1∆s

= µe− P (u)x ◦ P (u)−1s.
(2.4)

Here, we focus on the scaling point u = w− 1
2 , where w is the NT-scaling

point of x and s as defined in Lemma 2.4. For that case we define

v :=
P (w)−

1
2x

√
µ

[
=

P (w)
1
2 s

√
µ

]
,(2.5)

and

M := P (w)
1
2MP (w)

1
2 , dx :=

P (w)−
1
2∆x

√
µ

, ds :=
P (w)

1
2∆s

√
µ

.(2.6)

The Newton system (2.4) can be rewritten as

−Mdx + ds = 0,
dx + ds = v−1 − v.

(2.7)

It easily follows that the above system has a unique solution, because
M is positive semidefinite:

⟨u,Mu⟩ = ⟨u, P (w)
1
2MP (w)

1
2u⟩

= ⟨P (w)
1
2u,MP (w)

1
2u⟩ ≥ 0.

Hence, this system uniquely defines the scaled directions dx and ds. To
get the search directions ∆x and ∆s in the original space, we simply
transform the scaled search directions back to the x-space and s-space
by using (2.6):

∆x =
√
µP (w)

1
2dx, ∆s =

√
µP (w)−

1
2ds.(2.8)

The new iterate is obtained by taking a full NT-step as follows

x+ := x+∆x, s+ := s+∆s.(2.9)
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2.4. The analysis of the NT-step. For the analysis of the NT-step,
we need to measure the distance of the iterate (x, s) to the current µ-
center (x(µ), s(µ)). The proximity measure that we are going to use is
defined as follows

δ(x, s;µ) ≡ δ(v) :=
1

2
∥v − v−1∥F ,(2.10)

where v is defined in (2.5). Let x, s ∈ intK, µ > 0 and let w be the
NT-scaling point of x and s. Using (2.5), (2.8) and (2.9), we obtain

x+ =
√
µP (w)

1
2 (v + dx), s+ =

√
µP (w)−

1
2 (v + ds).(2.11)

Since P (w)
1
2 and its inverse P (w)−

1
2 are automorphisms of intK (The-

orem III.2.1 in [1]), x+ and s+ will belong to intK if and only if v + dx
and v+ds belong to intK. Using (2.11) and the second equation of (2.7)
we have

(v + dx) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds
= v2 + v ◦ (v−1 − v) + dx ◦ ds
= e+ dx ◦ ds.(2.12)

Lemma 2.13. The iterate (x+, s+) is strictly feasible if e+dx◦ds ∈ intK.

Proof. For 0 ≤ α ≤ 1, define vαx = v + αdx, v
α
s = v + αds. Then,

v0x = v, v0s = v, v1x = v + dx and v1s = v + ds. From the second equation
in (2.7), it follows that

vαx ◦ vαs = (v + αdx) ◦ (v + αds) = v2 + αv ◦ (dx + ds) + α2dx ◦ ds
= (1− α)v2 + α(e+ αdx ◦ ds).(2.13)

If e+ dx ◦ ds ∈ intK, then we have dx ◦ ds ≻
K
−e. Substituting this into

(2.13), we get

vαx ◦ vαs ≻
K
(1− α)v2 + α(1− α)e ⪰

K
0.

By Lemma 2.9, it follows that det(vαx ) ̸= 0 and det(vαs ) ̸= 0, for α ∈
[0, 1]. Since det(v0x) = det(v0s) = det(v) > 0, by continuity, det(vαx )
and det(vαs ) stay positive, for all α ∈ [0, 1]. Hence, all the eigenvalues
of v1x and v1s are positive. Therefore, v + dx ∈ intK and v + ds ∈ intK,
completing the proof. □

Lemma 2.14. Let x, s ∈ intK and µ > 0. Then, ⟨x+, s+⟩ ≤ µ(r + δ2).
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Proof. Due to (2.11) and the second equation in (2.7), we may write

⟨x+, s+⟩ =
⟨√

µP (w)
1
2 (v + dx),

√
µP (w)−

1
2 (v + ds)

⟩
= µ

⟨
v + dx, v + ds

⟩
= µTr(v2) + µTr(v ◦ (dx + ds)) + µTr(dx ◦ ds)
= µTr(v2) + µTr(v ◦ (v−1 − v)) + µTr(dx ◦ ds)
= µTr(e) + µTr(dx ◦ ds)
= µr + µTr(dx ◦ ds).

