ISSN: 1017-060X (Print) 2 _ ISSN: 1735-8515 (Online)
>

.
M

ATHEMATICAL,

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 1, pp. 65-85

Title:

Detection of a nontrivial element in
the stable homotopy groups of spheres

Author(s):

H. Yu, Y. Kou and H. Zhao

Published by Iranian Mathematical Society

http://bims.ims.ir




Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 1, pp. 65-85
Online ISSN: 1735-8515

DETECTION OF A NONTRIVIAL ELEMENT IN THE
STABLE HOMOTOPY GROUPS OF SPHERES

H. YU, Y. KOU AND H. ZHAO*

(Communicated by Mohammad Bagher Kashani)

ABSTRACT. Let p be a prime with p > 7 and ¢ = 2(p — 1). In this
paper we prove the existence of a nontrivial product of filtration
s + 4 in the stable homotopy groups of spheres. This nontrivial
product is shown to be represented up to a nonzero scalar by the
duct element Fsby_1go € ExtS 4@ Hsp tsptolate=3.y 1, 7 /)
product element Ysbn—190 " p,Z/p
in the Adams spectral sequence where n > 2 and 3 <s<p—1.
Keywords: Stable homotopy groups of sphere, Adams spectral
sequence, May spectral sequence.
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1. Introduction

Let p be an odd prime. Let A be the mod p Steenrod algebra and let
S be the sphere spectrum localized at p. Throughout the paper we fix
q=2(p—1). To determine the stable homotopy groups of sphere 7,5 is
one of the central problems in homotopy theory. One of the main tools
to approach it is the classical Adams spectral sequence (ASS) whose
Ey-term is given by Ey' = Extiit(Z/ p,Z/p) which is the cohomology of
A. The Adams differential is given by

. s,t s+rt+r—1
dyr: EY — E7 .

From [6], we know that Extii* (Z/p,Z/p) has Z/p-basis consisting of ag €

Ext';' (Z/p,Z/p), hi € Extiplq(Z/p,Z/p) for all ¢ > 0 and we also know
that Exti{*(Z/p,Z/p) has Z/p-basis consisting of g, a3, agh;(i > 0),
gi(i > 0), ki(i > 0), b;(i > 0), and hshj(j > i+ 2,i > 0) whose internal
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Detection of a nontrivial element in the stable homotopy groups of spheres 66

degrees are 2¢ + 1, 2, p'g + 1, (p'*! + 2p')q, (2p"™" + p)g, p't'q and
(p* + p?)q, respectively.

If a family of generators z; € E5™ converges nontrivially in the ASS,
then we obtain a family of homotopy elements f; in 7,5 and we say that
fi has filtration s and is represented by x; € E3” in the ASS. So far,
very few families of homotopy elements in 7S have been detected. The
following are some known results. In [7] M. Mahowald detected an or-
der 2 element 7; €3 7, which is represented by hih; € Exti{* (2/2,Z)2).
By analogous argument at odd primes, R. Cohen [1] detected a fam-
ily of homotopy elements ¢, € mpng4¢—3S5 which has filtration 3 and
is represented by hob,_1 € Exti{pnqﬂ(Z/p,Z/p) in the ASS. In [9] D.
Ravenel proved that b, € Ext%” "4(Z/p,Z/p) does not converge in the
ASS, which is known to be the odd prime Kervaire invariant element.
Recently, Hill-Hopkins-Ravenel [2] proved that the mod 2 Kervaire in-
variant one elements 0; € myj+2_5S exist only for 0 < j < 6. This
resolves a longstanding problem in algebraic topology.

Among the nontrivial elements of 7,5 the periodic elements are es-
pecially important. The existence of the periodic elements is related to
the existence of Toda-Smith spectra. Let BP be the Brown-Peterson
spectrum localized p. It is a p-local ring spectrum with the coefficient
ring

BP, = BP*S = Z(p) [’Ul,’Ug, o ]
where v; is the i-th Hazewinkel generator with degree 2(p' —1). If X is
a spectrum, then BP, X is a comodule over the Hopf algebroid BP,BP
(refer to [10]). Toda [11] considered the existence of the finite spectra
V(n) with

BP,V(n) = BP./I,+1 (as BP,-module, hence as BP, BP-comodule)

where I),41 = (p,v1,- - ,vp), the ideal generated by p, v1, - -+, v,. In [11],
Toda showed that V(n) exists for p > 2n with n = 0,1,2,3 and there
exists Greek letter map

Up: X2 DY (n 1) — V(n—1)

with v, = p,a, 8,7 for n = 0,1, 2, 3, respectively. Here we write V(—1)
for S. Moreover, the cofibre of v, is V(n) given by the cofibration

20DV (= 1) 2% Vin — 1) -2 Vin) 2% 52"V (n — 1).
If we write

as = jo(vi)io, Bs = joj1(v3)itio and vs = jojij2(v3)izitio,
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then ag, Bs, vs are the well known first, second and third periodic ele-
ments in 7S with filtration s (refer to [8]). It was shown in [12] that
when n < p and s # 0,1,---,n — 1 mod p, there is a non-zero co-
homology class a" e Ext%"(Z/p,Z/p) which is called the n-th Greek

letter element in Ext. When n = 1,2, 3, the elements &ﬁ”) are written

as s, ES and s which represent the homotopy elements oy, 85 and s
respectively.

