ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 40 (2014), No. 4, pp. 931–940

Title:

Reversibility of a module with respect to the bifunctors Hom and Rej

Author(s):

Y. Tolooei and M. R. Vedadi

Published by Iranian Mathematical Society http://bims.ims.ir

REVERSIBILITY OF A MODULE WITH RESPECT TO THE BIFUNCTORS HOM AND REJ

Y. TOLOOEI AND M. R. VEDADI*

(Communicated by Omid Ali S. Karamzadeh)

ABSTRACT. Let M_R be a non-zero module and $\mathcal{F}: \sigma[M_R] \times \sigma[M_R] \to \operatorname{Mod-}\mathbb{Z}$ a bifunctor. The \mathcal{F} -reversibility of M is defined by $\mathcal{F}(X,Y) = 0 \Rightarrow \mathcal{F}(Y,X) = 0$ for all non-zero X,Y in $\sigma[M_R]$. Hom (resp. Rej)-reversibility of M is characterized in different ways. Among other things, it is shown that R_R ($_RR$) is Hom-reversible if and only if $R = \bigoplus_{i=1}^n R_i$ such that each R_i is a perfect ring with a unique simple module (up to isomorphism). In particular, for a duo ring, the concepts of perfectness and Hom-reversibility coincide.

Keywords: Co-retractable, Kasch module, perfect ring, prime module, cogenerator.

MSC(2010):Primary: 16D60, Secondary: 16L30; 16D10.

1. Introduction and Preliminaries

Throughout this paper rings will have non-zero identity elements and modules will be unitary. Unless stated otherwise modules will be right modules. Let R be a ring, M a non-zero R-module, \mathcal{F} : $\sigma[M_R] \times \sigma[M_R] \to \text{Mod-}\mathbb{Z}$ a bifunctor and $\emptyset \neq \mathcal{C}, \mathcal{D} \subseteq \sigma[M_R]$, where $\sigma[M_R]$ is the full subcategory of R-modules whose objects are all R-modules subgenerated by M. We say that M_R is \mathcal{CD} - \mathcal{F} -reversible if for all $C \in \mathcal{C}$, $D \in \mathcal{D}$, $\mathcal{F}(C, D) = 0$ implies $\mathcal{F}(D, C) = 0$. If for $\mathcal{C} = \mathcal{D} = \sigma[M_R]$ the above condition holds, we say that M_R is F-reversible. There are several concepts that may be stated in terms of the notion of reversibility.

Article electronically published on August 23, 2014.

³⁰ November 2012, Accepted: 18 July 2013.

^{*}Corresponding author.

For instance, M_R is *prime* in the sense of Bican [6] (i.e., Rej(M, N) = 0for all nonzero submodules N of M) if and only if M_R is \mathcal{CD} -Rejreversible for $\mathcal{C} = \{\text{all non-zero submodules of } M_R\}, \mathcal{D} = \{M_R\}.$ Here $\operatorname{Rej}(C,D) = \bigcap_{f:C\to D} \ker f$. Also a module M_R is fully Kasch in the sense of Albu and Wisbauer [2] if and only if M_R is \mathcal{CD} -Hom-reversible for $\mathcal{C} = \{\text{all simple } R\text{-modules in } \sigma[M_R]\}$ and $\mathcal{D} = \{\text{cyclic modules in } \sigma[M_R]\}$ $\sigma[M_R]$. Note that if S is a simple module in $\sigma[M_R]$, then $S \simeq N/K$ for some cyclic submodule $N \leq M^{(\Lambda)}$; see also [5]. The conditions retractable [9], co-retractable [1, 2.13], [7] and weak generator [11] can also be stated by \mathcal{CD} - \mathcal{F} -reversibility by choosing suitable \mathcal{C}, \mathcal{D} and $\mathcal{F} =$ Hom. These observations motivated us to consider questions, such as: "what are \mathcal{F} -reversible modules when \mathcal{F} is Hom or Rej?". In this paper, we answer these questions and show first that Hom-reversible modules with semiprime endomorphism rings are precisely semisimple modules [Theorem 2.4]. Then, Hom (resp. Rej)-reversible modules are characterized in several ways in Theorem 2.8 (resp. Theorem 2.14). In particular, it is proved that a duo ring R is perfect if and only if the module R_R is Hom-reversible [Theorem 2.10]. We use the notations $N \leq M$ and $N \leq_e M$ to denote respectively that N is a fully invariant and essential submodule of M. We follow [4] and [12] for the terms not defined here, and for the basic results on module and ring theory that are relevant to this work.