On the other hand, we have

Tr(dx ◦ ds) =
1

4

(
∥dx + ds∥2F − ∥dx − ds∥2F

)
≤ 1

4
∥dx + ds∥2F =

1

4
∥v−1 − v∥2 = δ2.

The above relations complete the proof. □

Lemma 2.15. If δ := δ(x, s;µ) < 1, then the full NT-step is strictly
feasible and

δ(x+, s+;µ) ≤ δ2√
2(1− δ2)

.

Proof. Let w+ be the NT-scaling point of x+ and s+. According to
(2.5), we have

v+ :=
P (w+)

1
2 s+

√
µ

∼

(
P (x+)

1
2 s+

) 1
2

√
µ

=

√
µ
(
P (P (w)

1
2 (v + dx))

1
2P (w)−

1
2 (v + ds)

) 1
2

√
µ

∼
(
P (v + dx)

1
2 (v + ds)

) 1
2
,

where the similarities follow from lemmas 2.6 and 2.5, respectively.
Therefore, by applying Lemma 2.8, we obtain

2δ(v+) = ∥v+ − (v+)−1∥F ≤ ∥(v+)2 − e∥F
λmin(v+)

.
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Due to lemmas 2.7, 2.10, 2.11 and (2.12), we get

2δ(v+) ≤ ∥P (v + dx)
1
2 (v + ds)− e∥F(

λmin

(
P (v + dx)

1
2 (v + ds)

)) 1
2

≤ ∥(v + dx) ◦ (v + ds)− e∥F
λmin((v + dx) ◦ (v + ds))

1
2

=
∥dx ◦ ds∥F(

1 + λmin(dx ◦ ds)
) 1

2

≤
1

2
√
2
∥dx + ds∥2F√
1− δ2

≤
√
2δ

2

√
1− δ2

,

which completes the proof. □
As a result, the following corollary readily follows which indicates that

we have quadratic convergence if the iterates are sufficient close to the
µ-center.

Corollary 2.16. If δ(v) ≤ 1√
2
, then the full NT -step is strictly feasible

and δ(v+) ≤ δ(v)2.

Proof. From Lemma 2.15, we have

δ(v+) ≤ δ(v)2√
2(1− δ(v)2)

≤ δ(v)2√
2(1− 1

2)
= δ(v)2,

which proves the corollary. □

3. Infeasible full NT-step IPM

In the case of an infeasible method, we call the pair (x, s) an ϵ-solution
of SCLCP if the norm of the residual vector rq = s −Mx− q does not
exceed ϵ, and also Tr(x◦s) ≤ ϵ. In what follows, we present an infeasible-
start algorithm that generates an ϵ-solution of SCLCP, if it exists, or
establishes that no such solution exists.

3.1. The perturbed problem. We choose a pair (x0, s0) ∈ intK×intK
such that x0 ◦ s0 = µ0e, for a positive µ0. For any ν, 0 < ν ≤ 1, we
consider the perturbed problem,

s−Mx− q = νr0q , (x, s) ∈ K ×K, (SCLCPν)

where, r0q = s0 −Mx0 − q. Note that if ν = 1, then (x0, s0) is a strictly
feasible solution SCLCPν . Therefore, if ν = 1, then SCLCPν satisfies
the IPC.

Theorem 3.1. Let SCLCP be feasible and 0 < ν ≤ 1. Then, the
perturbed problem SCLCPν satisfies the IPC.



An IIPM for LCP problems on symmetric cones 552

Proof. Let (x̄, s̄) be a feasible solution of SCLCP. Then, s̄ = Mx̄ + q
with x̄ ∈ K and s̄ ∈ K. Now, for 0 < ν ≤ 1, define

x = (1− ν)x̄+ νx0, s = (1− ν)s̄+ νs0.