Given two elements Z and ¥ in Exti{*(Z/p, Z/p), suppose that T and
y converge nontrivially to elements x and y in 7,5, respectively. We are
wondering whether or not the product z -3 in the ASS can also converge
nontrivially to the product -y in 7,.S. In particularly, we are interested
in considering the convergence of the product of 35 or 75 with some other
elements in Ext’;"(Z/p, Z/p). For example, it was shown in [4] that the
product Yshob,—1 € Ext‘j4+3’*(Z/p, Z/p) is nontrivial in the ASS when
p>T7,n>2and 3 <s < p—2 It converges to a nontrivial element
VsCn € mS. By a similar method, Liu-Ma [5] verified the convergence
of the product hnhmBs in the ASS when p > 5, n > m+2 > 5 and
2 < s < p—1. In this paper, we will improve their method and use it
to show that b, 190 in the ASS converges to a nontrivial element of
mS. The following statements are our main results.

Theorem 1.1. Let p > 7 andn > 2. If 3 < s < p—1 then the product

= +4,(s+sp+sp>+p™)g+s—3

Febn-1g0 € Exct HETPHTIN5 G, 7,p)

is nontrivial in the Adams spectral sequence and converges to a homotopy
nontrivial element &, € ,S.

This paper is organized as follows. In Section 2, we will introduce a
method to compute the generators of the Fq-term of the May spectral
sequence (MSS). As an application of this method, in Section 3 we do
an explicit computation for the sake of proof of Theorem 1.1. Then in
Section 4, we give the proof of Theorem 1.1.

2. Preliminary knowledge on the May spectral sequence

In this section we will recall some elementary knowledge on the May
spectral sequence (MSS). By reference [10], there is a 3-graded May

t t.M 1,6,M— .
spectral sequence {Ep"*, d,: EPY™ — EFTHYYMTTY which converges
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to Ext’(Z/p,Z/p). The Ej-term of MSS is given by
ET" = E[hpilm > 0,i > 0] @ Plbpy,ilm > 0,i > 0] @ Play|n > 0]
where E[ | denotes the exterior algebra and P[] denotes the polynomial

algebra. It is known that hy; € El1 P'9* converges nontrivially to h; €

Exti{piq(Z/p, Z/p). Thus d,(h1;) = 0 for any r > 1. We list the degrees
of the Ej-term generators as follows:

1,2(pm—1)p*,2m—1 2,2(p™—1)p' 1 (2m—1)p 1,2p"—1,2n+1
hmi € By bm,; € E] san € B .

I

For the r-th May differential d,: ESM st LM itk > 1, if
z e EYY and y € BS " then

dr(zy) = dp(x)y + (—1)" ad, (y).

The MSS satisfies the graded commutativity zy = (—1)+'yz for
{z,y} C {hm,i;bm,i,an}. On each generator the first May differential

st M s+1,6,M—1

has an explicit description as

di(hig) = > hikkrjheg, dila) = Y higgar, di(biz) =0.

0<k<i 0<k<i
Given an element = € Ef’t’M, we define dim(z) = s, deg(z) = t and
M(z) = M. Then we have
dlm(hw) :dlm(al) = 1, dlm(bw) = 2,

M(hij) = M(a;—1) =2 — 1, M(b;;) = (2 —1)p,
deg(h;j) =2(p' — V)p! = (p/ + - + pTi~1)q,

deg(bi,;) = 2(p' — )pi*! = (P! + -+ +pi*)q,
deg(a;) =2p' — 1= (14 +p~Hg+1,
deg(ao) =1

where i > 1 and j > 0.

A method of computing Ej-term of the MSS was introduced in [5],
but the computation process in [5] is very obscure. Hence, we are about
to introduce a new computation method and then in Section 3 we show
how to use it in a more effective way for our target.

