
Bulletin of the Iranian Mathematical Society Vol. 35 No. 1 (2009), pp 119-127.

SOME RESULTS ON p-BEST APPROXIMATION IN
VECTOR SPACES
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Communicated by Fereidoun Ghahramani

Abstract. The purpose of this paper is to introduce and to dis-
cuss the concept of p-approximation and p-orthogonality in vector
spaces, and to obtain some results on p- orthogonality in vector
spaces similar to some well known results on the orthogonality in
normed spaces. We also discuss the concept of p-extension of linear
functionals on a vector space, and give a characterization of linear
functionals on a subspace having a unique p-extension Hahn-Banach
to the whole vector space.

1. Introduction

Here, all normed spaces under consideration are real. A seminorm
is a function p : X → [0,∞) such that p(x + y) ≤ p(x) + p(y) and
p(αx) = |α|p(x), for all x, y ∈ X and α ∈ R. It is clear that for every
seminorm p, p(0) = 0. Also, the seminorm p is a norm, if p(x) = 0
implies x = 0.

Many authors have introduced the concept of orthogonality in differ-
ent ways (see [1-4], [6]). In [1], Birkhoff modified the concept of orthog-
onality. By his definition, if X is a normed linear space and x, y ∈ X,
x is said to be orthogonal to y and is denoted by x ⊥ y if and only if
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‖x‖ ≤ ‖x + αy‖, for all scalars α. Note that this orthogonality is not
symmetric in general [2].

Let X be such a vector space, x, y ∈ X and p be a fixed seminorm.
We say that x is p-orthogonal to y if x = 0 or else,

p(x) 6= 0, p(x) = inf αp(x + αy),

in which case we write x⊥py. If M1 and M2 are subsets of X, then we
say that M1 is p-orthogonal to M2 p if g1⊥pg2, for all g1 ∈ M1, g2 ∈ M2.
If M1 is p-orthogonal to M2, then we write M1⊥pM2.

First we state the following lemma of Hahn- Banach which is needed
in the proof of the main results.

Lemma 1.1. [5] Let M be a subspace of a vector space X, p be a semi-
norm on X, and let f be a linear functional on M such that

|f(x)| ≤ p(x) (x ∈ M).

Then, f extends to a linear functional Λ on X which satisfies:

|Λ(x)| ≤ p(x) (x ∈ X).

Suppose p is a seminorm on X. For x ∈ X, let

Mp
x = {Λ : X

linear→ R : Λ(x) = p(x), |Λ(z)| ≤ p(z),∀z ∈ X}.
For x ∈ X, if we let M =< x > ( < x > is the subspace of X gener-
ated by x) and define f(αx) = αp(x), then by Lemma 1.1, the linear
functional f extends to a linear functional Λ ∈ Mp

x . Therefore, Mp
x is

nonempty.
Here, we are concerned with the concepts of p-best approximation

and p-orthogonality in a vector space. The concept of approximation in
normed linear spaces was defined by I. Singer [6].

2. Orthogonality in vector spaces

In this section, we state and prove our main results for vector spaces.
Also, we obtain results related to p-orthogonality on vector spaces.

Theorem 2.1. Let X be a vector space, G be a subspace of X, p be a
seminorm on X, x ∈ X\G and p(x) 6= 0. Then, the following statements
are equivalent:
a) x⊥pG.
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b) There is a linear functional Λ on X such that Λ ∈ Mp
x and Λ|G = 0.

Proof. a) ⇒ b). Suppose x⊥pG. Consider M =< x >
⊕

G. We define
a linear functional f on M by f(αx + y) = αp(x), where y ∈ G and
α ∈ R. It is clear that f(y) = 0, for every y ∈ G, and f(x) = p(x). Now,
suppose z = αx + y ∈ M . Then,

|f(z)| = |f(αx + y)|
= |α|p(x)

≤ |α|p(x +
1
α

y)

= p(αx + y)
= p(z).