Thus,

s = (1− ν)s̄+ νs0 = (1− ν)Mx̄+ νMx0 + νr0q + q = (Mx+ q) + νr0q ,

which shows that (x, s) is a feasible solution for SCLCPν . Since ν >
0, then (x, s) ∈ intK × intK. This proves that SCLCPν satisfies the
IPC. □

Let SCLCP be feasible and 0 < ν ≤ 1. Then Theorem 3.1 implies
that SCLCPν is strictly feasible, and therefore its central path exists.
This means that the system

s−Mx− q = νr0q , (x, s) ∈ K ×K,(3.1)

x ◦ s = µe,(3.2)

has a unique solution, for any µ > 0. We denote this solution by
(x(µ, ν), s(µ, ν)). It is the µ-center of the perturbed problem SCLCPν .
In what follows, the parameters µ and ν will always be in a one-to-one
correspondence, according to µ = νµ0. Therefore, we feel free to omit
one parameter and denote (x(µ, ν), s(µ, ν)) = (x(ν), s(ν)). Note that,
since x0 ◦ s0 = µ0e, (x0, s0) is the µ0-center of the perturbed problem
SCLCP1. In other words, (x(1), s(1)) = (x0, s0).

3.2. A full NT-step infeasible IPM algorithm. We just established
that if ν = 1 and µ = µ0, then (x0, s0) is the µ-center of the problem
SCLCPν . This is our initial iterate. We measure proximity to the µ-
center of the perturbed problem SCLCPν by the quantity δ(x, s;µ) as
defined by (2.10). Initially, we thus have δ(x, s;µ) = 0. In the sequel,
we assume that at the start of each iteration, just before the µ- update,
δ(x, s;µ) ≤ τ, τ > 0. This certainly holds at the start of the first iteration
and also ⟨x, s⟩ = rµ0.

Now, we describe one (main) iteration of our algorithm. Suppose that
for some µ ∈ (0, µ0], we have (x, s) satisfying the feasibility condition
(3.1), for µ = νµ0, ⟨x, s⟩ ≤ µ(r + δ2) and δ(x, s;µ) ≤ τ . Each main
iteration consists of one so-called feasibility step, a µ-update, and a few
centering steps. First, we find a new point (xf , sf ) which is feasible for
the perturbed problem with ν replaced by ν+ := (1 − θ)ν. Then, µ
is decreased to µ+ := (1 − θ)µ. Generally, there is no guarantee that
δ(xf , sf ;µ+) ≤ τ . So, a limited number of centering steps are applied
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to produce a new point (x+, s+) such that ⟨x+, s+⟩ ≤ µ+(r + δ2) and
δ(x+, s+;µ+) < τ , where µ+ = ν+µ0.

A formal description of the algorithm is given in Algorithm 1. Recall
that after each iteration the residual vector rq and Tr(x◦s) are reduced
by the factor (1 − θ). The algorithm stops if the norms of the residual
vector and the duality gap are less than the accuracy parameter ϵ.

3.3. Analysis of the feasibility step. Here, we define and analyze the
feasibility step. Suppose that we have a strictly feasible iterate (x, s) for
SCLCPν . This means that (x, s) satisfies

s−Mx− q = νr0q , (x, s) ∈ K ×K,

with µ = νµ0. We need the displacements ∆fx and ∆fs such that

xf := x+∆fx, sf := s+∆fs,(3.3)

are feasible for SCLCPν . One may easily verify that (xf , sf ) satisfies
SCLCPν , with ν replaced by ν+ and µ by µ+ = ν+µ0 = (1− θ)µ, only
if the first equation in the following system is satisfied

M∆fx−∆fs = θνr0q ,

P (u)−1s ◦ P (u)∆fx+ P (u)x ◦ P (u)−1∆fs
= (1− θ)µe− P (u)x ◦ P (u)−1s.

