EPI-RETRACTABLE MODULES AND SOME APPLICATIONS

A. GHORBANI* AND M.R. VEDADI

ABSTRACT. Generalizing concepts "right Bezout" and "principal right ideal" of a ring R to modules, an R-module M is called n-epiretractable (resp. epi-retractable) if every n-generated submodule (resp. submodule) of M_R is a homomorphic image of M. It is shown that if M_R is finitely generated quasi-projective 1-epi-retractable, then $\operatorname{End}_R(M)$ is a right Bezout (resp. principal right ideal) ring if and only if M_R is n-epi-retractable for all $n \geq 1$ (resp. epi-retractable). For a ring R and an infinite ordinal $\beta \geq |R|$, the R-module $M = F \oplus N$ is epi-retractable where F is a free R-module with a basis set of cardinality β and N is a γ -generated R-module with $\gamma \leq \beta$. A ring R is quasi Frobenius if every injective R-module is epi-retractable. Injective modules in $\sigma[N_R]$ are epi-retractable for every $N \in \sigma[M_R]$ if and only if every non-zero factor ring of S is a quasi Frobenius ring where S is an endomorphism ring of a progenerator in $\sigma[M_R]$

1. Introduction

All rings are associative with unit elements and all modules are unitary right modules. Let R be a ring. The ring R is said to be a principal right ideal ring (pri) if every right ideal of R is principal. Also, R is said to be a right Bezout ring if every finitely generated right ideal of

MSC(2000): 16D10, 16S50, 16L60

Keywords: Bezout ring, epi-retractable module, pri ring.

This research was partially supported by IPM, grant no. 84160035.

Received: 17 May 2008. Accepted: 26 July 2008

*Corresponding author

© 2009 Iranian Mathematical Society.

R is principal. Generalizing these concepts to modules, an R-module M is called epi-retractable (resp. n-epi-retractable) if every submodule (resp. n-generated submodule) of M is a homomorphic image of M_R . Therefore, R is a pri (resp. right Bezout) ring if and only if R_R is epi-retractable (resp. n-retractable $\forall n \geq 1$). In [5], morphic modules are introduced and shown to have internal cancellation property by investigating the epi-retractable condition for such modules ([5], Theorem 15). If M_R is n-epi-retractable for some $n \geq 1$, then it is retractable (i.e., $\operatorname{Hom}_R(M,N) \neq 0$ for any non-zero submodule $N \leq M_R$). Retractable modules have been investigated by several authors; see for example, [2], [3], [6], [8]. Here, we reveal some applications of projective, nonsingular, injective epi-retractable modules regarding the characterization of Bezout, pri, quasi Frobenius, rings. Examples are also given where (n)-epi-retractable modules appear. A brief description of the content of the paper will now follow.

In Section 2, it is proved in Theorem 2.2 that if M is a non-zero finitely generated quasi-projective 1-epi-retractable R-module, then:

- (i) $\operatorname{End}_R(M)$ is a right Bezout ring if and only if M_R is n-epi-retractable, for all $n \geq 1$.
 - (ii) $\operatorname{End}_R(M)$ is a pri ring if and only if M_R is epi-retractable.

In particular, the matrix ring $\operatorname{Mat}_{m \times m}(R)$ is pri (resp. right Bezout) if and only if $R_R^{(m)}$ is epi-retractable (resp. $R_R^{(m)}$ is *n*-epi-retractable $\forall n \geq m$).

Projective epi-retractable modules are investigated and it is shown that for a ring R and an infinite ordinal $\beta \geq |R|$, the R-module $M = F \oplus N$ is epi-retractable where F is a free R-module with a basic set of cardinality β and N is a γ -generated R-module with $\gamma \leq \beta$ (Theorem 2.8). Over a ring in which principal right ideals are projective, finite dimensional torsionfree epi-retractable modules are characterized and shown to be projective. It also shown that a ring R is a pri domain if and only if R_R is uniform and there exists a uniform nonsingular epi-retractable R-module (Proposition 2.16). If every injective R-module is epi-retractable, then R is a quasi Frobenius ring (Proposition 3.2). We end up with Theorem 3.5 that states: For any module M_R with a progenerator $P \in \sigma[M_R]$, any non-zero factor ring of $\operatorname{End}_R(P)$ is a quasi Frobenius ring if and only if for any $N \in \sigma[M_R]$, every injective module in $\sigma[N_R]$ is epi-retractable. Recall that a ring R is said to be a quasi Frobenius ring if it is a (left) right self injective Noetherian ring. Any unexplained terminology, and

all the basic results on rings and modules that are used in the sequel can be found in [4] and [7].