2. Main results

We begin with some definitions and lemmas. A non-zero R-module M is called:

- Kasch if any simple module in $\sigma[M_R]$ can be embedded in M_R [2].
- retractable if $\operatorname{Hom}_R(M,N) \neq 0$ for any non-zero submodule N of M_R [9].
- co-retractable if $\operatorname{Hom}_R(M/N, M) \neq 0$ for any proper submodule N of M_R [1].

In [2], a module M_R is called fully Kasch if all modules in $\sigma[M_R]$ are Kasch. We say that M_R is fully retractable (resp. fully co-retractable) if all modules in $\sigma[M_R]$ are retractable (resp. co-retractable). Also we call M_R , fully max if any non-zero module in $\sigma[M_R]$ has a maximal submodule. In [3], ring R for which the module R_R is fully co-retractable was studied where the authors used the term completely co-retractable for such rings. It is easy to verify that all of the above conditions on a

module are Morita invariant properties.

Lemma 2.1. Let R be a semiprime ring. Then the following statements hold.

- (i) $\forall 0 \neq I \leq R_R \ (R_R), \ \exists \ a \in I \ with \ a^2 \neq 0.$
- (ii) $I \leq_e R_R \ (I \leq_e RR) \Rightarrow \text{r.ann}_R I = 0 \ (\text{l.ann}_R I = 0).$

Proof. We only prove (i). Let $I \leq R_R$. If $a^2 = 0$ for all $a \in I$ then $(x+y)^2 = 0$ for all $x,y \in I$. Consequently, xy = -yx for all $x,y \in I$. It follows that $(xI)^2 = 0$ for all $x \in I$. Thus for all $x \in I$, xI = 0 by the semiprime condition on R, hence $I^2 = 0$, a contradiction. Therefore, there exists $a \in I$ such that $a^2 \neq 0$.

Lemma 2.2. Let M be a non-zero R-module with semiprime endomorphism ring S.

- (i) If M_R is retractable, $N \leq_e M_R$ and $I = \operatorname{Hom}_R(M,N)$ then $I \leq_e SS$.
- (ii) If $M = N_1 \oplus N_2$ is a direct sum of submodules then $\operatorname{Hom}_R(N_1, N_2) = 0$ if and only if $\operatorname{Hom}_R(N_2, N_1) = 0$.

Proof. Let $0 \neq g \in S$. Since $N \leq_e M_R$, $g(M) \cap N = W \neq 0$, $\operatorname{Hom}_R(M,W) =: A$ is a non-zero right ideal of S by the retractable condition on M. Thus by Lemma 2.1 there exists $f \in A$ such that $f^2 \neq 0$. Since $f^2(M) \subseteq fg(M) \subseteq N$, we have $0 \neq fg \in I$. It follows that $I \leq_e SS$.

(ii) Let $A_i = \operatorname{End}_R(N_i)$ $(i = 1, 2), B = \operatorname{Hom}_R(N_1, N_2)$ and $C = \operatorname{Hom}_R(N_2, N_1)$. It is easy to verify that $S \simeq \begin{pmatrix} A_1 & B \\ C & A_2 \end{pmatrix}$. Now if

B=0, then $\begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix}$ is an ideal of S with zero square. Hence, C=0 by hypothesis on S. Similarly, C=0 implies B=0.

Corollary 2.3. Let M be a non-zero R-module.

- (i) If for every non-zero $N \leq M_R$, the ring $\operatorname{End}_R(M \oplus N)$ is semiprime, then M is a retractable R-module.
- (ii) If for every $N < M_R$, the ring $\operatorname{End}_R(M \oplus M/N)$ is semiprime, then M is a co-retractable R-module.

Proof. Apply Lemma 2.2(ii) and note that for every non-zero $N < M_R$, $\operatorname{Hom}_R(N, M)$ and $\operatorname{Hom}_R(M, M/N)$ are non-zero.

Theorem 2.4. The following statements are equivalent for M_R .

- (i) For every non-zero $X \in \sigma[M]$, $\operatorname{End}_R(X)$ is a semiprime ring.
- (ii) M_R is Hom-reversible and $\operatorname{End}_R(M)$ is a semiprime ring.
- (iii) M_R is semisimple.

Proof. i) \Rightarrow (ii). Apply Lemma 2.2(ii) and the fact that the class $\sigma[M_R]$ is closed under direct sums.