The second equation above is inspired by the second equation of the
system (2.4) that we used to define the search directions for the feasible
case, except that we target at the µ+-center of SCLCPν+ . As in the
feasible case, we use the NT-scaling scheme to guarantee that the above

system has a unique solution. So, we take u = w− 1
2 , where w is the

NT-scaling point of x and s. Then, the above system turns to

M∆fx−∆fs = θνr0q ,

P (w)
1
2 s ◦ P (w)−

1
2∆fx+ P (w)−

1
2x ◦ P (w)

1
2∆fs

= (1− θ)µe− P (w)−
1
2x ◦ P (w)

1
2 s.
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Algorithm 1 : Afull Nesterov − Todd step IIPM for SCLCP.
Input :

Accuracy parameter ϵ > 0;
barraier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0.

begin
x := x0 ∈ intK; s := s0 ∈ intK;

⟨x0, s0⟩ = µ0e; µ := µ0;
while max

(
rµ, ∥rq∥

)
> ϵ;

feasibility step :
(x, s) := (x, s) + (∆fx,∆fs);

µ− update :
µ := (1− θ)µ;

centering steps :
while δ(x, s;µ) ≥ τ ;

(x, s) := (x, s) + (∆x,∆s);
end while

end while
end.

We conclude that after the feasibility step, the iterates satisfy the
affine equation (3.1) with ν = ν+. The hard part in the analysis will
be to guarantee that xf , sf ∈ intK and that the new iterate satisfies
δ(xf , sf ;µ) ≤ 1√

2
.

Let (x, s) denote the iterate at the start of an iteration with Tr(x ◦
s) ≤ µ(r + δ2) and δ(x, s;µ) ≤ τ . Recall that at the start of the first
iteration this is certainly true, because then Tr(x0 ◦ s0) = µ0r and
δ(x0, s0;µ0) = 0. We scale the search directions, just as we did in the
feasible case as (2.6), by defining

dfx :=
P (w)−

1
2∆fx

√
µ

, dfs :=
P (w)

1
2∆fs

√
µ

,(3.4)

where w denotes the NT-scaling point of x and s as defined in Lemma
2.4. With the vector v as defined by (2.5), the above system can be
restated as

Mdfx − dfs =
P (w)

1
2

√
µ

θνr0q ,

dfx + dfs = (1− θ)v−1 − v,

(3.5)
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where M = P (w)
1
2MP (w)

1
2 . To get the search directions ∆fx and ∆fs

in the original x-space and s-space we use (3.4), which gives

∆fx =
√
µP (w)

1
2dfx, ∆fs =

√
µP (w)−

1
2dfs .

The new iterates are obtained by taking a full step, as given by (3.3).
Hence, we have

xf =
√
µP (w)

1
2 (v + dfx), sf =

√
µP (w)−

1
2 (v + dfs ).(3.6)

Using the second equation in (3.5) and (3.6), we derive that

(v + dfx) ◦ (v + dfs ) = v2 + v ◦ [(1− θ)v−1 − v] + dfx ◦ dfs
= (1− θ)e+ dfx ◦ dfs .(3.7)

Using the same arguments as in Subsection 2.4 it follows from (3.6) that

xf and sf will belong to intK if and only if v + dfx and v + dfs belong
to intK. The proof of the following lemma is identical to the proof of
Lemma 4.2 in [5].

Lemma 3.2. The iterate (xf , sf ) is strictly feasible if (1−θ)e+dfx◦dfs ∈
intK.

Now, we proceed by deriving an upper bound for δ(xf , sf ;µ+). Let
wf be the NT-scaling point of xf and sf . Let vf be the vector after the
feasibility step with respect to the µ+-center. According to (2.5), define

vf :=
P (wf )−

1
2xf√

µ(1− θ)

[
=

P (wf )
1
2 sf√

µ(1− θ)

]
.(3.8)

Lemma 3.3. If ∥λ(dfx ◦ dfs )∥∞ ≤ 1− θ, then

2δ(vf ) ≤

∥dfx∥2F + ∥dfs∥2F
2(1− θ)(

1−
∥dfx∥2F + ∥dfs∥2F

2(1− θ)

) 1
2

.