2. Epi-Retractable condition for projective modules

We begin with the following observation.

Proposition 2.1. Let M be a non-zero quasi-projective 1-epi-retractable R-module with $End_R(M) = S$. If S is an n-epi-retractable right S-module (resp. a pri ring), then M_R is n-epi-retractable (resp. epi-retractable).

Proof. Let $X = x_1R + \cdots + x_nR$ be an n-generated submodule of M. Then, by hypothesis, M is $(x_1R \oplus \cdots \oplus x_nR)$ -projective. Thus, for every $h \in \operatorname{Hom}_R(M,X)$, there exists $\bar{h}: M \to (x_1R \oplus \cdots \oplus x_nR)$ such that $h = \mu \bar{h}$ where $\mu: (x_1R \oplus \cdots \oplus x_nR) \to X$ is the natural surjective homomorphism. It follows that $\operatorname{Hom}_R(M,X) = \sum_{i=1}^n \operatorname{Hom}_R(M,x_iR)$. Now, since M_R is 1-epi-retractable, then each x_iR is equal to $f_i(M)$ for some $f_i \in S$ and we have $\operatorname{Hom}_R(M,x_iR) = f_iS$ $(1 \leq i \leq n)$, by the quasi-projective condition on M_R . Hence, by the hypothesis on S, $\operatorname{Hom}_R(M,X) = \sum_{i=1}^n f_iS = gS$ for some $g \in S$. We now show that X = g(M). Clearly, $g(M) \subseteq X$. Let x be an element in X. Then, there exists $g \in S$ such that g(M) = xR and we have $g(M) \in S$ and so $g(M) \in S$. Hence, $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. It follows that $g(M) \in S$ and so $g(M) \in S$. The other case of the result is proved similarly.

Theorem 2.2. If M is a non-zero quasi-projective 1-epi-retractable finitely generated R-module, then:

- (i) $End_R(M)$ is a right Bezout ring if and only if M_R is n-epi-retractable, $\forall n \geq 1$.
- (ii) $End_R(M)$ is a pri ring if and only if M_R is epi-retractable.

Proof. We prove (i). One direction follows from Proposition 2.1. Conversely, set $\operatorname{End}_R(M) = S$ and let I be a finitely generated right ideal of S. Because M_R is finitely generated, then IM is a finitely generated R-submodule of M. Since M_R is n-epi-retractable for all $n \geq 1$, then

we must have IM = f(M) for some $f \in S$. Hence, by hypothesis, fS = $\operatorname{Hom}_R(M, f(M)) = I.$

Corollary 2.3. Let m be a positive integer. Then, the following statements are equivalent on a ring R.

- (i) $R_R^{(m)}$ is epi-retractable (resp. $R_R^{(m)}$ is n-epi-retractable $\forall n \geq m$). (ii) The matrix ring $Mat_{m \times m}(R)$ is pri (resp. right Bezout).

Proof. Apply Theorem 2.2 for $M = R^{(m)}$, and note that M_R is a k-epi-retractable R-module for any k < m.

- **Examples 2.4.** (1) Let I be a right ideal in a regular ring R. Then I_R is n-epi-retractable for every $n \geq 1$. In fact, if I contains a finitely generated right ideal J of R, then J is a direct summand of R and hence a direct summand of I_R . It follows that J is a homomorphic image of I_R .
- (2) For any non-zero R-module X, the R-module $M = R/\operatorname{ann}_R(X) \oplus$ X is 1-epi-retractable. Note that for any $m \in M$, we have $\operatorname{ann}_R(X)$ $\subseteq \operatorname{ann}_R(m)$. Hence, $mR \simeq R/\operatorname{ann}_R(m)$ is a homomorphic image of $R/\operatorname{ann}_R(X)$ and so of M_R .
- (3) Over a PID, every finitely generated module is epi-retractable. To see this, let R be a PID and let M be a finitely generated R-module, and $N \leq M$. Then, by a well known result, $M \simeq (\bigoplus_{i=1}^n R_i) \oplus (\bigoplus_{i=1}^m R/(p_i^{k_i}))$ and $N \simeq (\bigoplus_{i=1}^t R_i) \oplus (\bigoplus_{i=1}^s R/(p_i^{s_i}))$, where $R_i = R, 0 \le t \le n, 0 \le s \le m$, and $0 \le s_i \le k_i$. From this, we see that N is a homomorphic image of M_R .

