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ABSTRACT. In this paper, we give the notions of crossed polymod-

ule and cat!-polygroup as a generalization of Loday’s definition.
Then, we define the pullback cat®-polygroup and we obtain some
results in this respect. Specially, we prove that by a pullback cat’-
polygroup we can obtain a cat!-group.
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1. Introduction

Crossed module was presented by Whitehead in [24]. So many appli-
cations of crossed module have been made by mathematicians. A very
important application of crossed module is cat!-group structure. Loday
showed that the category of crossed module is equivalent to the cate-
gory of catl-group in [21]. This application gave the new direction to
crossed module. So many applications of cat!-groups have been found
by several mathematicians. After defining cat!-group structure math-
ematicians have tried to study these categories. Important calculation
examples of these categories were given by Brown and Wensley in [6] and
[7]. The other important application of crossed module is defining pull-
back crossed module. Pullback crossed module was defined by Brown
and Wensley in [6] and [7]. They gave many examples and applications of
pullback crossed module in their work. Other cat!-groups application is
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Pullback cat!-group which was defined by Alp using the equivalence be-
tween the category of crossed module and the category of cat!-groups in
[2]. GAP [17] program calculations of these categories were presented by
Alp and Wensley in [3]. Crossed polymodule and its application deriva-
tion and actor crossed module were presented by Alp and Davvaz. In
this paper, we use the same idea to define cat!-polygroups and pullback
cat!-polygroups in Loday and Alp’s way. We study the connections be-
tween crossed polymodules and cat!-polygroups. We present some basic
definitions and results of polygroups and crossed polymodules in Sec-
tion 2. In Section 3, we give the definition of cat!'-polygroup and some
properties of cat!-polygroups. In the last section, we define the concept
of pullback cat!-polygroup and we obtain some results in this respect.
Specially, we prove that by a pullback cat!-polygroup we can obtain a
catl—group.

2. Polygroups and crossed polymodules

The polygroup theory is a natural generalization of the group theory.
In a group the composition of two elements is an element, while in a poly-
group the composition of two elements is a set. Polygroups have been ap-
plied in many areas, such as geometry, lattice theory, combinatorics and
color schemes. There exists a rich bibliography: publications appeared
within 2012 can be found in “Polygroup Theory and Related Systems”
by Davvaz [12]. This book contains the principal definitions endowed
with examples and the basic results of the theory. Applications of hyper-
groups appear in special subclasses like polygroups that they were stud-
ied by Comer [8], also see [12, 13, 14]. Specially, Comer and Davvaz de-
veloped the algebraic theory for polygroups. A polygroup is a completely
regular, reversible in itself multigroup. We recall the following definition
from [8]. A polygroup is a multi-valued system M =< P,o,e,( )~! >,
withe € P, ()': P — P, o: P x P — P*(P), where the follow-
ing axioms hold for all z,y,z in P: (1) (xoy)oz = zo(yoz), (2)
ecor =x0e=u1x,(3) x €yozimpliesy € zoz ! and 2 € yLoux.
In this definition, P*(P) is the set of all non-empty subsets of P, and if
x € P and A, B are non-empty subsets of P, then AoB= |J aob,

acAbeB
zoB = {z}oB and Aox = Ao{z}. The following elementary facts about
polygroups follow easily from the axioms: e € zoz !Nz lox, et =¢

and (z71)7! = 2. In the rest of this section we present the facts about
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polygroups that underlie the subsequent material. For further discus-
sion of polygroups, we refer the readers to Davvaz’s book [12]. Many
important examples of polygroups are collected in [12] such as Double
coset algebra, Prenowitz algebras, Conjugacy class polygroups, Char-
acter polygroups, Extension of polygroups, and Chromatic polygroups.
Clearly, every group is a polygroup. If K is a non-empty subset of P,
then K is called a subpolygroup of P if e € K and < K,o,e,( )~! >
is a polygroup. The subpolygroup N of P is said to be normal in P if
a'oNoaC N, for every a € P. There are several kinds of homomor-
phisms between polygroups [12]. In this paper, we apply only the notion
of strong homomorphism. Let < P,o,e,( )™' > and < P',x,e,( )~ ! >
be two polygroups. A mapping ¢ from P into P’ is said to be a strong
homomorphism if ¢(e) = e and for all a,b € P, ¢(aob) = ¢(a) * ¢(b), for
all a,b € P. A strong homomorphism ¢ is said to be an isomorphism if ¢
is one to one and onto. Two polygroups P and P’ are said to be isomor-
phic if there is an isomorphism from P to P’. The defining condition for
a strong homomorphism is also valid for sets, i.e., if A, B are non-empty
subsets of P, then it follows that f(A o B) = f(A) x f(B). By using
the concept of generalized permutation, in [10], Davvaz defined permu-
tation polygroups and action of a polygroup on a set. For the definition
of crossed polymodule, we need the notion of polygroup action.