Proof. Since ∥λ(dfx ◦ dfs )∥∞ ≤ 1 − θ, from Lemma 3.2 and (3.7) follows

that v + dfx, v + dfs and (v + dfx) ◦ (v + dfs ) belong to intK. Applying
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lemmas 2.6 and 2.5, we get

vf :=
P (wf )

1
2 sf√

µ(1− θ)
∼

(
P (xf )

1
2 sf

) 1
2√

µ(1− θ)

=

√
µ
(
P (P (w)

1
2 (v + dfx))

1
2P (w)−

1
2 (v + dfs )

) 1
2√

µ(1− θ)

∼

(
P (v + dfx)

1
2 (v + dfs )

) 1
2√

(1− θ)
.

Applying Lemma 2.8 and the above relation, we obtain

2δ(vf ) = ∥vf − (vf )−1∥F =
∥(vf )2 − e∥F
λmin(vf )

=
∥P ( v+dfx√

1−θ
)
1
2 ( v+dfs√

1−θ
)− e∥F

λmin

(
P ( v+dfx√

1−θ
)
1
2 ( v+dfs√

1−θ
)
) 1

2

.

Due to lemmas 2.7, 2.10 and the relation (3.7), we get

2δ(vf ) ≤
∥( v + dfx√

1− θ
) ◦ ( v + dfs√

1− θ
)− e∥F

λmin

(
(
v + dfx√
1− θ

) ◦ ( v + dfs√
1− θ

)
) 1

2

=
∥d

f
x ◦ dfs
1− θ

∥F

λmin(e+
dfx ◦ dfs
1− θ

)
1
2

≤
∥d

f
x ◦ dfs
1− θ

∥F(
1− ∥dfx ◦ dfs∥F

1− θ

) 1
2

≤

∥dfx∥2F + ∥dfs∥2F
2(1− θ)(

1−
∥dfx∥2F + ∥dfs∥2F

2(1− θ)

) 1
2

,

which completes the proof. □

3.4. An upper bound for ∥dfx∥2F + ∥dfs∥2F . We have derived an upper

bound for δ(vf ) in terms of ∥dfx∥2F + ∥dfs∥2F . Therefore, to obtain θ, 0 <

θ < 1, as large as possible, such that δ(vf ) ≤ 1√
2
, we need an upper

bound for ∥dfx∥2F +∥dfs∥2F . We consider the system (3.5). By eliminating

dfs , we obtain

dfx =
(
M + I

)−1(
(1− θ)v−1 − v +

P (w)
1
2 θνr0q√
µ

)
.
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Since M is semidefinite, it follows that

∥dfx∥F =
∥∥∥(M + I

)−1(
(1− θ)v−1 − v +

P (w)
1
2 θνr0q√
µ

)∥∥∥
F

≤ λmax

(
(M + I)−1

)∥∥∥(1− θ)v−1 − v +
P (w)

1
2 θνr0q√
µ

∥∥∥
F

=
1

λmin(M + I)

∥∥∥(1− θ)v−1 − v +
P (w)

1
2 θνr0q√
µ

∥∥∥
F

≤
∥∥∥(1− θ)v−1 − v +

P (w)
1
2 θνr0q√
µ

∥∥∥
F
.(3.9)

Hence, using the first equation of (3.5), the Cauchy-Schwartz inequality
and positive semidefiniteness of M , we get

∥dfx∥2F + ∥dfs∥2F = ∥dfx + dfs∥2F − 2⟨dfx, dfs ⟩

= ∥(1− θ)v−1 − v∥2F − 2
⟨
dfx,Mdfx −

P (w)
1
2 θνr0q√
µ

⟩
= ∥(1− θ)v−1 − v∥2F − 2⟨dfx,Mdfx⟩+ 2

⟨
dfx,

P (w)
1
2 θνr0q√
µ

⟩
≤ ∥(1− θ)v−1 − v∥2F + 2∥dfx∥F

∥∥∥P (w)
1
2 θνr0q√
µ

∥∥∥
F
.(3.10)

