SOME RESULTS ON p-BEST APPROXIMATION IN VECTOR SPACES

H. MAZAHERI* AND S. M. MOSHTAGHIOUN

Communicated by Fereidoun Ghahramani

ABSTRACT. The purpose of this paper is to introduce and to discuss the concept of p-approximation and p-orthogonality in vector spaces, and to obtain some results on p- orthogonality in vector spaces similar to some well known results on the orthogonality in normed spaces. We also discuss the concept of p-extension of linear functionals on a vector space, and give a characterization of linear functionals on a subspace having a unique p-extension Hahn-Banach to the whole vector space.

1. Introduction

Here, all normed spaces under consideration are real. A seminorm is a function $p: X \to [0,\infty)$ such that $p(x+y) \leq p(x) + p(y)$ and $p(\alpha x) = |\alpha| p(x)$, for all $x,y \in X$ and $\alpha \in \mathbb{R}$. It is clear that for every seminorm p, p(0) = 0. Also, the seminorm p is a norm, if p(x) = 0 implies x = 0.

Many authors have introduced the concept of orthogonality in different ways (see [1-4], [6]). In [1], Birkhoff modified the concept of orthogonality. By his definition, if X is a normed linear space and $x, y \in X$, x is said to be orthogonal to y and is denoted by $x \perp y$ if and only if

MSC(2000): Primary: 46A55, 15A03; Secondary:41A52, 41A65.

Keywords: p-orthogonality, seminorm, p-best approximation, p-extension.

Received: 2 January 2008. Accepted: 23 July 2008.

^{*}Corresponding author

[©] 2008 Iranian Mathematical Society.

 $||x|| \le ||x + \alpha y||$, for all scalars α . Note that this orthogonality is not symmetric in general [2].

Let X be such a vector space, $x, y \in X$ and p be a fixed seminorm. We say that x is p-orthogonal to y if x = 0 or else,

$$p(x) \neq 0, \ p(x) = \inf_{\alpha} p(x + \alpha y),$$

in which case we write $x\perp^p y$. If M_1 and M_2 are subsets of X, then we say that M_1 is p-orthogonal to M_2 p if $g_1\perp^p g_2$, for all $g_1\in M_1$, $g_2\in M_2$. If M_1 is p-orthogonal to M_2 , then we write $M_1\perp^p M_2$.

First we state the following lemma of Hahn- Banach which is needed in the proof of the main results.

Lemma 1.1. [5] Let M be a subspace of a vector space X, p be a seminorm on X, and let f be a linear functional on M such that

$$|f(x)| \le p(x) \ (x \in M).$$

Then, f extends to a linear functional Λ on X which satisfies:

$$|\Lambda(x)| \le p(x) \ (x \in X).$$

Suppose p is a seminorm on X. For $x \in X$, let

$$M_x^p = \{ \Lambda: \ X \overset{linear}{\rightarrow} \mathbb{R}: \ \Lambda(x) = p(x), \ |\Lambda(z)| \leq p(z), \forall z \in X \}.$$

For $x \in X$, if we let $M = \langle x \rangle$ ($\langle x \rangle$ is the subspace of X generated by x) and define $f(\alpha x) = \alpha p(x)$, then by Lemma 1.1, the linear functional f extends to a linear functional $\Lambda \in M_x^p$. Therefore, M_x^p is nonempty.

Here, we are concerned with the concepts of p-best approximation and p-orthogonality in a vector space. The concept of approximation in normed linear spaces was defined by I. Singer [6].

2. Orthogonality in vector spaces

In this section, we state and prove our main results for vector spaces. Also, we obtain results related to p-orthogonality on vector spaces.

Theorem 2.1. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $x \in X \setminus G$ and $p(x) \neq 0$. Then, the following statements are equivalent: a) $x \perp^p G$. b) There is a linear functional Λ on X such that $\Lambda \in M^p{}_x$ and $\Lambda|_G = 0$.