We denote a;, h;;j and b; ; by =, y and z, respectively. By the graded
commutativity of Ei‘ % we can write a generator as

h = (;1;1 .. xu)(yl .. ‘yv)(zl . Zl) c Ef’t+b’*
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where t = (¢op+cp+ -+ Ep")g with 0 < ¢ < p (0 < i < n),
Cp >0, s <b+qwith 0 < b < q. We claim that v = b. Otherwise, by
the characteristics of deg(a;), deg(h; ;), deg(b; j) and t, there exists some
w > 0 such that u = b4+wq. It follows that dim(h) > b+wq > s =dim(h)
which is a contradiction. Thus

h=(x1-xp)(yr--yo)(21---21) € Ell?+v+21,t+b,*.

Note that the degrees of x;, y; and z; can be uniquely expressed as

deg(mi) = (l’i,o +xiap+---+ :Ump”)q +1,

deg(yi) = (yio + yiip + - + yind")q,

deg(zi) = (04 ziap+ -+ + zind")q
where the sequence (z;0, i1, - ,%in) is of the form (1,---,1,0,---,0),
while (y;.0,Yi1, ", Yin) and (0,21, , 2 ) are both of the form

((),...70717...71707...70).

k%, %

According to the graded commutativity of £, the generator

h = (:L‘l “ee ':Cb)(yl e yv)(zl e Zl) c Ei)+v+2l,t+b,*

can be arranged in the following way:

(a) if i > j, we put a; on the left side of a;;
(b) if j < k, we put h;j on the left side of hy, x;
(c) if i > w, we put h;; on the left side of Ay, ;;
(d) apply the same rules (b) and (c) to b; ;.

Hence the above z; j, y; j and z; j satisfy the following conditions (2.1):

(i) z1; > @woj > -+ > Tpj, Tio > Tig > -+ > Tiy for i@ < b and
J=mn;

(i) if y;j_1 = 0 and y;; = 1, then for all k < j there is y; , = 0;

(iii) if y;; = 1 and y; j4+1 = 0, then for all k > j there is y; ;, = 0;

(iv) Y10 = Y2,0 = -+ > Yo,0;

(v) if yio = Yit1,00 Y1 = Yirlly Y = Yitlj, then yiji1 >
Yit+1,5+15

(vi) apply the same rules (ii)~(iv) to z; ;.
According to the p-adic expression of the coefficient of ¢ in second de-
gree deg(z;), deg(y;) and deg(z;) as above, by the properties of p-adic
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numbers we obtain the following group of equations (2.2)

r10+ -+ 2o+ Y0+ + Yoo =Co+kip=co
T+ttt Y1 2+ 2
=c—kit+kp=c
Tin-1+t-+Ton-1+Yin-1+-+Yon-1+21n-1+ "+ 201
= Cp—1 _kn—l +knp:Cn—l
xl,n+"‘+xb,n+y1,n+"'+yv,n+zl,n+"‘+zl,n:En_k:n:cn-

From the above group of equations, we obtain two integer sequences
K = (k1, - ,k,) and S = (co, - ,cn)

which are determined by (k1,--- , k) and (co, - - , &,), respectively. We
say that the group of equations (2.2) has a solution if it has a solution
satisfying the conditions (2.1).

Intuitively the above group of equations has the form of matrix as

A B C
o v Xpo | Y10 0 Ymo| O o0 Co
(2 1) 11 0 Tyl | Y11 0 Ymdl | A1 21 C1
Lin - Tom | Yln “° Ymmn | fln " Zn Cn-

According to the conditions (2.1), the section A in the matrix is the
form of trapezoid as

1 1 1 1
1 1 1

(2.2) s
1 1

—
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where the vacant place denotes zero. The section B has the form as

(2.3)
1 1 1 1
1 1 1
1 1 1 1 1 1
1 1 1 1
|
1

The section C has the similar form as B except that the first horizontal
line are all zero.

Each column in section A determines some x;. Each column in section
B or C determines some y; or z;. Recall that each column in the matrix

does not admit the form (---,1,0,---,0,1,---)7. In summary, for the
Ef’Hb’*—term of MSS where t = (¢g +¢1p+ -+ p™)g with 0 < ¢; < p
(€, > 0), s < b+ q with 0 < b < ¢, the determination of Ef’Hb’* is

reduced to the following steps:

Step 1. List all the possible (b, v,[) such that b+ v + 2l = s.

Step 2. For each (b,v,1), list up all the sequences K = (ki, -, ky)
and S = (cg, -+ ,¢,) such that max{cg,c1, -+ ,cp} <b+v+1.

Step 3. For each (b, v,1) and the sequence K = (k1,- - , k), solve the
corresponding group of equations (2.2). As stated before, the solutions
are of the forms (1,---,1,0,---,0) or (0,---,0,1,---,1,0,---,0) which
uniquely determine x;, y; or z; which correspond to elements of form a;,
hi j or b; ; respectively.