Substituting (3.9) in (3.10) gives

∥dfx∥2F + ∥dfs∥2F ≤ ∥(1− θ)v−1 − v∥2F

+2
∥∥∥(1− θ)v−1 − v +

P (w)
1
2 θνr0q√
µ

∥∥∥
F

∥∥∥P (w)
1
2 θνr0q√
µ

∥∥∥
F

≤ ∥(1− θ)v−1 − v∥2F

+2
(
∥(1− θ)v−1 − v∥F +

∥∥∥P (w)
1
2 θνr0q√
µ

∥∥∥
F

)∥∥∥P (w)
1
2 θνr0q√
µ

∥∥∥
F
.(3.11)
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From (2.10) and ∥v∥2F ≤ r + δ2, we have∥∥(1− θ)v−1 − v
∥∥2
F
=

∥∥(1− θ)(v−1 − v)− θv
∥∥2
F

= (1− θ)2
∥∥v−1 − v

∥∥2
F
− 2θ(1− θ)⟨v, v−1 − v⟩+ θ2∥v∥2F

= (1− θ)2
∥∥v−1 − v

∥∥2
F
+ 2θ(1− θ)(∥v∥2F − r) + θ2∥v∥2F

≤ 4(1− θ)2δ2 + 2θ(1− θ)δ2 + θ2(r + δ2)

= (1 + 3(1− θ)2)δ2 + rθ2.(3.12)

Let (x∗, s∗) be the optimal solution of SCLCP such that

∥x∗∥∞ ≤ ρp, max{∥s∗∥∞, ρp∥M∥} ≤ ρd,(3.13)

and as usual we start the algorithm with

(x0, s0) = (ρpe, ρde), µ0 = ρpρd.(3.14)

For such starting points we have∥∥∥P (w)
1
2 θνr0q√
µ

∥∥∥
F
=

θν
√
µ

∥∥∥P (w)
1
2 (s0 − s∗ −M(x0 − x∗))

∥∥∥
F

≤ θν
√
µ

(
∥P (w)

1
2 (s0 − s∗)∥F + ∥M∥∥P (w)

1
2 (x0 − x∗)∥F

)
.(3.15)

Now, we obtain an upper bound for ∥P (w)
1
2 (x0 − x∗)∥F . Using that

P (w)
1
2 is self-adjoint with respect to the inner product and P (w)e = w2

[19], we have

∥P (w)
1
2 (x0 − x∗)∥2F = ⟨P (w)1(x0 − x∗), x0 − x∗⟩
= ⟨P (w)1(x0 − x∗), ρpe⟩ − ⟨P (w)1(x0 − x∗), ρpe− (x0 − x∗)⟩
≤ ⟨P (w)1(x0 − x∗), ρpe⟩ = ρp⟨P (w)1e, x0 − x∗⟩
≤ ρp⟨P (w)1e, ρpe⟩ − ρp⟨P (w)1e, ρpe− (x0 − x∗)⟩
≤ ρ2pTr(w

2).

Similarly, it follows that ∥P (w)
1
2 (s0 − s∗)∥2F ≤ ρ2dTr(w

2). Substitution
of the last two inequalities into (3.15) gives∥∥∥P (w)

1
2 θνr0q√
µ

∥∥∥
F
≤ θν

√
µ

(
ρd + ρp∥M∥

)√
Tr(w2)

≤ 2θν
√
µ
ρd
√

Tr(w2).(3.16)
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Lemma 3.4. (Lemma 4.5 in [5]) One has

Tr(w2) ≤ Tr(x2)

µλmin(v)2
.

Using (3.12), (3.16) and Lemma 3.4 in (3.11), we get

∥dfx∥2F + ∥dfs∥2F ≤ (1 + 3(1− θ)2)δ2 + rθ2

+2
(√

(1 + 3(1− θ)2)δ2 + rθ2 +
2θTr(x)

ρpλmin(v)

) 2θTr(x)

ρpλmin(v)
.

The proof of the next lemma is exactly the same as Lemma II.60 in [14].

Lemma 3.5. If δ := δ(v) is defined by (2.10), then

1

ϱ(δ)
≤ λmin(v) ≤ λmax(v) ≤ ϱ(δ),

where ϱ(δ) := δ +
√
1 + δ2.