Proof. $a) \Rightarrow b$). Suppose $x \perp^p G$. Consider $M = \langle x \rangle \bigoplus G$. We define a linear functional f on M by $f(\alpha x + y) = \alpha p(x)$, where $y \in G$ and $\alpha \in \mathbb{R}$. It is clear that f(y) = 0, for every $y \in G$, and f(x) = p(x). Now, suppose $z = \alpha x + y \in M$. Then,

$$|f(z)| = |f(\alpha x + y)|$$

$$= |\alpha|p(x)$$

$$\leq |\alpha|p(x + \frac{1}{\alpha}y)$$

$$= p(\alpha x + y)$$

$$= p(z).$$

From Lemma 1.1, there exists a linear functional Λ on X such that

$$\Lambda(x) = p(x), \ \Lambda|_G = 0, \ |\Lambda(z)| \le p(z) \ for \ all \ z \in X.$$

 $(b) \Rightarrow a$). Suppose that there exists a linear functional Λ on X such that $\Lambda \in M^P_x$ and $\Lambda|_G = 0$. For every $\alpha \in \mathbb{R}$ and $y \in G$, we have,

$$p(x + \alpha y) \ge |\Lambda(x + \alpha y)| = |\Lambda(x)| = p(x).$$

Therefore, $\inf_{\alpha} p(x + \alpha y) = p(x)$, and hence $x \perp^p y$. Thus, $x \perp^p G$. \square Now, we shall obtain from Theorem 2.1 various corollaries on *p*-orthogonality.

Corollary 2.2. Let X be a vector space, p be a seminorm on X and $x, y \in X$. If $x \perp^p y$, then $\langle x \rangle \cap \langle y \rangle = \{0\}$.

Corollary 2.3. Let X be a vector space, A be a nonempty subset of X, p be a seminorm on X such that $p(y) \neq 0$, for all $y \in A$ and $x \in X \setminus A > 0$. Then, the following two statements are equivalent: $a \mid A \perp^p x$.

b) For every $y \in A$, there exists a linear functional Λ on X with $\Lambda \in M_y^p$ and $\Lambda(x) = 0$.

Definition 2.4. Let X be a vector space and p be a seminorm on X. The element $x \in X$ is called a p-normal element if there exists only one linear functional Λ_x on X such that $\Lambda_x \in M_x^p$; i.e., M_x^p is a singleton.

Corollary 2.5. Let X be a vector space, G be a linear subspace of X, p be a seminorm on X and $p(x) \neq 0$. If $x \in X$ is a p-normal element associated with p on X, then the following statements are equivalent: a) $x \perp^p G$.

b) There exists a unique linear functional Λ on X such that $\Lambda \in M^p_x$ and $\Lambda|_G = 0$.

Let G be a subspace of the space X equipped with a seminorm p. Define,

$$\hat{G}_p = \{ x \in X : x \perp^p G \},$$

and

$$\check{G}_p = \{ x \in X : G \perp^p x \}.$$

Corollary 2.6. Let X be a vector space, G be a subspace of X and p be a seminorm on X. Then,

- a) $G \cap \hat{G}_p = \{0\}$
- $b) \ G \cap \breve{G}_p = \{0\}.$
- c) $\alpha x \in \hat{G}_p$, if $x \in \hat{G}_p$ and $\alpha \in \mathbb{R}$.
- d) $\alpha x \in \check{G}_p$, if $x \in \check{G}_p$ and $\alpha \in \mathbb{R}$.

Proof. The statements (c) and (d) are consequences of the definition of p-orthogonality. Suppose $x \in G \cap \hat{G}_p$ (resp. $x \in G \cap \check{G}_p$). Then, $x \perp G$ w.r.t. p (resp. $G \perp x$ w.r.t. p) and $x \in G$. Therefore, $x \perp^p x$, and form Corollary 2.2, x = 0.

3. p-Best approximation and linear functional

Here, we shall introduce and discuss the concept of p-extension of linear functionals on a vector space, and show that a linear functional on a subspace has a unique p-extension to the whole vector space if and only if G^{\perp} has some properties.