3. Computation of Ei-term of the MSS

In order to prove Theorem 1.1, in this section we will apply the method
in Section 2 to compute the generators of Ef_r+4’tQ+(S_T_2)’* forl<r<
p+ 2, where t = s+ sp + sp® + p". Let M (i > 1) denote the May

filtration for different n. Our results are stated as follows:

Theorem 3.1. For 1 <r <p+2andn > 2, lett =5+ sp+ sp®> + p"
with 3 < s < p—1. Then the generators of Ef_r+4’tq+(s_r_2)’* are listed
as follows:
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(1) when 3 <r < p+2, there is no generator;

(2) when r = 2, there is a generator a§74h470h3,0h2,0h170h2,1h1,2 for
n =3 and no generator for n # 3;

(3) when r =1, for different n the generators are as follows:
(a) for n =2, there is no generator.
(b) for n =3, there are 20 generators as

a5 *arhaohs ohaoheibi 1, a§ *haohaohiohs b,
a§_4azh4,oh3,oh2,0h1,2b1,1, a§_3h4,0h2,0h1,0h2,1b1,1, (M} =7 8)
a3 3haohs oh1oh11b11, asay *hsohaohi oha by, =lstp-
a3 3haohs oh1oh1 2b1 0,
a3 Yarhyohs ohaoht abao, ai *haohaohiohi b,
a5~ a1haohsohioh2,1b20, 5 *haohaohiohegbao, ¢ (M =T7s+ 3p—10)
a5 2hs ohaoh1oha1ba 1, asay *haohoohiohi 2be,o,
a3 *haohaohioh1,2bs0, (MS = Ts+ 5p —12)
a3~ *aghaohs ohaohioho1h 2, a5 *a1hsohaohiohsihe1h 2,
a5 *arhaohs oh1oheahi b2, @ 2haoheohioha by ghis, ¢ (M§="Ts—8)
a3 *haoh2,0h1 01 1ha oht 2, @y tashs ohoohtoh21h2ohi o;

(c) forn > 3, there are eleven families of generators as

a3 *hsoh2,0h1,0h2,1h1 2k, (M7 =Ts —8)

h<1i) = aff?’hn,()h¢,0h4,ohn73,3bnfi,i71 0<i<mi#d);, (Mg)

h(zi) = a3 *hnohiohn—iihaobn_s2 (0<i<n;iz#4); (Mg)
hg) = afl_4a4hn7oh]’,ohn—j,jhi,Ohn—i,ihn—S,ii(O <4, j <myi#Gii, g # 3) (M")
hy) = a5 a;hn0haohiohn—iihn s ihn-33(0 < i,5 < nyi# j;i £ 3,4;5 # 3)
hg) = af;ghnyohjyohiyohnfj,jhn—i,ihl,?,(0 <i,j <myiF# .7)
hy) = a5 *hy0hi0haohn—iihn-jihn-33(0 <i,j <n;i# j;i #3,4;j # 3)
by = a3 hnohsohiojihaohn—iihn—33(0 <i,j <nyi > j;j # 40 #3) M
h(si) = aS 3hnohiohjoha—jihn—iihn—33(0<i<n;0<j<4is#ji#3) (Mi4)
hg> = a3 hnohioha,ohn—i—jihjn—jhn-330 <i<n;j <n—iji#4)
h(lig = ay *hnohiohaohn—iihn-3-j3hjn—;(0 <i<n;j <n-—3;i#4)

where s = p—1 for h(li),- - ,h(li(), and Mg = (4n—2i+1)(p—1)—5,
My = 2np —2n+p—5, M{; = 2np —4n +p—8, M} =
2np —2n+p — 8.

Proof. For n < 3, we have

5_ (s,s,s+1) n=2,
(s,8,8,1) n=
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For n > 3, we have

S_ S1:(5)875)07"'7071)5
- Si:(87378707"'707p(i)7p_17"'7p_170)7 ZZ4

By the reason of dimension, all the possibilities of h are listed as

X1 LTs—r—2R12273

Ty Ts—r—2Y1Y22122

Tl Ts—r—2Y1Y2Y3Y421
Tl Ts—r—2Y1Y2Y3YaYs5Y6-

Let us consider the generators h € Exts ™"t Ts==2(7, /5, 7,/p) case
by case.
Case 1. h = Tl Tsg—pr_22122%3.
s—r—2
Note that s <p —1 and r > 1. Since ) Tig=8—1—2<8s=0Cp,
i=1
the first equation of (2.2) has no solution. It follows that such A is
impossible to exist.
Case 2. h=1x1  Ts_p_2Y1Y22122.
Note that s <p—1 and r > 1. Since
s—r—2
Z Tio+ Y10+ Y20=5—1r—2+y10+y20 < S=Cp,
i=1
the first equation of (2.2) has no solution. It follows that such h is
impossible to exist.