Lemma 3.6. Let (x, s) be feasible for the perturbed problem SCLCPν

and (x0, s0) = (ρpe, ρde). Then, for any (x∗, s∗) ∈ K × K with s∗ =
Mx∗ + q and x∗ ◦ s∗ = 0, we have

ν
(
⟨x0, s⟩+ ⟨s0, x⟩

)
≤ ν2⟨x0, s0⟩+ ν(1− ν)

(
⟨x0, s∗⟩

+⟨s0, x∗⟩
)
− (1− ν)

(
⟨s, x∗⟩+ ⟨x, s∗⟩

)
+ ⟨x, s⟩.

Proof. From r0q = s0 − Mx0 − q and the definition of the perturbed
problem SCLCPν , it is easily seen that

νs0 + (1− ν)s∗ − s = ν(r0q +Mx0 + q) + (1− ν)s∗ − (νr0q +Mx+ q)

= ν(r0q +Mx0 + s∗ −Mx∗) + (1− ν)s∗ − (νr0q +Mx−Mx∗ + s∗)

= M(νx0 + (1− ν)x∗ − x).

Since M is positive semidefinite, we obtain

0 ≤ ⟨νx0 + (1− ν)x∗ − x,M(νx0 + (1− ν)x∗ − x)⟩
= ⟨νx0 + (1− ν)x∗ − x, νs0 + (1− ν)s∗ − s⟩

= ν2⟨x0, s0⟩+ ν(1− ν)
(
⟨x0, s∗⟩+ ⟨s0, x∗⟩

)
− (1− ν)

(
⟨s, x∗⟩+ ⟨x, s∗⟩

)
+⟨x, s⟩ − ν

(
⟨x0, s⟩+ ⟨s0, x⟩

)
+ (1− ν)2⟨s∗, x∗⟩.

Using Lemma 2.2 and assumption x∗◦s∗ = 0, we have ⟨x∗, s∗⟩ = 0. This
completes the proof. □
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Lemma 3.7. Let (x, s) be feasible for the perturbed problem SCLCPν .
With (x0, s0) = (ρpe, ρde), we then have

Tr(x) ≤ rρp(2 + ϱ(δ)2), T r(s) ≤ rρd(2 + ϱ(δ)2),

where ϱ(δ) is defined as in Lemma 3.5.

Proof. Since x, s, x∗ and s∗ belong to K, it implies that ⟨s, x∗⟩+⟨x, s∗⟩ ≥
0. Therefore, Lemma 3.6 implies

⟨x0, s⟩+ ⟨s0, x⟩ ≤ ν⟨x0, s0⟩+ (1− ν)
(
⟨x0, s∗⟩+ ⟨s0, x∗⟩

)
+

1

ν
⟨x, s⟩.

Since x0 = ρpe, s
0 = ρde, ∥x∗∥∞ ≤ ρp and ∥s∗∥∞ ≤ ρd, we have

⟨x0, s∗⟩+ ⟨s0, x∗⟩ ≤ ρd⟨e, x0⟩+ ρp⟨e, s0⟩ = 2rρpρd

⟨s0, x0⟩ = ρpρd⟨e, e⟩ = rρpρd.

Hence, we get

⟨x0, s⟩+ ⟨s0, x⟩ ≤ νrρpρd + (1− ν)2rρpρd +
µ⟨v, v⟩

ν

= 2rρpρd − νrρpρd +
µ⟨v, v⟩

ν

≤ 2rρpρd +
µ⟨v, v⟩

ν
= 2rρpρd + µ0⟨v, v⟩

= 2rρpρd + ρpρd

r∑
i=1

λ2
i (v)

≤ rρpρd(2 + ϱ(δ)2),

where the last inequality follows from Lemma 3.5. Since ⟨x0, s⟩ ≥ 0 and
⟨s0, x⟩ ≥ 0, we get

⟨s0, x⟩ ≤ rρpρd(2 + ϱ(δ)2), ⟨x0, s⟩ ≤ rρpρd(2 + ϱ(δ)2).

Moreover, since s0 = ρde and x0 = ρpe, we have

⟨s0, x⟩ = ρdTr(x), ⟨x0, s⟩ = ρpTr(s).