Let X be a vector space and p be a seminorm on X. A point $g_0 \in G$ is said to be a p-best approximation for $x \in X$ if and only if $p(x - g_0) \neq 0$ and for all $g \in G$, $p(x - g_0) \leq p(x - g)$. The set of all p-best approximations of $x \in X$ in G is denoted by $P_G^p(x)$. In other words,

$$P_G^p(x) = \{g_0 \in G : p(x - g_0) \neq 0, p(x - g_0) \leq p(x - g) \ \forall g \in G\}.$$

If $P_G^p(x)$ is non-empty for every $x \in X$, then G is called a p-proximinal set. The set G is p-Chebyshev if $P_G^p(x)$ is a singleton for every $x \in X$.

Theorem 3.1. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $g_0 \in G$, $x \in X \backslash G$ and $p(x - g_0) \neq 0$. Then, the following statements are equivalent:

a) $g_0 \in P_G^p(x)$

b) There exists a linear functional Λ on X such that $\Lambda \in M^p_{x-g_0}$ and $\Lambda|_G = 0$.

Proof. We know that $g_0 \in P_G^p(x)$ if and only if $x - g_0 \perp^p G$. Now, Apply Theorem 2.1.

Theorem 3.2. Let X be a vector space, p be a seminorm on X and G be a p-proximinal subspace of X. If G_p is a convex set, then G is p-Chebyshev.

Proof. If $x \in X$ and $g_1, g_2 \in P^p_G(x)$, then $x - g_1, x - g_2 \in \hat{G}_p$. Since \hat{G}_p is convex, then it follows that $\frac{1}{2}(g_1 - g_2) \in \hat{G}_p$. Since $\frac{1}{2}(g_1 - g_2) \in G$, then Lemma 2.6 shows that $g_1 = g_2$.

Theorem 3.3. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $g_0 \in G$, and $x \in X \setminus G$ $p(x - g_0) \neq 0$. Then,

$$g_0 \in P_G^p(x) \Leftrightarrow p((x-g_0)|_{G^\perp}) = p(x-g_0),$$

where,

 $p((x-g_0)|_{G^{\perp}}) = \sup\{|\Lambda(x-g_0)|: \Lambda \in G^{\perp}, |\Lambda(z)| \leq p(z), \forall z \in X\},$ and the annihilator of G is the set,

$$G^{\perp} = \{ f : X \stackrel{linear}{\rightarrow} \mathbf{R} : f(x) = 0 \text{ for all } x \in G \}.$$

Proof. Let $g_0 \in P_G^p(x)$. It follows from $p(x - g_0) \neq 0$ and Theorem 3.1 that there exists a linear functional Λ on X such that for all $z \in X$, $|\Lambda(z)| \leq p(z)$, $\Lambda(x - g_0) = p(x - g_0)$ and $\Lambda|_G = 0$. Therefore, $p(x - g_0) = |\Lambda(x - g_0)| \leq p((x - g_0)|_{G^{\perp}})$. Now, suppose $\Lambda \in G^{\perp}$ and $|\Lambda(z)| \leq p(z)$ for all $z \in X$. Then, $|\Lambda(x - g_0)| \leq p(x - g_0)$, and thus $p((x - g_0)|_{G^{\perp}}) \leq p(x - g_0)$.

Conversely, suppose $p((x-g_0)|_{G^{\perp}}) = p(x-g_0)$. Since $p((x-g)|_{G^{\perp}}) \le$ p(x-g), then similarly we have,

$$p(x - g_0) = p((x - g_0)|_{G^{\perp}})$$

= $p((x - g)|_{G^{\perp}})$
 $\leq p(x - g).$

That is, $g_0 \in P_G^p(x)$.

Let X be a vector space and p be a seminorm on X. The dual space of X with respect to p is denoted by:

$$X_p^* = \{\Lambda: X \stackrel{linear}{\rightarrow} \mathbf{R}: p'(\Lambda) < \infty\},$$

where,

$$p'(\Lambda) = \sup\{|\Lambda(x)| : p(x) \le 1, x \in X\}.$$

It is clear that p' is a seminorm on X_p^* . Similarly, we can define p'' on

 X_p^{**} and p''' on X_p^{***} (see [5]). It is clear that if X is a vector, p is a seminorm on X, $\Lambda \in X_p^*$, $x \in X$ and $p(x) \neq 0$, then,