From Lemma 1.1, there exists a linear functional Λ on X such that

Λ(x) = p(x), Λ|G = 0, |Λ(z)| ≤ p(z) for all z ∈ X.

b) ⇒ a). Suppose that there exists a linear functional Λ on X such that
Λ ∈ MP

x and Λ|G = 0. For every α ∈ R and y ∈ G, we have,

p(x + αy) ≥ |Λ(x + αy)| = |Λ(x)| = p(x).

Therefore, inf αp(x + αy) = p(x), and hence x⊥py. Thus, x⊥pG. �
Now, we shall obtain from Theorem 2.1 various corollaries on p-

orthogonality.

Corollary 2.2. Let X be a vector space, p be a seminorm on X and
x, y ∈ X. If x⊥py, then < x > ∩ < y >= {0}.

Corollary 2.3. Let X be a vector space, A be a nonempty subset of X,
p be a seminorm on X such that p(y) 6= 0, for all y ∈ A and x ∈ X\ <
A >. Then, the following two statements are equivalent:
a) A⊥px.
b) For every y ∈ A, there exists a linear functional Λ on X with Λ ∈ Mp

y

and Λ(x) = 0.

Definition 2.4. Let X be a vector space and p be a seminorm on X.
The element x ∈ X is called a p-normal element if there exists only one
linear functional Λx on X such that Λx ∈ Mp

x ; i.e., Mp
x is a singleton.
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Corollary 2.5. Let X be a vector space, G be a linear subspace of X,
p be a seminorm on X and p(x) 6= 0. If x ∈ X is a p-normal element
associated with p on X, then the following statements are equivalent:
a) x⊥pG.
b) There exists a unique linear functional Λ on X such that Λ ∈ Mp

x

and Λ|G = 0.

Let G be a subspace of the space X equipped with a seminorm p.
Define,

Ĝp = {x ∈ X : x⊥pG},

and

Ğp = {x ∈ X : G⊥px}.

Corollary 2.6. Let X be a vector space, G be a subspace of X and p be
a seminorm on X. Then,
a) G ∩ Ĝp = {0}
b) G ∩ Ğp = {0}.
c) αx ∈ Ĝp, if x ∈ Ĝp and α ∈ R.
d) αx ∈ Ğp, if x ∈ Ğp and α ∈ R.

Proof. The statements (c) and (d) are consequences of the definition
of p-orthogonality. Suppose x ∈ G∩ Ĝp (resp. x ∈ G∩ Ğp). Then, x⊥G
w.r.t. p (resp. G⊥x w.r.t. p) and x ∈ G. Therefore, x⊥px, and form
Corollary 2.2, x = 0. �

3. p-Best approximation and linear functional

Here, we shall introduce and discuss the concept of p-extension of
linear functionals on a vector space, and show that a linear functional
on a subspace has a unique p-extension to the whole vector space if and
only if G⊥ has some properties.

Let X be a vector space and p be a seminorm on X. A point g0 ∈ G
is said to be a p-best approximation for x ∈ X if and only if p(x −
g0) 6= 0 and for all g ∈ G, p(x − g0) ≤ p(x − g). The set of all p-best
approximations of x ∈ X in G is denoted by P p

G(x). In other words,

P p
G(x) = {g0 ∈ G : p(x− g0) 6= 0, p(x− g0) ≤ p(x− g) ∀g ∈ G}.
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If P p
G(x) is non-empty for every x ∈ X, then G is called a p-proximinal

set. The set G is p-Chebyshev if P p
G(x) is a singleton for every x ∈ X.

Theorem 3.1. Let X be a vector space, G be a subspace of X, p be
a seminorm on X, g0 ∈ G, x ∈ X\G and p(x − g0) 6= 0. Then, the
following statements are equivalent:
a) g0 ∈ P p

G(x)
b) There exists a linear functional Λ on X such that Λ ∈ Mp

x−g0
and

Λ|G = 0.

Proof. We know that g0 ∈ P p
G(x) if and only if x−g0⊥pG. Now, Apply

Theorem 2.1.

Theorem 3.2. Let X be a vector space, p be a seminorm on X and
G be a p-proximinal subspace of X. If Gp is a convex set, then G is
p-Chebyshev.