Definition 2.1. [10] Let P =< P,o,e,( )~! > be a polygroup and
be a non-empty set. A map « : P x Q — P*(2), where a(g,w) := 9w is
called a (left) polygroup action on Q if the following axioms hold:

(1) ‘w=w,
(2) "(9w) = "9, where A= |J 9a and Bw= {J bw, for all

a€A beB
ACQand BCP,
(3) U =9,
wes
(4) forallge P,ac 9%b=be 9 a.

Example 2.2. Suppose that < P,o,e, ( )~! > is a polygroup. Then, P
acts on itself by conjugation. Indeed, if we consider the map a: PxX P —
P*(P) by a(g,z) = 9z :=gowxog !, then

1) ‘z=z,
(2) "(92) = M(gowog™") = hogowog~toh™! = (hog)owo(hog) ™! =
U (pozod™)= U ‘o= "9z,
behog behog
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3) U 92=U goxog ' =P,
TeP reP
(4) ifa € 9 =gobog! theng € aogob ! and hence b=! €
1 i

g toa"'og. This implies that b€ g loaog.

Note that the above definition is a generalization of the group action.
Let G be a group and 2 be a non-empty set. A (left) group action is a
binary operator from G x € to €2 that satisfies the following two axioms:
9hyy = 9( Pw) and Cw = w, for all g,h € G and w € Q. Now, we present
the notion of crossed polymodule and main results about fundamental
relation on polygroups and fundamental crossed polymodule..

Definition 2.3. A crossed polymodule X = (C, P, 0, «) consists of poly-
groups < C,*,e,( )”™' > and < P,o,e,( )~! > together with a strong
homomorphism 0 : C' — P and a (left) action o : P x C' — P*(C) on
C, satisfying the conditions:

(1) O(Pc)=pod(c)op~t forallc€ C and p € P,

(2) ¢ =cxd xct forall e, d € C.

When we wish to emphasize the codomain P, we call X a crossed
P-polymodule. The strong homomorphism 9 : C — P is called the
boundary homomorphism.

Example 2.4. A conjugation crossed polymodule is an inclusion of a
normal subpolygroup N of P, with action given by conjugation. In
particular, for any polygroup P the identity map Idp : P — P is a
crossed polymodule with the action of P on itself by conjugation. Indeed,
there are two canonical ways in which a polygroup P may be regarded
as a crossed polymodule: via the identity map or via the inclusion of
the trivial subpolygroup.

Example 2.5. If C' is a P-polymodule, then there is a well defined
action a of P on C. This together with the zero homomorphism yields
a crossed polymodule (C, P, 0, «).

Example 2.6. The direct product of X1 x X5 of two crossed polymodules
has source C1 x Cs, range P; X P> and boundary homomorphism 9; x 0
with P, x P, acting obviously on C7 x Cb.

Note that the above definition is a generalization of the notion of
crossed module. We recall that a crossed module X = (M, G, 0,T) con-
sists of groups M and G together with a homomorphism 9 : M — G
and a (left) action 7 : G x M — M on M, satisfying the conditions:
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A(9m) = gd(m)g~', forallm e M, g € G, and 2™m’ = mm/m~1, for
all m,m’ € M.

Theorem 2.7. FEvery crossed module is a crossed polymodule.

Proof. Since every group is a polygroup, the proof is straightforward. [

Definition 2.8. Let X = (C,P,0,a) be a crossed polymodule and
t: @ — P be a morphism of polygroups. Then (*X = (:*C, Q, 0%, a®) is
the pullback of X by ¢, where :*C' = {(q,¢) € @ x C | t(q) = 9(c)} and
0°(q, c) = q. The polygroup action of Q on (*C' is given by

Yqr,¢) = {(z,y) | (z,9) € (qoqioqg ', ")}
o u— C
o° 0
Q - P

Theorem 2.9. ,*X = (.°C,Q, 0%, a®) is a crossed polymodule.