$$p(x) = \sup\{|\Lambda(x)|: p'(\Lambda) \le 1, \ \Lambda \in X_p^*\}.$$

Lemma 3.4. Let X be a vector space, and p be a seminorm on X. For each $x \in X$, define the linear functional \widehat{x} on X_p^* by $\widehat{x}(\varphi) = \varphi(x)$, for $\varphi \in X_p^*$. Then, for all $x \in X$,

$$p''(\widehat{x}) = p(x).$$

Proof. We have,

$$p''(\widehat{x}) = \sup\{|\widehat{x}(\varphi)| : p'(\varphi) \le 1, \ \varphi \in X_p^*\}$$
$$= \sup\{|\varphi(x)| : p'(\varphi) \le 1, \ \varphi \in X_p^*\}$$
$$= p(x).$$

Definition 3.5. Let X be a vector space, p be a seminorm on $X, \Lambda \in$ X_p^* and G be a subspace of X. Λ is called a p-extension of the linear functional $f: G \longrightarrow \mathbf{R}$, if $\Lambda|_G = f$ and $p'(\Lambda) = p'(f)$. $p'(\Lambda)$ and p'(f)are computed relative to the domains of Λ and f, explicitly as:

$$p'(\Lambda) = \sup\{|\Lambda(x)|: \ p(x) \le 1, \ x \in X\}$$

and

$$p'(f) = \sup\{|f(x)|: p(x) \le 1, x \in G\}.$$

Theorem 3.6. Let X be a vector space, G be a subspace of X, p be a seminorm on X and $f \in X_p^* \backslash G^{\perp}$. Then, there is an one-to-one correspondence between the set $P_{G^{\perp}}^{p'}(f)$ and the set of all $g \in X_p^*$ such that \widehat{g} is a p-extension of $\widehat{f}|_{G^{\perp\perp}}$, given by $g \mapsto f - g$.

Proof. If $g \in P_{G^{\perp}}^{p'}(f)$, then it is clear that $\widehat{f}|_{G^{\perp \perp}} = \widehat{f-g}|_{G^{\perp \perp}}$, and from Theorem 3.2 and Corollary 3.4 we have,

$$p'''(\widehat{f-g}) = p'(f-g)$$

$$= p'((f-g)|_{G^{\perp\perp}})$$

$$= p'''((\widehat{f-g})|_{G^{\perp\perp}})$$

$$= p'''(\widehat{f}|_{G^{\perp\perp}}).$$

Therefore, $\widehat{f-g}$ is a p-extension of $\widehat{f}|_{G^{\perp\perp}}$. We show that this map is onto. Suppose \widehat{h} is a p-extension of $\widehat{f}|_{G^{\perp\perp}}$. Let g=f-h. We show that $g\in P_{G^{\perp}}^{p'}(f)$. For this, since $\widehat{f-g}$ is a p-extension of $\widehat{f}|_{G^{\perp\perp}}$, then $\widehat{f}|_{G^{\perp\perp}}=\widehat{f-g}|_{G^{\perp\perp}}$ and $p'''(\widehat{f}|_{G^{\perp\perp}})=p'''(\widehat{f-g})$. Now, we have,

$$p'((f-g)|_{G^{\perp\perp}}) = p'''(\widehat{f-g})|_{G^{\perp\perp}})$$

$$= p'''(\widehat{f}|_{G^{\perp\perp}})$$

$$= p'''(\widehat{f-g})$$

$$= p'(f-g).$$

Therefore, by Theorem 3.2, $g \in P^{p'}_{G^{\perp}}(f)$.

Theorem 3.7. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $f \in G_p^*$ and let $\widetilde{f} \in X_p^*$ be a p-extension of f. Then, there is a one-to-one correspondence between the set of all p-extensions of f to X and the set $P_{G^{\perp}}^{p'}(\widetilde{f})$, given by $g \longrightarrow \widetilde{f} - g$.