We shall now investigate when a projective module is epi-retractable and vice versa.

Proposition 2.5. Let R be a right hereditary ring. Then, R is a pri ring if and only if every free right R-module is epi-retractable.

Proof. (\Leftarrow) . This is obtained from the definitions.

 (\Rightarrow) . By Kaplansky's Theorem ([4], Theorem 2.24), any submodule N of a free right R-module $F = \bigoplus_{\alpha \in \Omega} e_{\alpha} R$, is isomorphic to $\bigoplus_{\alpha \in \Omega} J_{\alpha}$, where the J_{α} are right ideals of R. Thus, the result is proved by the fact that if $f_{\alpha}: e_{\alpha}R \to J_{\alpha}$ is surjective R-homomorphism for all $\alpha \in \Omega$, then the homomorphism $\bigoplus_{\alpha \in \Omega} f_{\alpha}$ is also surjective.

The following Lemmas are needed.

Lemma 2.6. Let R be a ring of cardinality $|R| = \alpha$. Then any free R-module F with an infinite basis set X of cardinality $\beta \geq \alpha$ is an epi-retractable R-module.

Proof. We first show that $|F| = \beta$. Let $X_n = \{\sum_{i=1}^n x_i r_i \mid x_i \in X, r_i \in R\}$ where $n \geq 1$. Then, there naturally exist a surjective map $Y_n := (X \times R)^{(n)} \to X_n$ and an injective map $X \to X_n$. Consequently, $|X| \leq |X_n| \leq |Y_n| = \beta$ for any $n \geq 1$. It follows from $F = \bigcup_{n \in \mathbb{N}} X_n$ that $|F| = \beta$, as desired. Now, any submodule N of F_R is a homomorphic image of a free R-module G with a basic set of cardinality $\gamma \leq \beta$. Thus, G and hence N is a homomorphic image of F_R , proving that F_R is epi-retractable. \square

Lemma 2.7. The following statements are equivalent for a module M. (i) M is epi-retractable.

- (ii) There exist surjective homomorphisms $M \to N$ and $N \to M$ for some epi-retractable module N.
- (iii) There exists a surjective homomorphism $M/K \to M$ for some epiretractable factor module M/K.

Proof. (i) \Rightarrow (ii). This is clear.

- (ii) \Rightarrow (iii). Suppose that there exist an epi-retractable module N and surjective homomorphisms $\alpha: M \to N, \ \beta: N \to M$. Let $K = \ker \alpha$. Then, α induces an isomorphism $\bar{\alpha}: M/K \to N$. Thus, M/K is an epi-retractable module.
- (iii) \Rightarrow (i). Let L be any submodule of M. By our assumption, there exists an isomorphism $\bar{\varphi}: M/K' \to M$ for some submodule K' of M with $K \subseteq K'$. Let $\bar{\varphi}(N/K') = L$ for some submodule N of M. Since M/K is assumed epi-retractable, then there exists a surjective homomorphism $\theta: M/K \to N/K$. Consider $\alpha: N/K \to N/K'$ with $\alpha(n+K) = n+K'$, and the canonical epimorphism $\pi: M \to M/K$. Then, $\bar{\varphi}\alpha\theta\pi: M \to L$ is a surjective homomorphism, proving that M is epi-retractable. \square

Theorem 2.8. Let R be a ring and β be an infinite ordinal $\geq |R|$. Suppose that $M = F \oplus N$ where F is a free R-module with a basic set of

cardinality β and N is a γ -generated R-module with $\gamma \leq \beta$. Then, M_R is epi-retractable.

Proof. By Lemma 2.6, F_R is epi-retractable. By hypothesis, N is a homomorphic image of F_R . Since $F \oplus F \simeq F$, then there exist surjective homomorphisms $M \to F$ and $F \to M$. Thus, the result holds by Lemma 2.7.

Corollary 2.9. Let R be an infinite ring. Then, every free R-module with a basic set of cardinality $\geq |R|$ is epi-retractable.

Proof. It follows from Theorem 2.8.

Proposition 2.10. Let R be a countable semiprime pri ring. Then, any free R-module is epi-retractable.