Proof. The verification of crossed polymodule axioms is similar to the
crossed module axioms in [6]. O

Let < P,o,e, ()~ > be a polygroup. We define the relation 3} as the
smallest equivalence relation on P such that the quotient P/3%, the set
of all equivalence classes, is a group. In this case 5 is called the fun-
damental equivalence relation on P and P/} is called the fundamental
group. The product ® in P/B} is defined as follows: 5 (z) © Bp(y) =
Bp(z), for all z € fp(x) o B*(y). This relation is introduced by Koskas
[18] and studied mainly by Corsini [9], Leoreanu-Fotea et al. [19, 20] and
Freni [15, 16] concerning hypergroups, Vougiouklis [23] for H,-groups,
Davvaz for polygroups [11, 22|, and many others. We consider the rela-
tion Bp as follows:

n
x Bpy & there exist z1, ...z, such that {z,y} C [] 2.
i=1
Freni in [15] proved that for hypergroups 8 = §*. Since polygroups
are certain subclass of hypergroups, we have 55 = Bp. The kernel of the
canonical map ¢p : P — P/B} is called the core of P and is denoted
by wp. Here we denote by wp the unit of P/S}. It is easy to prove
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the following statements: wp = B5(e) and Bp(z)~! = Bp(x™1), for all
x € P.

Lemma 2.10. [9] wp is a subpolygroup of P.

Lemma 2.11. [1] Let wp, wg and wpxq be the cores of P, Q and PxQ,
respectively. Then, wpyxg = wp X wq.

Throughout the paper, for the polygroupos < P,o,e,( )7! >, <
C,%x,e,( )7t > and < Q,-,e,( )~ >, we denote the binary operations
of the fundamental groups P/Bp, C/3¢ and Q/ﬁ(’:? by ®, ® and @,
respectively.

Proposition 2.12. [4] Let < C,%,e,( )~! > and < P,o,e,( )~! > be
two polygroups and let J : C — P be a strong homomorphism. Then, O
induces a group homomorphism D : C/BE — P[P} by setting

D(Bg(c)) = Bp(0(c)), for all c € C.

We say the action of P on C'is productive, if for all c € C and p € P
there exist cq1,...,¢, in C such that Pc=cy x...*c,.

Example 2.13. The action defined in Example 2.2 is productive.

Let < C,%,e,()~! >and < P,o,e,( )~! > be two polygroups and let
a: P x C — P*(C) be a productive action on C. We define the map
Y P/Bp x P/BE — P*(P/BE) as follows:

Y(Bp(p), be(c)) ={B5(x) |z U “y}

y € B&(e)
z € Bp(p)

By definition of 3¢, since the action of P on C is productive, we conclude
that ¥(8p(p), B¢ (c) is singleton, i.e., we have

P P/B;; X P/Bg — P/ﬁg,
G(BH(p), Bol0) = B(a), forallze U 7y,
veRey
We denote (85 (p), 85 (c) = PP@] [8g(0)].

Proposition 2.14. [4] Let < C,x,e,( )™' > and < P,o,e,( )~! > be
two polygroups and let o : P x C' — P*(C) be a productive action on C.
Then, v is an action of the group P/B} on the group P/B..
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Theorem 2.15. [4] Let X = (C, P,0,a) be a crosed polymodule such
that the action of P on C is productive. Then, Xg« = (C/B¢, P/Bp, D, 1)
is a crossed module.

3. Cat'-polygroups

Cat!-groups are the first in a series of models for homotopy n-types in-
troduced by Loday. According to [21], Loday’s definition of a cat!-group
consists of groups G and S, an embedding k : S — G and epimorphisms
t,h : G — S satisfying (1) tk = hk = Idg, (2) [kert,kerh] = {1g}.
Now, we give a generalization of Loday’s definition. First, we need
the following definition of the kernel homomorphism of polygroups. Let
< P,o,e,()7! >and < C,x,e,()~! > be two polygroups and ¢ : P — C
be a strong homomorphism. The core-kernel of ¢ is defined by

ker*¢ ={x € P | ¢(x) € we}.

Definition 3.1. A cat!-polygroup C = (k;t,h : P — C) consists of
polygroups P and C, two strong epimorphisms ¢,h : P — C and an
embedding k : C — P satisfying

CAT-P-1: tk=hk=Idc,
CAT-P-2: |[z,y] Cwp,Vx € ker*t,Yy € ker*h,

where [z,y] = {2z | z€zoyoxtoy 1}
The maps t, h are called the source and target.