Proof. If x ∈ X and g1, g2 ∈ P p
G(x), then x − g1, x − g2 ∈ Ĝp. Since

Ĝp is convex, then it follows that 1
2(g1− g2) ∈ Ĝp. Since 1

2(g1− g2) ∈ G,
then Lemma 2.6 shows that g1 = g2. �

Theorem 3.3. Let X be a vector space, G be a subspace of X, p be a
seminorm on X, g0 ∈ G, and x ∈ X\G p(x− g0) 6= 0. Then,

g0 ∈ P p
G(x) ⇔ p((x− g0)|G⊥) = p(x− g0),

where,

p((x− g0)|G⊥) = sup{|Λ(x− g0)| : Λ ∈ G⊥, |Λ(z)| ≤ p(z), ∀z ∈ X},

and the annihilator of G is the set,

G⊥ = {f : X
linear→ R : f(x) = 0 for all x ∈ G}.

Proof. Let g0 ∈ P p
G(x). It follows from p(x − g0) 6= 0 and Theorem

3.1 that there exists a linear functional Λ on X such that for all z ∈
X, |Λ(z)| ≤ p(z), Λ(x − g0) = p(x − g0) and Λ|G = 0. Therefore,
p(x − g0) = |Λ(x − g0)| ≤ p((x − g0)|G⊥). Now, suppose Λ ∈ G⊥ and
|Λ(z)| ≤ p(z) for all z ∈ X. Then, |Λ(x − g0)| ≤ p(x − g0), and thus
p((x− g0)|G⊥) ≤ p(x− g0).
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Conversely, suppose p((x − g0)|G⊥) = p(x − g0). Since p((x − g)|G⊥) ≤
p(x− g), then similarly we have,

p(x− g0) = p((x− g0)|G⊥)
= p((x− g)|G⊥)
≤ p(x− g).

That is, g0 ∈ P p
G(x). �

Let X be a vector space and p be a seminorm on X. The dual space
of X with respect to p is denoted by:

X∗
p = {Λ : X

linear→ R : p′(Λ) < ∞},
where,

p′(Λ) = sup{|Λ(x)| : p(x) ≤ 1, x ∈ X}.
It is clear that p′ is a seminorm on X∗

p . Similarly, we can define p′′ on
X∗∗

p and p′′′ on X∗∗∗
p (see [5]).

It is clear that if X is a vector, p is a seminorm on X, Λ ∈ X∗
p , x ∈ X

and p(x) 6= 0, then,

p(x) = sup{|Λ(x)| : p′(Λ) ≤ 1, Λ ∈ X∗
p}.

Lemma 3.4. Let X be a vector space, and p be a seminorm on X. For
each x ∈ X, define the linear functional x̂ on X∗

p by x̂(ϕ) = ϕ(x), for
ϕ ∈ X∗

p . Then, for all x ∈ X,

p′′(x̂) = p(x).

Proof. We have,

p′′(x̂) = sup{|x̂(ϕ)| : p′(ϕ) ≤ 1, ϕ ∈ X∗
p}

= sup{|ϕ(x)| : p′(ϕ) ≤ 1, ϕ ∈ X∗
p}

= p(x).

�

Definition 3.5. Let X be a vector space, p be a seminorm on X, Λ ∈
X∗

p and G be a subspace of X. Λ is called a p-extension of the linear
functional f : G −→ R, if Λ|G = f and p′(Λ) = p′(f). p′(Λ) and p′(f)
are computed relative to the domains of Λ and f , explicitly as:

p′(Λ) = sup{|Λ(x)| : p(x) ≤ 1, x ∈ X}
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and
p′(f) = sup{|f(x)| : p(x) ≤ 1, x ∈ G}.

Theorem 3.6. Let X be a vector space, G be a subspace of X, p be a
seminorm on X and f ∈ X∗

p\G⊥. Then, there is an one-to-one corre-

spondence between the set P p′

G⊥(f) and the set of all g ∈ X∗
p such that ĝ

is a p-extension of f̂ |G⊥⊥, given by g 7→ f − g.