Proof. In view of Theorem 2.8, we need to show that any finitely generated free R-module is epi-retractable. Because R is a pri semiprime ring, then by a well known result $R = \bigoplus_{i=1}^t S_i$ is a finite product of prime pri rings. Hence, $\operatorname{Mat}_{n \times n}(R) \simeq \bigoplus_{i=1}^t \operatorname{Mat}_{n \times n}(S_i)$ and each $\operatorname{Mat}_{n \times n}(S_i)$ is a pri ring; see [1]. The result now follows from Corollary 2.3.

We now investigate when a direct summand of an epi-retractable module is epi-retractable.

Proposition 2.11. Let M be an epi-retractable R-module. Then: (i) M/N is epi-retractable for any fully invariant submodule N of M_R . (ii) If $M = L \oplus N$ such that $Hom_R(L, N) = 0$, then N_R is epi-retractable.

Proof. (i) Let N be a fully invariant submodule of M, and let K/N be any submodule of M/N. There is a surjective homomorphism $\varphi: M \to K$. Now, $\varphi(N) \subseteq N$ by our assumption, and so $\bar{\varphi}: M/N \to K/N$, with $\bar{\varphi}(m+N) = \varphi(m) + N$ is a surjective homomorphism.

(ii) Note that $\operatorname{End}_R(M) = \begin{bmatrix} \operatorname{End}_R(L) & \operatorname{Hom}_R(N,L) \\ 0 & \operatorname{End}_R(N) \end{bmatrix}$. Hence, $\operatorname{End}_R(M) \begin{bmatrix} L \\ 0 \end{bmatrix} \subseteq \begin{bmatrix} L \\ 0 \end{bmatrix}$. It follows that $(L \oplus 0)$ is a fully invariant submodule of M_R . Now, apply (i).

Remark 2.12. Let G be a free \mathbb{Z} -module with an infinite countable basic set and X be any countable \mathbb{Z} -module which is not epi-retractable (e.g., $X = \mathbb{Q}$). Then, the \mathbb{Z} -module $M = X \oplus G$ is epi-retractable by Theorem 2.8. This shows that a direct summand (and hence a submodule or a factor module) of an epi-retractable module need not be epi-retractable.

We are now going to investigate when an epi-retractable module is projective. A ring R is called right Rickart or right principally projective if every principal right ideal in R is projective (as a right R-module). Semi-hereditary rings and domains are clearly Rickart. A module M has a finite uniform dimension (or finite rank) if M contains no infinite direct sum of non-zero submodules or equivalently there exist independent uniform submodules U_1, \dots, U_n in M such that $\bigoplus_{i=1}^n U_i$ is an essential submodule of M. In this case, it is written u.dim(M) = n.

Proposition 2.13. Let R be a right Rickart ring. Then, every finite dimensional nonsingular epi-retractable R-module M is isomorphic to a direct sum of principal right ideals of R. In particular, M_R is projective.

Proof. Let m be any non-zero element of M. Since M is nonsingular, then the right annihilator m in R is not an essential right ideal. Let $B = \operatorname{r.ann}_R(m)$ and $B \cap A = 0$ for some non-zero principal right ideal A of R. Thus, $mA \simeq A$. It follows that every non-zero submodule of M_R isomorphically contains a non-zero principal right ideal of R. Now, let \mathcal{P} be a maximal independent family of elements in the set $\{N \leq M_R \mid N \text{ is isomorphic to a principal right ideal of } R\}$ and let $L = \bigoplus \mathcal{P}$. Then, L is an essential submodule of M_R . By the epi-retractable condition on M_R , there exists a surjective homomorphism from M to L. Also, by hypothesis on R, L_R is projective. Hence, L is isomorphic to a direct summand K of M_R . Now, $u.\dim(K) = u.\dim(L) = u.\dim(M)$. It follows that $L \simeq K = M$, as desired.

Corollary 2.14. Let R be a right and left Ore domain. Then, every finitely generated torsion free epi-retractable R-module is a free R-module.

Proof. This is obtained by Proposition 2.13 and the well known result from Gentile and Levy which states that over a semiprime right and left Goldie ring, finitely generated torsion free modules have finite ranks. \Box

We end this section with an application of nonsingular epi-retractable modules.

Lemma 2.15. A non-zero module M_R is uniform nonsingular epi-retractable if and only if $Z(M) \neq M$ and $M \simeq N$, for all non-zero submodules N of M.

Proof. (\Rightarrow). We have $Z(M) \neq M$ and for each non-zero submodule N of M, there exists a surjective homomorphism $f: M \to N$, and so $M/\ker f \hookrightarrow M$. Since M_R is nonsingular, then $M/\ker f$ is nonsingular and hence $\ker f = 0$, because M is uniform. Thus, $M \simeq N$.