Lemma 3.2. Condition CAT-P-2 is equivalent to, for all z,y € P,
52, B (0] = wp = Lpy,,

Proof. [x,y] C wp iff zoyox~toy™! Cwp iff B (zoyorTloy™t) = wp iff
Bp(x) @ Bp(y) @ Bp(z™") @ Bp(y ") = wp iff Bp(x) @ Bp(y) @ fp(2) 7' ®
Bp(y) " = wp. O

Theorem 3.3. A cat'-group is a cat'-polygroup.

Proof. If P and C are groups, then wp = {e}, ker*t = kert and ker*h =
kerh. O

Theorem 3.4. If X = (C, P, 0, ) is a crossed polymodule, then (k;t,h :
Plgy, x C/gs, — P/pz) is a catt-group.
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Proof. According to Theorem 2.15, we know (C/gs, P/, D,1) is a
crossed module. Now, we can consider

P/g; ¥ Cfs, == P/s,
AL /
k

where

h(Bp(p), B&:(e)) = D(BE(e) © Bh(p),

t(Bp(p), Be:(c)) = Bp(p),

k(Bp(p)) = (Bp(p), we).
Then

hlP/ﬁ}g :t|P/5}; :IdP

and [kerh, kert] = 1P/ e xC/ g - Therefore we obtain a cat!-group. [
P c

Lemma 3.5. For a cat'-polygroup C = (k;t,h : P — O,
P//B;; = kert* x C/,Bg,

where t* : Plge — C/ge, t"(Bp(p)) = Be(tp)) and k* : C/p:, —
P/gy, k*(Be(c) = Bp(k(c))

Proof. We define f: P/gy — kert* x C/gs by

f(Bp(p)) = (K"t (Bp(p)) ® Bp(p), t"(Bp(p)))
and g : kert” x C/g:, — P/gs by

9(Bp(p), Be(c)) = K (Bp(p)) ® Be(c))-

It is not difficult to see that f, g are homomorphisms and f is the inverse
of g. O

Note that in the previous lemma, since kert* < P/g. and k*(C/g;,) <
P/, there is an action of k*(C/p:,) on kert® by conjugation. Hence,
the semi-direct product kert* x C/gs is defined.

Theorem 3.6. IfC = (k;t,h : P — C) a cat*-polygroup, then by putting

S = kert* and D = hrk L We obtain a crossed module.
er
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Proof. The action of C'/ gz on S is conjugation in P/, Now, if Bp(z) €
kert* and B (y) € kerh*, then

Bp(x) = (we, Bp(a)), Bpy) = (D(BH(1)), Bp(b7)),
for all B8} (a), Bp(b) € S. Thus,
Bp(x) © Bp(y) = (we, Bp(a)) © (D(BH(D)), Bp(b™1))
= (D(Bp(1)), PPPOD 1 (a) © Bp(b7))

Bp(y) © Bp(x) = (D(Bp(1)), Bp(b~1)) © (we, Bp(a))
= (D(Bp(D)), " Bp(b~") © Bp(a))
= (D(Bp(1)), Bp(b~") © Bp(a))
Thus, the equality 8p(z) © Bp(y) = Bp(y) © Bp(x) is equivalent to
PO 5 (a) = Fp() © Gpla) © B50). =

Corollary 3.7. The following diagram shows all the results obtained
and thus gives their relations.

Inc

Cat! — groups Cat! — polygroups

Yp*

1R

Crossed modules

Crossed polymodules

4. Pullback cat!'-polygroups

In this section, we define the pullback cat'-polygroup and we obtain
some results in this respect. Specially, we prove that by a pullback
cat!-polygroup we can obtain a cat!-group.
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Definition 4.1. A pullback cat!-polygroup is defined as follows.

k,..
. )
L** P h Q
k;.' t.. T 4
k
Q P C
k t

C

Let C = (k;t,h : P — C) be a cat!-polygroup and let + : Q — C be a
strong homomorphism. Define 1**C = (k**;t**, h*® : ,**P — @) to be
the pullback of P, where

(**P ={(q1,p,2) € Q Xx P xQ | t(q1) =t(p), t(q2) = h(p)},

t**(q1,p,q2) = @1, h**(q1,p,@2) = q2 and k**(q) = (g, ku(q), q). Mul-
tiplication in ¢**P is componentwise. The pair (m,¢) is a morphism of
cat!-polygroups, where 7 : 1**P — P, (q1,p, q2) — p.

Theorem 4.2. By a pullback cat'-polygroup, we have a cat'-polygroup.