Proof. If g ∈ P p′

G⊥(f), then it is clear that f̂ |G⊥⊥ = f̂ − g|G⊥⊥ , and
from Theorem 3.2 and Corollary 3.4 we have,

p′′′(f̂ − g) = p′(f − g)
= p′((f − g)|G⊥⊥)

= p′′′( ̂(f − g)|G⊥⊥)

= p′′′(f̂ |G⊥⊥).

Therefore, f̂ − g is a p-extension of f̂ |G⊥⊥ . We show that this map is
onto. Suppose ĥ is a p-extension of f̂ |G⊥⊥ . Let g = f − h. We show
that g ∈ P p′

G⊥(f). For this, since f̂ − g is a p-extension of f̂ |G⊥⊥ , then

f̂ |G⊥⊥ = f̂ − g|G⊥⊥ and p′′′(f̂ |G⊥⊥) = p′′′(f̂ − g). Now, we have,

p′((f − g)|G⊥⊥) = p′′′((f̂ − g)|G⊥⊥)

= p′′′(f̂ |G⊥⊥)

= p′′′(f̂ − g)
= p′(f − g).

Therefore, by Theorem 3.2, g ∈ P p′

G⊥(f). �

Theorem 3.7. Let X be a vector space, G be a subspace of X, p be a
seminorm on X, f ∈ G∗

p and let f̃ ∈ X∗
p be a p-extension of f . Then,

there is a one-to-one correspondence between the set of all p-extensions
of f to X and the set P p′

G⊥(f̃), given by g −→ f̃ − g.

Proof. Suppose g ∈ X∗
p is a p-extension of f . Then, g|G = f and

p′(f) = p′(g). For all ϕ ∈ G⊥⊥,

ĝ(ϕ) = ϕ(g) = ϕ(f̃) = ̂̃
f(ϕ),
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since g|G = f̃ |G. Also f̃ |G = f , and thus ̂̃
f |G⊥⊥ = f̂ and

p′′′(ĝ) = p′(g) = p′(f) = p′′′(f̂) = p′′′(̂̃f |G⊥⊥).

So by Theorem 3.6, f̃ − g ∈ P p′

G⊥(f̃).

Now, suppose that g ∈ P p′

G⊥(f̃). Then, ̂̃
f − g is a p-extension of ̂̃

f |G⊥⊥ .
We know,

(f̃ − g)(x) = f(x),
for all x ∈ G, and

p′(f̃ − g) = p′′′( ̂̃
f − g) = p′′′(̂̃f |G⊥⊥) = p′′′(f̂) = p′(f).

That is, f̃ − g is a p-extension of f. �

Corollary 3.8. Let X be a vector space, G be a subspace of X, and p
be a seminorm on X. Then, the following statements are equivalent:
a) Every non-zero f ∈ G∗

p has a unique p-extension of X.
b) For each f ∈ G∗

p\G⊥, there is a unique g ∈ X∗
p such that ĝ is a

p-extension of f̂ |G⊥⊥.
c) G⊥ is a p′-Chebyshev subspace of X∗

p .

Example 3.9. Let f be a linear functional on a real vector space
X. Then, p(x) = |f(x)| gives a seminorm on X. If f is nonzero and
dim(X) > 1, then p is seminorm that is not a norm. Now, let G1 = kerf
and G2 = X\kerf . Then, G1 is a subspace of X. For y ∈ G1, we have
f(y) = 0, and therefore for all x ∈ X\G1, x⊥pG1. Also, since for every
y ∈ G2, f(y) 6= 0, then,

inf αp(x + αy) ≤ |f(x) + (−f(x)
f(y)

)f(y)| = 0.

Therefore, for all x ∈ X\G2, x⊥pG2.

Example 3.10. The elements of X = L2 are the real Lebesgue mea-
surable functions f on [0, 1]. We can define a seminorm p on X by:

p(f) = {
∫ 1

0
|f(t)|2dt}

1
2 , f ∈ X.

It is clear that p is a seminorm on X and is not a norm. Now, we can
apply Theorem 3.7 and Theorem 3.6 to this example.
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