(\Leftarrow) By hypothesis, M_R is epi-retractable and if $Z(M) \neq 0$, then we must have $M \simeq Z(M)$. Consequently, M = Z(M), which is a contradiction. Therefore Z(M) = 0. Also, for all $0 \neq x \in M$, $M \simeq xR$, and so M_R is Noetherian. Therefore, M_R has a uniform submodule U ([4], Proposition 6.4). It follows that $M \simeq U$ is uniform.

Proposition 2.16. The following statement are equivalent for a ring R

- (i) R is a principal right ideal domain.
- (ii) R_R is uniform and there exists a uniform nonsingular epi-retractable R-module.

Proof. (i) \Rightarrow (ii). Apply Lemma 2.15 for M = R.

 $(ii)\Rightarrow (i)$. Let M be a uniform nonsingular epi-retractable R-module. Since R_R is uniform and $Z(M)\neq M$, then there exists $x\in M$ such that $\operatorname{ann}_R(x)=0$. Thus, R can be embedded in M_R and hence $M\simeq R$, by Lemma 2.15. It follows that R is a right nonsingular principal right ideal ring with uniform dimension 1. Now, if ab=0 and $0\neq b$ for some $a,b\in R$, then $0\neq \operatorname{r.ann}_R(a)$ is an essential right ideal of R, which implies that $a\in Z(R_R)=0$. The proof is now complete.

3. Epi-Retractable condition for injective objects

By a class \mathcal{C} of R-modules we mean a collection \mathcal{C} of R-modules which contains a non-zero module and which is closed under taking isomorphisms. Let \mathcal{C} be a class of modules. A module $X \in \mathcal{C}$ is called an injective module in \mathcal{C} , if every exact sequence $0 \to X \to A \to B \to 0$ with $A, B \in \mathcal{C}$ splits. We denote by $\sigma[M_R]$, the full subcategory of mod-R whose objects are all R-submodules of M-generated modules. In this

section, we observe that every non-zero factor ring of a ring R is a quasi Frobenius ring if and only if for any R-module N, in the class $\sigma[N_R]$, injective R-modules are epi-retractable. It is well known that injective modules are continuous. We first record that continuous nonsingular epi-retractable modules are semisimple. Recall that an R-module M is said to be a continuous module if it satisfies the following conditions:

 (C_1) Every submodule of M is essential inside a direct summand of M_R . (C_2) Every submodule of M that is isomorphic to a summand of M is itself a summand of M_R .

Proposition 3.1. The following are equivalent for a nonsingular Rmodule M.

- (i) M_R is semisimple.
- (ii) M_R is continuous epi-retractable.

Proof. $(i) \Rightarrow (ii)$. This is clear.

 $(ii)\Rightarrow (i)$. Let N be a submodule of M_R . By assumption, there exists an R-epimorphism f from M to N. Because $N \simeq M/\ker f$ is nonsingular, then $\ker f$ is an essentially closed submodule of M_R . Then, by the C_1 -condition on M_R , $\ker f$ is a direct summand of M_R . It follows that N is isomorphic to a direct summand of M_R . Now, the C_2 -condition implies that N is a direct summand of M_R , proving that M_R is semisimple. \square

Proposition 3.2. If R is a ring such that every injective R-module is epi-retractable, then R is a quasi Frobenius ring.

Proof. By Remark 15.10 in [4], we need to show that every projective R-module is injective. Now, let X be a projective R-module and let E be the injective hull of X_R . Then, by our assumption, there exists a surjective R-homomorphism f from E to X. Because X_R is projective, then the ker f is a direct summand of E. It follows that X = E, as desired.

It is known that if R is a ring such that every non-zero factor ring of R is a quasi Frobenius ring, then every R-module is a direct sum of homo-uniserial modules. An R-module M is called homo-uniserial if for any non-zero finitely generated submodules $K, L \subseteq M$, the factor modules K/J(K) and L/J(L) are simple and isomorphic. In particular, if $M \neq$

J(M) and $Soc(M) \neq 0$, then M_R is finitely generated and $M/J(M) \simeq Soc(M)$; see [7, 56].

Theorem 3.3. The following are equivalent on a ring R.

- (i) Every non-zero factor ring of R is a quasi Frobenius ring.
- (ii) For any R-module N, in the class $\sigma[N_R]$, injective R-modules are epi-retractable.