(ii) \Rightarrow (iii). Let $S = \operatorname{End}_R(M)$ and $\operatorname{Soc}(M) = N$. Assume that X is a non-zero submodule of M_R . By [12, 14.9] there exists a submodule $Y \leq X$ such that $\operatorname{Soc}(X/Y) \neq 0$. Let U be a simple R-module embedded in X/Y. It follows by hypothesis that $\operatorname{Hom}_R(U,X) \neq 0$. Hence $\operatorname{Soc}(X)$ is non-zero. This shows that $N \leq_e M$. Also the condition (ii) implies that M_R is retractable. Thus $I = \operatorname{Hom}_R(M,N)$ is an ideal of S such that $I \leq_e SS$ by Lemma 2.2(i). Now if M/N is non-zero, then by hypothesis, there exists a non-zero homomorphism $f: M/N \to M$. Let $g = f\pi$ where $\pi: M \to M/N$ is the canonical homomorphism. Then $0 \neq g \in S$ and g(N) = 0. It follows that gI = 0 which contradicts Lemma 2.1. Therefore, M/N = 0 and M is a semisimple R-module.

(iii) \Rightarrow (i). This is a known result but we give a proof for completeness; see also [8, Theorem 2.6(b)]. If M_R is semisimple, then so is every $X \in \sigma[M]$. Hence, it is enough to show that $S = \operatorname{End}_R(M)$ is a semiprime ring. Let now $0 \neq g \in S$ with $(gS)^2 = 0$ and set $K = \ker g$, then there exists $N \leq M_R$ such that $K \oplus N = M$. Suppose that $M = g(N) \oplus W$ for some $W \leq M_R$. Since g is one to one on N, the map $h: M \to M$ defined by h(g(n)) = n and h(W) = 0, is an R-homomorphism. Now we have ghg = g and so e = gh is a non-zero idempotent in gS, a contradiction. Therefore S is a semiprime ring.

Corollary 2.5. A ring R is semisimple Artinian if and only if all non-zero R-modules have semiprime endomorphism rings.

Proof. This is an immediate corollary of Theorem 2.4. \Box

We are now going to investigate the Hom-reversible R-modules.

Lemma 2.6. If every proper factor of M_R has a maximal submodule and M_R is Kasch then M_R is co-retractable. In particular, finitely generated Kasch modules are co-retractable.

Proof. Let $Y < M_R$. By hypothesis, there exists a maximal submodule K of M such that $Y \leq K$. Since M_R is Kasch, M/K can be embedded

in M. It follows that $\operatorname{Hom}_R(M/Y, M) \neq 0$, proving that M_R is corretractable. The last statement is now clear.

Proposition 2.7. (i) Every fully co-retractable module is a fully Kasch module.

- (ii) Every fully retractable module is a fully max module.
- (iii) Every fully Kasch fully max module is fully co-retractable and fully retractable.
- *Proof.* (i) Let M_R be a fully co-retractable module and $X \in \sigma[M]$. We shall show that X_R is Kasch. Let U be a simple R-module in $\sigma[X]$, then there exist a set Λ , $Y \leq X^{(\Lambda)}$ and a surjective homomorphism $\alpha: Y \to U$. Since Y_R is co-retractable, $\operatorname{Hom}_R(Y/K,Y) \neq 0$ where $K = \ker \alpha$. It follows that U can be embedded in X, proving that X_R is Kasch.
- (ii) Let M_R be a fully retractable module and $0 \neq X \in \sigma[M]$. As seen in the proof of (ii) \Rightarrow (iii) of Theorem 2.4, X_R has a maximal submodule. (iii) Let M_R be a fully Kasch max module and $Y < X \in \sigma[M]$. By Lemma 2.6, X_R is co-retractable. It remains to show that X_R is retractable. By hypothesis, Y_R is Kasch. Hence Y contains a simple R-module U. Clearly there exists a non-zero homomorphism $\theta: X \to E(U)$. By hypothesis, $\ker \theta =: K$ is contained in a maximal submodule N of X_R . Now since $\operatorname{Im}\theta \simeq (X/K)_R$ is Kasch, the simple R-module $X/N \in \sigma[\operatorname{Im}\theta]$ must be embedded in E(U). It follows that $X/N \simeq U$ and so $\operatorname{Hom}_R(X,Y) \neq 0$, as desired.

Theorem 2.8. The following statements are equivalent for M_R .