Case 3. h = X1 Tg—r4+1Y1Y2Y3Yy4 21 .-
Subcase 3.1. s<p—1,n>2,r> 2.
s—r—2 4
Since Y. wio+ D o <s—r—2+4<s=q, the first equation
i=1 i=1
of (2.2) has no solution. It follows that such A is impossible to exist.

Subcase 3.2. s<p—1,n>2,r=2.

For S = (s,s,s4 1), solve the corresponding group of equations (2.2)
by virtue of (2.1), we get the generators which are all zero since they
are all contain h%,o = 0.

Subcase 3.3. s<p—1,r=1.

Subcase 3.3.1. s<p—1,n=2,r=1.

For S = (s,s,s+ 1), solve the corresponding group of equations (2.2)
by virtue of (2.1), we get the generators

~3;2 3,2 3,2
az "h3oh2oh12b11, a3 "h3ghiohigbeo, a3 h3ohioh21b1
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which are all zero due to h%,o =0.

Subcase 3.3.2. s<p—1,n=3,r=1.

This will be a hard case. Our strategy of computation is as follows.
For the unique sequence in this case S = (s, s, s, 1), we see that the max-
imal number in S is s. This leads us to first compute all the generators
(may be zero) of Ef’tqﬂs*g)’* with the form z1 - -+ zs_3y1y2y3. For each
a; and h; ; in 1 - - p_4Y1Y2y3, We resolve

hig = T, izt g4k or a; = ajhi—j;

and then repeat this step once. Finally we do the replacement h;; —
b; j—1. If the obtained elements are nonzero, then we get all of the desired
generators of Ef+3’tq+(s_3)’* with the form 1 - zp_4y1y2y321. We do
this computation by the following steps:

Step 1. For S = (s, s, s,1), solve the corresponding group of equations

(2.2) by virtue of (2.1), we obtain two generators of Ef’tq+s_3’*

3 —4
as “haohsohs, agas “hsohsohsg
Step 2. Resolve a; or h; ;.

-3
hag [ a5 *haohsohaoh
s—3 3,0 5 “haohsohaohy o
a3 “hyphsohzo — 3y
3 — as “haohsohiohon

s—4
s—ap o hag | aady h3,0h30h2,0h12
aqsas “h3oh3ohso — s—4

— agas” "hzohsohioha 1

Step 3. Repeat the Step 2 and replace some hy j by by j_i. Since
there are many identical generators appearing in the obtained first May
differentials, we will only write out the different nonzero generators for
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simplicity.

(3.1)
h or h
—4 2,1 1,2
a3 “arhaphsphaphoihi o ~—

—4
as “arhaohsohaoho 1b1 1
—4
a3 “arhaphsphaohy 2020

s—4 1,2
a3~ ~ashaohsohaoh12h12 —>

4
as “aghaphsohaohi2bi

_3 hi,2 or h31
a3 “haoh2ohiohsihis —

_ one by one s—3
a?,’ 3h470h370h270h172 —y) a§73h3,0h2,0h1,0h3,1b1,1
a3~ "h3oh2oh10h12b30

h or h
s—3 1,2 2,1
a3 “hygphaohioho1hy2

~3
{a§ haohaohioh21b1 1

-3
as “haphaohiohi 2020

_3 hi,1 or hi2
a3 “haohsohiohi,ihi2

73
as “haphsohiohi,1bi1
—3
as “haphsohioh2010

(3.2)
s—4 h271
a3 “arhapohsohioh2,1ho —
4
as “arhaphsohiohe1b20

as or hy
0 ha1 or ha o
—

s—3
as “haoh — —
3 haohsoliohan as ?h3 oha,0h1,0h2,2h21

73
as "h3ophaohioha2b20
-3
as “hsohaohioh21b2.1

h h or h
_4 3,0 _4 2,1 1,2
(3.3)  asa3 “haohsohoohia — asas “haohoohioha1hi2

s—4

agas” "hzohoohioho1b11
s—4

agaz” hzohaohiohi2b2

In the above diagrams the elements over the first left arrow and the
second right arrow mean their resolution and replacement, respectively.
Subcase 3.3.3. s>p—2,n>3, r=1.
4

s—r—2
Since Y. xji+ > Yki+ 21 < s+2<p=g, the i-th equation of
j=1 k=1
(2.2) has no solution. It follows that such A is impossible to exist.
Subcase 3.3.4. s=p—2,n>3,r=1.
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For Si, solve the corresponding group of equations (2.2) by virtue of
(2.1), we get the generators listed as

p—572 pP—5712
az “h3ohoohi2bin, a3 "hiohioh21b1m,

ay °h3 ohoohi b, ah hdghiohtny1bog
which are all zero due to h%}o = 0.