Proof. We verify the cat!-polygroup axioms. For the first axiom, we
have

t*°k**(q) = t**(q, ke(q),9) = ¢,

h**k**(q) = h**(q, ki(q),q) = ¢

Thus, t**k*® = h**k*® = Idg and CAT-P-1 is satisfied.

In order to prove the second condition, suppose that = = (¢},p1,¢1) €
ker* t**, y = (g2, p2,¢5) € ker™ h*®. Then, t**(¢},p1,q1) = ¢} € wg and
h**(g2,p2,q5) = ¢5 € wg. By Lemma 2.10, wq is a subpolygroup of Q.
We show that it is also normal. Suppose that b € Q and a € wq are
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arbitrary. For each z € b-a-b~!, we have
By(z) = B5(b) @ By(a )®5*( )
:/BQ(b)®wQ®BQ( b
= ﬁ(fg(y) © /BQ( D)
= Bpb-b71)
= BQ(B)

So, z € wg. Therefore, we conclude that

—1 _ _ —_—

¢-q@-di ¢ Cwoand qi-gheqr gy Cwg.
On the other hand, by the definition of (*®, we obtain
u(q1) = t(p1) € t(wg) and t(gh) = h(p2) € t(wg)-
Now, we show that «(wg) C we. Since e € wg, tle) € we. Now,
suppose that there exists a € wg such that ¢(a) € we. Since a,e € wg,
B&(e(a)) # we. On the other hand, «(e) = e € we and so 5 (i(e)) = we-
Thus, B¢ (c(e)) # B¢ (e(a)). This implies that o*(85(e)) # v*(B(a)),
which is a contradiction. Hence, t(p1) € we and h(p2) € we. Thus,
p1 € ker*t and py € ker*h.

Now, we have
[z,y] =20yEHz 0yt
={gpd)laed @-d ' pelpLpl, d€q-dh-a' g}
Cwg X wg X wq.
Therefore, CAT-P-2 is also satisfied. O
Theorem 4.3. If *X is the pullback of the crossed polymodule X

over ¢ : Q — P and if A, B are the cat!-groups obtained from X, /*X
respectively, then B & /** A.

Proof.
°C C *C/Bc C/be
o° 1o} D* D
Q——F—P o P/B}
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Starting with the pullback crossed polymodule :*X = (:*,Q, 0%, a®),
where 0° : .*C' — Q), the source polygroup of B is defined as the semi-
direct product Q/Bg x 1*C/Bsc-

Q8% % 1°C/Bc

P/pp x C/BE

t®|| h® t|| h

Q/Pq = P/By
The target, source and embedding of B are respectively given by
t*(85(d). Biec(a,c)) = By(d),
he(B5(d), Biec(a,0))  =D*(Blec(q:0)) @ B(d')
= Bp(a) @ By(d')
= B5(q-4),

k*(Bo(a)) = (Bo(a), weec)-
We then define an isomorphism of cat!-groups (\, Id) : B — 1** A,

Q/B5  1*C/Bc

W (P/Bp % C/ B¢

k® t®l he to®|| hee kee

Q/B - Q/8%
where

N(Bo(a). Bicla:0)) = (o), (B5d)). B2e)). Bola- )
First note that A(85(¢'), Bjac) € 1**(P/Bp x C/B¢:) because

t(Bp(ed), B&(c)) = Bp(u(d) = " (Bo(d)
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We verify that A is a homomorphism as follows:

A(Ba(ah): Bracar, e0) (B (ah), B ez, c2) )
= (85(at - ). (Bl - a1 2D 50 Bl - )

and

A(B5(@), Bclar e) ) A(85(as), Bivc: (a2, c2)
= (Bo (a0 (Bp((a), B (en), Bolar - 41) ) (8o (ab), (B (1)), B (e2)).

6&5(q2~qé))
= (Bo(ar) @ Blaz), (Bp(elah)): Ber)) - (Bplulas), Bz (e)), Bla - @)
®65(Q2-Q§))
(5Q<q1 a2), (B (), B(en) - (1 (B (ah)): B (e2)),
Q1 Qa2 %)
=(5Q<q1-q2> (=B o (By(ar), P Digz(e)] @ B(ea))
)

5@ a1 q a2 g

The inverse of A is given by

(B, (B ), 8:(0)) Bopla2)) = (Baar), Bolar - a2), Be(©)).
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Then,
N850, Brola. ) =12 (8(0), (Bp(a), B, Byl )

N (B5(@) = (B, (wowo))
= (Bo(a). (@ (By(@)we), By(a)
= k" (85(a)).

Therefore, the diagram commutes. U
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