- (i) M_R is Hom-reversible.
- (ii) M_R is fully retractable and fully co-retractable.
- (iii) M_R is fully Kasch and fully max.

Proof. (i) \Rightarrow (ii). This follows by a routine argument.

(ii) \Rightarrow (i). Let $X, Y \in \sigma[M]$ and $0 \neq f \in \operatorname{Hom}_R(X, Y)$. We shall show that $\operatorname{Hom}_R(Y, X) \neq 0$. Let $\ker f := K$ and consider the exact sequence

 $0 \to X/K \xrightarrow{f} Y$. Since X_R is co-retractable, $\operatorname{Hom}_R(X/K,X)$ is non-zero. It follows that there exists non-zero element $h \in \operatorname{Hom}_R(Y,\operatorname{E}(X))$. Now since h(Y) is a retractable R-module, $\operatorname{Hom}_R(h(Y),h(Y)\cap X)$ is non-zero. Thus $\operatorname{Hom}_R(Y,X)$ is non-zero.

(ii) \Leftrightarrow (iii). By Proposition 2.7.

As an application of Theorem 2.8, we will give a new characterization of certain perfect rings in terms of Hom-reversibility of R. A ring R is

called right fully Kasch if R/I is a right Kasch ring for any proper ideal I of R. A ring R is right fully Kasch if and only if R_R is fully Kasch [2, Proposition 3.15].

Proposition 2.9. Let R be a ring. The following statements are equivalent.

- (i) Every cyclic R-module is co-retractable.
- (ii) R is a right fully Kasch ring.
- (iii) $R = \bigoplus_{i=1}^{n} R_i$ such that each R_i is a left perfect ring with a unique simple module (up to isomorphism).

Proof. (i) \Rightarrow (ii). Let M be a non-zero R-module. It is easy to see that every simple module in $\sigma[M_R]$ is isomorphic to a factor of a cyclic submodule of $M^{(\Lambda)}$ for some set Λ . Thus M is a Kasch module by (i).

- (ii) \Rightarrow (iii). By [5, Proposition 2.8], R is left perfect. Thus $R = \bigoplus_{i=1}^t e_i R$ where $e_1, ..., e_t$ are orthogonal idempotents and $e_i R/J(e_i R) \simeq S_i^{(n_i)}$ such that S_i, S_j are non-isomorphic simple R-modules for $i \neq j$. It is enough to show that $\operatorname{Hom}_R(e_i R, e_j R) = 0$ for $1 \leq i \neq j \leq t$. For $i \neq j$ let $f: e_i R \to e_j R$ be a non-zero homomorphism. By hypothesis, S_i can be embedded in $f(e_i R) \leq e_j R$. It follows that S_i can be essentially embedded in $e_j R/K$ for some $K \leq e_j R$. On the other hand, S_j embeds in $e_j R/K$ by hypothesis. Thus $S_j \simeq S_i$, a contradiction.
- (iii) \Rightarrow (i). This is by Lemma 2.6 and the fact that a left perfect ring with a unique simple module is a fully Kasch ring.

Theorem 2.10. The following are equivalent for a ring R.

- (i) R_R ($_RR$) is Hom-reversible.
- (ii) R_R ($_RR$) is fully co-retractable.
- (iii) $R = \bigoplus_{i=1}^{n} R_i$ such that each R_i is a perfect ring with a unique simple module.

Proof. (i) \Rightarrow (ii). By Theorem 2.8.

- (ii) \Rightarrow (iii). By Proposition 2.9 and [3, Theorem 3.10].
- (iii) \Rightarrow (i). By Theorem 2.8(iii) and the fact that if R is a perfect ring with a unique simple module then R_R is fully Kasch.

A ring R is said to be duo if every right (left) ideal of R is a two sided ideal.

Corollary 2.11. Let R be a ring Morita equivalent to a duo ring. Then the following statements are equivalent for R.

- (i) Every cyclic R-module is co-retractable.
- (ii) R is a perfect ring.
- (iii) R_R is Hom-reversible.

Proof. Suppose that R is Morita equivalent to a duo ring T.

- (i) \Rightarrow (ii). By Proposition 2.9, R and hence T is a left perfect ring. Now since T is a duo ring, it must be a (right) perfect ring.
- (ii) \Rightarrow (iii). Since T is a duo ring, all idempotent elements in T are central. Now the condition (ii) implies that T satisfies the condition (iii) of Theorem 2.10, proving that R_R is Hom-reversible.

$$(iii) \Rightarrow (i)$$
. By Theorem 2.10.