For Sy = (s,s,8,p,p—1,--- ,p—1,0), solve the corresponding group
of equations (2.2) by virtue of (2.1), we get the generators listed as
following

ab%ashd ohn—s3bn_s2, ab °hl ghaohn_33bn—32,
ab R} ohn—33br2, ab°hd ghisba_s2
which are all zero due to hfw = 0.

For S;(i > 5), there is no solution.

Subcase 3.3.5. s=p—1,n>3,r=1.

For S1, we get the similar generators as Subcase 3.3.4 which are all
Zero.

For Sy =(p-1,p—Lp—1,p,p—1,--- ,p—1,0), we obtain a set of
generators

h
—4;2 nQ p—d
(3.4) ap"hy ohaohn—33 —> ab”"hnohiohn—iihaohn—33

4
hn—3,3 Or R { ab” i ohiohaohn—33bn—ii-1
7 p—4
an  hnohiohn—iihaobn—32
where 0 < ¢ < n and i # 4.

For S; (i > 5), there is no solution.

Case 4. h = x1 "+ Ts—r—2Y1Y2Y3Y4Y5Y6-
Subcase 4.1. s<p—1,n>2,r>4.
There is no solution since
s—r—2 6
Z a:i,o—l-Zyj,o <s—r+4+4<s=27¢.
i=1 j=1
Subcase 4.2. s<p—1,r=4.
Subcase 4.2.1. s<p—1,r=4,n=2.
There is no solution since
s—r—2 6
Z $i70+2yj70 <s—r+4<s+1=c.
i=1 j=1
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Subcase 4.2.2. s<p—1,r=4, n=3.

Solve the corresponding group of equations (2.2) by virtue of (2.1),
we get two generators a§73h4,0h§70 and a4a§74hg70 which are both zero
due to hg,o =0.

Subcase 4.2.3. s<p—1,r=4,n> 3.

For S; = (s,s,5,0,---,0,1), there is no solution.

For S;(i > 4), S = (s,5,5,0,--- ,0,p®),p—1,--- ,p—1,0), there is no
solution due to

s—r—2 6

Z -Tj,i+zyk,i<5+1§pzéi-
j=1 k=1
Subcase 4.3. s <p—1,r=3.
Subcase 4.3.1. s<p—1,2<n<3,r=3.
Solve the corresponding group of equations (2.2) by virtue of (2.1),
we see that all the generators are zero since they all contain h%,o =0.
Subcase 4.3.2. s<p—1,n>3,r=3.
For S1, we get one generator a§_5h§70h1,n which is zero as h:%,,o =0.
For S;(i > 4), S = (s,s,s,0,--- ,0,pW . p—1,--- ,p—1,0), there is no
solution since
s—r—2 6
Z xj,z‘-i-zyk,i <s+1l<p=g.
j=1 k=1
Subcase 4.4. s <p—1,r=2.
Subcase 4.4.1. s<p—1,n=2,r=2.
Solve the corresponding group of equations (2.2) by virtue of (2.1),
we get one generator
a§_3h§70h170h271h1,2 which is zero due to h%,o =0.
Subcase 4.4.2. s<p—1,n=3,r=2.
There is one nonzero generator

(3.5) ai *haohsohaohioheih 2.

Subcase 4.4.3. s<p—2,n>3,r=2.
For Si, solve the corresponding group of equations (2.2) by virtue of
(2.1), we get two generators

s—413 s—413
a3 h370h270h172h17n and a3 h3’0h170h2,1h17n

which are both zero since h?’»,o =0.
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For S;(i > 4), S = (s,5,5,0,---,0,p®,p—1,--- ,p—1,0), there is no
solution since
s—r—2 6
Z :cj,,-—l—Zyk,i <s+2<p=g;.
j=1 k=1
Subcase 4.4.4. s=p—2,n>3,r=2.
For S1, we get two similar generators as Subcase 4.4.3 by replacing s
with p — 2.
For S4, we get two generators

s—413 2 s—414
ap, hn,0h470hn73,3 and an hn,OhN—373h1a3

which are both zero since hi}o = 0.

For S;(i > 5), there is no solution.

Subcase 4.4.5. s=p—1,n>3,r=2.

For S1, we get two similar generators as Subcase 4.4.3 by replacing s
with p — 1.

For Sy, solve the corresponding group of equations (2.2) by virtue of
(2.1), we get the generators they are all zero because they all contain
h2 o =0.

For S;(i > 5), there is no solution.

Subcase 4.5. s<p—1,r=1.

Subcase 4.5.1. s<p—1,n=2,r=1.