Proof. Suppose $g \in X_p^*$ is a p-extension of f. Then, $g|_G = f$ and p'(f) = p'(g). For all $\varphi \in G^{\perp \perp}$,

$$\widehat{g}(\varphi) = \varphi(g) = \varphi(\widetilde{f}) = \widehat{\widetilde{f}}(\varphi),$$

since $g|_G = \widetilde{f}|_G$. Also $\widetilde{f}|_G = f$, and thus $\widehat{\widetilde{f}}|_{G^{\perp\perp}} = \widehat{f}$ and

$$p'''(\widehat{g}) = p'(g) = p'(f) = p'''(\widehat{f}) = p'''(\widehat{\widetilde{f}}|_{G^{\perp\perp}}).$$

So by Theorem 3.6, $\widetilde{f} - g \in P_{G^{\perp}}^{p'}(\widetilde{f})$.

Now, suppose that $g \in P_{G^{\perp}}^{p'}(\widetilde{f})$. Then, $\widehat{\widetilde{f}-g}$ is a p-extension of $\widehat{\widetilde{f}}|_{G^{\perp\perp}}$. We know,

$$(\widetilde{f} - g)(x) = f(x),$$

for all $x \in G$, and

$$p'(\widetilde{f}-g)=p'''(\widehat{\widetilde{f}}-g)=p'''(\widehat{\widetilde{f}}|_{G^{\perp\perp}})=p'''(\widehat{f})=p'(f).$$

That is, $\widetilde{f} - g$ is a *p*-extension of f.

Corollary 3.8. Let X be a vector space, G be a subspace of X, and p be a seminorm on X. Then, the following statements are equivalent:

- a) Every non-zero $f \in G_p^*$ has a unique p-extension of X.
- b) For each $f \in G_p^* \backslash G^{\perp}$, there is a unique $g \in X_p^*$ such that \widehat{g} is a p-extension of $\widehat{f}|_{G^{\perp \perp}}$.
- c) G^{\perp} is a p'-Chebyshev subspace of X_p^* .

Example 3.9. Let f be a linear functional on a real vector space X. Then, p(x) = |f(x)| gives a seminorm on X. If f is nonzero and dim(X) > 1, then p is seminorm that is not a norm. Now, let $G_1 = kerf$ and $G_2 = X \setminus kerf$. Then, G_1 is a subspace of X. For $y \in G_1$, we have f(y) = 0, and therefore for all $x \in X \setminus G_1$, $x \perp^p G_1$. Also, since for every $y \in G_2$, $f(y) \neq 0$, then,

$$\inf_{\alpha} p(x + \alpha y) \le |f(x) + (-\frac{f(x)}{f(y)})f(y)| = 0.$$

Therefore, for all $x \in X \backslash G_2$, $x \perp^p G_2$.

Example 3.10. The elements of $X = L^2$ are the real Lebesgue measurable functions f on [0,1]. We can define a seminorm p on X by:

$$p(f) = \{ \int_0^1 |f(t)|^2 dt \}^{\frac{1}{2}}, \ f \in X.$$

It is clear that p is a seminorm on X and is not a norm. Now, we can apply Theorem 3.7 and Theorem 3.6 to this example.

Acknowledgments

The authors thank the research council of Yazd University for their financial support.

References

- [1] G.C. Birkhoff, Orthogonality in linear metric space, *Duke Math. J.* 1 (1935) 169-172.
- [2] J. Chmielinski, Remarks on orthogonality preserving mapping in normed spaces and some stability problems, *Banach J. Math. Anal.* **1** (1) (2007) 117-124.
- [3] R.C. James, Orthogonality and linear functionals in normed linear spaces, *Trans. Amer. Math. Soc.*, **61** (1947) 265-292.
- [4] H. Mazaheri, F.M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, *Nonlinear Analysis.* **65** (3) (2006) 534–537.
- [5] W. Rudin, Functional analysis, Springer, New York, 1973.
- [6] I. Singer, Best approximation in normal linear spaces by elements of linear subspaces, Springer, New York, 1970.

H. Mazaheri and S. M. Moshtaghioun

Department of Mathematics, University of Yazd, P.O. Box 89195-741, Yazd, Iran

Email: hmazaheri@yazduni.ac.ir Email: moshtagh@yazduni.ac.ir