In the following, we show that the converse of parts (i) and (ii) of Proposition 2.7 do not necessarily hold.

Examples 2.12. (i) Let R be a local left perfect ring that is not right perfect; see [10, Example 23.22]. Hence R_R is fully Kasch but it is not fully co-retractable by Proposition 2.9 and Theorem 2.10.

- fully co-retractable by Proposition 2.9 and Theorem 2.10. (ii) Let $R = \begin{pmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$, $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $I = \begin{pmatrix} 0 & \mathbb{Q} \\ 0 & 0 \end{pmatrix}$. Then since $I^2 = 0$ and $R/I \simeq \mathbb{Q} \oplus \mathbb{Q}$, it is easily seen that R_R is fully max. But eR is not a retractable R-module, because $Hom_R(eR, I) = 0$.
- (iii) Let $M = \mathbb{Q} \oplus A$ and $A = \bigoplus_p \mathbb{Z}_p$ where p runs over the set of all prime numbers. It is easy to verify that M is a Kasch \mathbb{Z} -module but it is not co-retractable, because $Hom_R(M/N, M) = 0$, where $N = \mathbb{Z} \oplus A$.

We are now going to investigate the Rej-reversible modules. We say that M_R is left (resp. right) Rej-reversible whenever for every non-zero $X \in \sigma[M_R]$, Rej(X, M) = 0 (resp. Rej(M, X) = 0) implies Rej(M, X) = 0 (resp. Rej(X, M) = 0). Recall from [12, Proposition 15.1] that $U_e = \bigoplus \{U \mid U_R \text{ is a finitely generated submodule of } M^{(\mathbb{N})} \}$ is a generator in $\sigma[M_R]$ and $\text{Tr}(U_e, \prod_{\Lambda} N_{\lambda})$ (dented by $\prod_{\Lambda}^M N_{\lambda}$) is a product for any family $\{N_{\lambda}\}_{\Lambda}$ of modules in $\sigma[M_R]$.

Proposition 2.13. Let M be a non-zero R-module.

- (i) M is right Rej-reversible if and only if M_R is a co-generator in $\sigma[M_R]$.
- (ii) M is left Rej-reversible if and only if $\prod_{\Lambda}^{M} M$ is a prime module for any set Λ .

Proof. (i) Just note that for all $X \in \sigma[M_R]$, $\text{Rej}(M, M \oplus X) = 0$.

- (ii) (\Rightarrow). Let $N \leq \prod_{\Lambda}^{M} M$ for some set Λ . Then Rej(N, M) = 0 and so Rej(M, N) = 0 by hypothesis. Thus $\text{Rej}(\prod_{\Lambda}^{M} M, N) = 0$, proving that $\prod_{\Lambda}^{M} M$ is a prime module.
- (\Leftarrow). Let $X \in \sigma[M_R]$ and Rej(X, M) = 0, then X embeds in $\prod_{\Lambda} M$ for some Λ and so $X = \text{Tr}(U_e, X)$ embeds in $\text{Tr}(U_e, \prod_{\Lambda} M) = \prod_{\Lambda}^M M$. Since $\prod_{\Lambda}^M M$ is prime, Rej(M, X) = 0, proving that M is left Rejreversible.

An R-module M is called co-semisimple if any proper submodule of M is an intersection of maximal submodules [12, 23.1].

Theorem 2.14. The following statements are equivalent for a non-zero module M_R .