Solve the corresponding group of equations (2.2) by virtue of (2.1),
we get the generators listed as

s—3 2 s—3 2 3
az "h3ohaohioh21hi o, a3 hsohsohy o,

s—312 2 s—3 2 2
az "h3ohioh11hy 9, a3 hsohi ghsha 2.

They are all zero due to hiQ =0or h%o =0.

Subcase 4.5.3. s<p—1,n=3,r=1.

We adopt the methods similar to Subcase 3.3.2. We still compute all
the generators (may be zero) of Ef’tq“*?”* with the form x1 - - - x5_3y192Y3.
First we resolve a; or h;; in x1---xs_3y1y2y3, and then for the ob-
tained elements we repeat the first step twice. If the obtained element
is nonzero, then it is our desired generator of Ef+3’t+s_3’*.

Step 1. For S = (s,5,8,1) = (3,3,3,1), solve the corresponding
group of equations (2.2) by virtue of (2.1), we obtain two generators of

t+5—3
E} TS a8

3 4
asz “haphsohso and asa3 “hzohsohso
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Step 2. Resolve a; or h; ;.

s—3
asz” “hyphsoh2ohi 2,
-3
as “haohzohioha

h
_3 3,0
az “hgohsohso — {

s—4
sd hso | asaz “hsphsohaohi 2,
asgaz”"hsohsohso — a
ER asal *hsohsohioha 1
Step 3. Repeat the Step 2 twice. We still only write out the different
nonzero generators for simplicity.
(3.6)

h
s—4 3,0
a3 “aphspohsohsoh20h12 —

s—4
as” "aphgohsohoohioha1hy2

h or h
s—4 4,0 2,0
a3 “arhaphsphooh21h12  "—

24
{a§ arhzoh2ohi0h3 1he1hy 2

one by one s—4
as” ~arhaohsohioho1hi1hy2

as 3haohsoheohi 2
a§*hsohs ohaohy 2l 3 =l
a3 *h3 oh2,0h1,0h21h12h13
a§~*hs ohaohaoha 2l 2 228
a§*3h370h2,0h1,0h1,1h2,2h1,2

-3 as —4
(3.7) a3 “haohsohiohe,1 — a5 “ag2haohsohiohe1hi2

h _

-3 a3 *aghs ohaoh1 oho.1h2.2h1 2
Subcase 4.5.3. s<p—3,n>3,r=1.
For S, we get one generator as follows:

s—3
_ hao | az “hzohsohaohi2hin
38) a5 *haohsohsohin —{ g T
(3:8) 3 S T e a3 ?h3.0h3,0h1,0h2,1h1 0
hso 53
—= a3 "hzohaohioh2,1h1 201 5.
s—3 6
For S;, (i > 4), there is no solution since Y xj; + > yri < s+3 <
=1 k=1
P = C;.

Subcase 4.5.4. s=p—3,n>3,r=1.
For Sq, we get the similar generator as Subcase 4.5.3 by replacing s
with p — 3.
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For Sy, solve the corresponding group of equations (2.2) by virtue of
(2.1), the generators we get are all zero since they all contain h%,o = 0.
For S;(i > 4), there is no solution.
Subcase 4.5.5. s=p—2,n>3,r=1.
For S, we get the similar generator as Subcase 4.5.3 by replacing s
with p — 2.
For Sy, solve the corresponding group of equations (2.2) by virtue of
(2.1), we find that all the generators are zero.
For S;(i > 4), there is no solution.
Subcase 4.5.6. s=p—1,n>3,r=1.
For S, we get the similar generator as Subcase 4.5.3 by replacing s
with p — 1.
For Sy, solve the corresponding group of equations (2.2) by virtue of
(2.1), we get the generators as follows.
(3.9)
ab=*h3 oh1 s fng aP=*h2 ohiohn—iih1 3 ing al=4 by ohjohiohn—j jhn—iihi3
(0 <idsj <nyi # )
ab=bagh} ohn 33 fng ab =P agh?, ohiohn—iihn-33 fng
ab = aghn 0l 0hn—j jhiohn—iihn-33(0 <i,j <n;i # j;i,j #3)
(3.10) ab = 2 ohaohn—33 Eﬁg’ag_4hnph@0h&0hn—hihn—33
ab P ajhn ohaohiohn—iiln_jhn—33 (0 <i,j <n;i#j;i#3,4;j #3)
ab ™ hjohiohaohn—iihn—jjhn-33 (0 <i,j <nji # j;i # 3,4;5 # 3)
oneﬂ)one aﬁ_zlhn’ohj’ohi,j’jh4’0hn,iyihn,3’3 (0 <5 <n,t> 337 75 4;1 75 3)
a£_4hn70hi’0hj’0h4,j,jhnfi,ihn73’3 (0 <i<n0<ygy< 4;1 7’5 gt 7& 3)
n_4hn70hi70h470hn—i—j,ih’j,n—jhn—3,3 (O <i<n,j<n—i,i 75 4)
AP *hay ohi0ha,0bn—iihn—3—j3hjn—; (0 <i<mn;j<n-—3;i#4)
For S; (i > 5), there is no solution. O