Proof. (i) \Rightarrow (ii). Suppose that N is a non-zero R-module and set B = $\operatorname{ann}_R(N)$. Because R is an Artinian ring by (i), then it is well known that there are $x_1, \dots, x_t \in N$ such that $B = \bigcap_{i=1}^t \operatorname{ann}_R(x_i)$. Consequently, R/B embeds in $N^{(t)}$. It follows that $\sigma[N] = \operatorname{Mod-}R/B$. Hence, it is enough to show that every injective R/B-module is epi-retractable. By hypothesis, if W is an R/B-module, then $W = \bigoplus U_{\lambda \in \Lambda}$ is a direct sum of homo-uniserial modules. Because R/B is an Artinian ring, then it is easy to verify that $J(U_{\lambda}) \neq U_{\lambda}$ for each $\lambda \in \Lambda$. Thus, by the above remarks $W/J(W) \simeq Soc(W)$. Now, let E be any injective R/B-module and Y be a submodule of E. Because Soc(Y) is a direct summand of Soc(E), then there exists a surjective homomorphism f from E to Y/J(Y). On the other hand, the injective R/B-module E is also projective as an R/Bmodule. Hence, there exists a homomorphism $g: E \to Y$ such that $\pi g = f$ where $\pi: Y \to Y/J(Y)$ is the canonical projection. Because πg is a surjective homomorphism, then we can conclude that g(E)+ J(Y) = Y. But, by hypothesis, J(Y) is a small submodule of Y, and hence g(E) = Y. This shows that E is an epi-retractable R/B-module, as desired.

 $(ii) \Rightarrow (i)$. Let A be a proper ideal of R and set N = R/A. Then, $\sigma[N_R] = \text{Mod-}R/A$. The result follows now Proposition 3.2.

Lemma 3.4. Being epi-retractable is a Morita invariant property.

Proof. In fact, a module M_R is epi-retractable if and only if for any $X \in \text{Mod-}R$ with an injective homomorphism $X_R \to M_R$ there exists a surjective homomorphism $M_R \to X_R$. Thus, the result follows from the fact that any category equivalence preserves injective and surjective homomorphisms.

Theorem 3.5. Let M be an R-module and let S be the endomorphism ring of a progenerator in $\sigma[M_R]$. Then, the following statements are equivalent.

- (i) For any $N \in \sigma[M_R]$, in the class $\sigma[N_R]$, injective R-modules are epi-retractable.
- (ii) Every non-zero factor ring of S is a quasi Frobenius ring.

Proof. By Theorem 46.2 in [7], there exists a category equivalence between $\sigma[M_R]$ and Mod-S. Hence, for any $X \in \text{Mod-}S$, the class $\sigma[X_S]$ corresponds to the class $\sigma[N_R]$ for some suitable $N \in \sigma[M_R]$ and vice versa. The result is then obtained by Lemma 3.4 and Theorem 3.3. \square

Acknowledgments

Research of the authors was partially supported by IUT (CEAMA). The authors are grateful to the referee for his/her careful considerations.

REFERENCES

- [1] A.W. Goldie, Non-commutative principal ideal rings, Arch. Math. 13 (1962) 213-221.
- [2] A. Haghany and M.R. Vedadi, Study of semi-projective retractable modules, Algebra Colloquium, 14(3) (2007) 489-496.
- [3] S.M. Khuri, The endomorphism ring of a nonsingular retractable module, *East-West J. Math.* **2**(2) (2000) 161-170.
- [4] T.Y. Lam, *Lectures on Modules and Rings*, Graduate Texts in Mathematics, Vol. 139, Springer-Verlag, 1998.
- [5] W. K. Nicholson and E. Sánchez Campos, Morphic modules, Comm. in Algebra 33 (2005) 2629-2647.
- [6] P.F. Smith, Modules with many homomorphisms, J. Pure and Appl. Algebra 197 (2005) 305-321.
- [7] R. Wisbauer, Foundations of Module and Ring Theory, Philadelphia, Gordon and Breach, 1991.
- [8] Z.P. Zhou, A lattice isomorphism theorem for nonsingular retractable modules, *Canad. Math. Bull.* **37**(1) (1999) 140-144.

A. Ghorbani,

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, $84156\hbox{-}83111$ Iran.

And

Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.

Email: a_ghorbani@cc.iut.ac.ir

M. R. Vedadi,

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, $84156\hbox{-}83111$ Iran.

Email: mrvedadi@cc.iut.ac.ir