Therefore,

Tr(x) ≤ rρp(2 + ϱ(δ)2), T r(s) ≤ rρd(2 + ϱ(δ)2),

which proves the lemma. □
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By using lemmas 3.5 and 3.7, we obtain

∥dfx∥2F + ∥dfs∥2F ≤ (1 + 3(1− θ)2)δ2 + rθ2

+2
(√

(1 + 3(1− θ)2)δ2 + rθ2

+2rθϱ(δ)(2 + ϱ(δ)2)
)
2rθϱ(δ)(2 + ϱ(δ)2).(3.17)

3.5. Value for θ. We would like to choose θ, 0 < θ < 1, as large as pos-
sible, and such that (xf , sf ) lies in the quadratic convergence neighbor-
hood with respect to the µ+-center of the perturbed problem SCLCPν ,
i.e., δ(vf ) ≤ 1√

2
. By Lemma 3.3, we derive that this is the case when

∥dfx∥2F + ∥dfs∥2F
2(1− θ)(

1−
∥dfx∥2F + ∥dfs∥2F

2(1− θ)

) 1
2

≤
√
2.

Considering
∥dfx∥2F + ∥dfs∥2F

1− θ
as a single term, and performing some ele-

mentary calculations, we obtain that

∥dfx∥2F + ∥dfs∥2F
1− θ

≤ 2
√
3− 2 ≈ 1.4641.(3.18)

By (3.17), the above inequality holds if

(1 + 3(1− θ)2)δ2 + rθ2 + 2
(√

(1 + 3(1− θ)2)δ2 + rθ2+

2rθϱ(δ)(2 + ϱ(δ)2)
)
2rθϱ(δ)(2 + ϱ(δ)2) ≤ (2

√
3− 2)(1− θ).

Choosing τ = 1
16 , one may easily verify that the above inequality is

satisfied if

θ =
1

10r
.(3.19)

Moreover,

∥λ(dfx ◦ dfs )∥∞ ≤ 1

2
(∥dfx∥2F + ∥dfs∥2F ) ≤ (

√
3− 1)(1− θ) < 1− θ,

which, by Lemma 3.3, means that (xf , sf ) is strictly feasible. Thus, we
have obtained a desired update parameter θ.
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3.6. Complexity. We have seen that if at the start of an iteration the
iterate satisfies δ(x, s;µ) ≤ τ , with τ = 1

16 , then after the feasibility
step, with θ as defined by (3.19), the iterate is strictly feasible and sat-
isfies δ(xf , sf ;µ+) ≤ 1√

2
, i.e., (xf , sf ) lies in the quadratic convergence

neighborhood with respect to the µ+-center of the perturbed problem
SCLCPν .

After the feasibility step, we perform a few centering steps in or-
der to get the iterates (x+, s+) to satisfy ⟨x+, s+⟩ ≤ µ(r + δ2) and
δ(x+, s+;µ+) ≤ τ . By Corollary 2.16, after k centering steps we will
have the iterate (x+, s+) that is still feasible for SCLCPν+ and such
that

δ(x+, s+;µ+) ≤
( 1√

2

)2k
.

From this, one easily deduces that δ(x+, s+;µ+) ≤ τ will hold after at
most

1 +
⌈
log2

(
log2

1

τ

)⌉
,(3.20)

centering steps. According to (3.20), and since τ = 1
16 , at most three cen-

tering steps suffice to get the iterate (x+, s+) that satisfies δ(x+, s+;µ+) ≤
τ again. So, each main iteration consists of at most four so-called inner
iterations.

In each main iteration both the value of rµ and the norm of the
residual are reduced by the factor 1− θ. Hence, the total number of the
main iterations is bounded above by

1

θ
log

max{Tr(x0 ◦ s0), ∥r0q∥F }
ϵ

.

Due to (3.19) and the fact that we need at most four inner iterations
per main iteration, we may state the main result of the paper.

Theorem 3.8. If SCLCP has an optimal solution (x∗, s∗) such that
∥x∗∥∞ ≤ ρp and ∥s∗∥∞ ≤ ρd, then after at most

40r log
max{Tr(x0 ◦ s0), ∥r0∥F }

ϵ

iterations the algorithm finds a solution of SCLCP.
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