- (i) M is left and right Rej-reversible.
- (ii) Rej(X,Y) = 0 for all non-zero $X,Y \in \sigma[M_R]$.
- (iii) M_R is semi-Artinian co-semisimple and $\sigma[M_R]$ has a unique simple module.
- (iv) Any non-zero $X \in \sigma[M_R]$ is a co-generator in $\sigma[M_R]$.
- (v) Any non-zero $X \in \sigma[M_R]$ is prime.
- (vi) M_R is Rej-reversible.
- Proof. (i) \Rightarrow (ii). Let $X,Y \in \sigma[M_R]$ be non-zero R-modules. Then by (i) and Proposition 2.13 (i), $\operatorname{Rej}(X,M) = 0 = \operatorname{Rej}(Y,M)$ and so $\operatorname{Rej}(M,Y) = 0$, because M is left Rej-reversible. Thus $\operatorname{Rej}(X,Y) = 0$. (ii) \Rightarrow (iii). Let S be a non-zero simple R-module in $\sigma[M_R]$ and $0 \neq X \in \sigma[M_R]$. By (ii), $\operatorname{Rej}(X,S) = 0$, therefore X is co-semisimple, $\sigma[M_R]$ has a unique simple module and X is semi-Artinian because by hypothesis $\operatorname{Rej}(S,X) = 0$.
- (iii) \Rightarrow (iv). Let $0 \neq X \in \sigma[M_R]$. Since M_R is co-semisimple, X is co-semisimple by [12, 23.1] and since $\sigma[M_R]$ has a unique simple module, Rej(X,S) = 0 for any simple R-module S in $\sigma[M_R]$. Hence Rej(X,Y) = 0 for all non-zero $Y \in \sigma[M_R]$, because Y has a copy of S. (iv) \Rightarrow (v). This is clear.
- (v) \Rightarrow (i). By (v), $\prod_{\Lambda}^{M} M$ is prime hence by Proposition 2.13 (ii), M is left Rej-reversible and since $M \bigoplus X$ is prime for all non-zero X in $\sigma[M_R]$, it is easy to see that M is a co-generator in $\sigma[M_R]$. Thus M_R is right Rej-reversible.
- $(ii)\Rightarrow(vi)\Rightarrow(i)$. These are clear by definitions.

Corollary 2.15. If M_R is Rej-reversible then M_R is Hom-reversible.

Proof. This follows from Theorems 2.8 and 2.14.

An R-module M is called semi-projective if $\operatorname{Hom}_R(M, fM) = f\operatorname{End}_R(M)$ for any $f \in \operatorname{End}_R(M)$ [12, p. 260].

Proposition 2.16. Let M be a semi-projective R-module. Then M is Rej-reversible if and only if M is homogeneous semisimple.

Proof. The sufficiency is clear. Conversely, by Corollary 2.15, M is Homreversible. Hence by Theorem 2.4 it is enough to show that $\operatorname{End}_R(M)$ is semiprime. Let I be a non-zero principal right ideal in $\operatorname{End}_R(M)$. Since M is Rej-reversible, it can be embedded in $\prod_{\Lambda} IM$ for some set Λ . Hence there exists $f \in \operatorname{Hom}_R(M, IM)$ such that $f|_{IM} \neq 0$. Thus $0 \neq fI \in I^2 = \operatorname{Hom}_R(M, IM)I$. Therefore $\operatorname{End}_R(M)$ is semisimple and by Theorem 2.14(iii), M is homogeneous semisimple.

We remark that if M_R is Ext-reversible, then a module in $\sigma[M_R]$ is M-projective if and only if it is M-injective. The diligent readers may then be interested in the following project.

Project: Let R be a ring and M_R be a non-zero module. Characterize the Ext-reversibility of M_R .

Acknowledgments

The authors thank the referee for suggestions towards improvement of the presentation.

References

- J. Y. Abuhlail, Fully coprime comodules and fully coprime corings, Appl. Categ. Structures 14 (2006), no. 5-6, 379-409.
- [2] T. Albu and R. Wisbauer, Kasch modules, Advances in Ring Theory, Trends Mathematics, Birkhäuser Boston, Boston 1997.
- [3] B. Amini, M. Ershad and H. Sharif, Coretractable modules, J. Aust. Math. Soc. 86 (2009), no. 3, 289–304.
- [4] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second ed., Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
- [5] M. Baziar, A. Haghany and M. R. Vedadi, Fully Kasch modules and rings, Algebra Colloq. 17 (2010), no. 4, 621–628.

- [6] L. Bican, P. Jampor, T. Kepka and P. Nemec, Prime and coprime modules, Fund. Math. 107 (1980), no. 1, 33–45.
- [7] A Gorbani, Co-epi-retractable modules and co-pri rings, Comm. Algebra 38 (2010), no. 10, 3589–3596.
- [8] A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Collog. 14 (2007), no. 3, 489–496.
- [9] S. M. Khuri, The endomorphism ring of nonsingular modules, *East-West J. Math.* **2** (2000), no. 2, 161–170.
- [10] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
- [11] P. F. Smith and M. R. Vedadi, Weak generators for classes of R-modules, East-West J. Math. 8 (2006), no. 2, 101–118.
- [12] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.

(Yaser Tolooei) DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, 84156-83111, ISFAHAN, IRAN

E-mail address: y.toloei@math.iut.ac.ir

(Mohammad Reza Vedadi) Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran

E-mail address: mrvedadi@cc.iut.ac.ir