4. Proof of Theorem 1.1.

In this section we will give the proof of Theorem 1.1. First we need
the following lemma:

Lemma 4.1. Let p > 7 andn > 2. Lett = s+ sp+ sp> +p". Then the
following two properties hold:
(a) for2<r<s-+4, Eth_T+4’tq+S_r_2(Z/p,Z/p) =0.
(b) the product Ysby,—190 € Extf4+4’tq+s_3(Z/p, Z/p) is non-
zero.
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Proof. Since the elements by ,—1, h10h20, a§ *haoheihi2 € E™" are
all permanent cycles in the MSS and converge nontrivially to b,_1, go,

Vs € Extj{*(Z/p,Z/p) respectively, it follows that the product element

Ysbn_190 € Extf4+4’tq+373(Z/p, Z/p) is represented by

a3 *haohe,1h1 2h2,0h1,0b1 -1 € Ef+4’tq+s_3’7s+p_8
in the MSS.
(a) According to Theorem 3.1(1)(2), ES™"HH14T577=2% — () for p > 2

and n # 3. The only nontrivial case is

s—r+4,tq+s—r—2,% —4
E; ! = Z/p{a3 “hsoha1hi2haphaohio}

for r = 2 and n = 3. Since dl(h470) = hi1oh3,1 + haoh22 + haohi3 # 0,
then hy o becomes zero in EZ** for k > 2. According to the above state-
ment a§_4h370h2,1h1,2 and hg oh1,o are permanent cycles in the May spec-
tral sequence, thus they are always nontrivial in E;""" for any k > 1. It
follows that a§_4h370h271h1,2h470h270h170 becomes trivial in E,‘z+2’tq+8_4’*
for k > 2.

Since

gtk st btater=2(7 ), 7, p)

for k > 2, it follows that Extf477“+4’tq+57r72’(Z/p, Z/p) = 0 for r > 2.
Thus we have proven part (a).

(b) In what follows we need to show that a§_3h370h271 hi2haoh1,0b1 -1
can not be hit by the May differential d,: Fi>tts—3Tstpr=8 _
Eﬁ+4’tq+873’7s+p78 for any r > 1.

According to the above analysis we only need to consider the genera-
tors of Ef+3’tq+5_3’M with M > 7s+p—8. Hence by Theorem 3.1 we do
not need to consider the generators with May filtrations M2, Mg, M7
as their May differentials will not touch a§_3h3,0h271h1,2h170h270b17n_1.
For other generators we list them up with their first May differentials in
the following table:
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Ef+3’tq+s_3’M'in M first May differential
1st a§_4alh4,0h3,0h2,0h1,2b2,0 M3 a§_4a1h1,0h3,1h3,0h2,0h1,252,0 + -
2nd a§73h470h270h1,0h1’262,0 Mf a§73h3,0h1,3h2,0h1,0h1,2b2,0 + -
3rd a3~ *arha,ohs oh1,0h2,1b2,0 M3| a5~ %arhaoho,2hs0h1,0h2,1b2,0 + - -
4th a§73h3,0h2,0h1,0h2,252,0 M3 a§73h3,0h2,0h1,0h1,2h1,3b2,0 +oe
5th a§_3h3,0h2,0h1,0h2,1b2,1 M3 a§_3h3,0h2,0h1,0h1,1h1,2b2,1 + -
6th a4a§74h3,0h2,0h1,0h1,252,0 M3 alh3,10«§74h3,0h2,0h1,Oh1,2b2,0 + -
Tth a§_3h3’0h270h1,0h1’2b3,0 Mg’ ZEero
8th h(ll) (s=p—-1) Mg affghj,ohnfj,jhi,0h4,0hn—3,3bn7¢,¢71 +-
(0<i<mn,i#4) (j #£1,3,4)
9th hY) (s=p-1) M| a3y 0hn—j jhiohn—iihaobn—3,2+ - -
(0<i<n,iz#4) (4 #1i,4)
10th hé‘) (s=p—-1) M7 ™ Yashy ohn—k khjohn—jjhiohn—iifn_33+ -
(0 <id,j <nji#j;i,5 #3) (k #1,5,3)
11th) hff) (s=p—-1) M5 afl_4ajhk,Ohn—k,kh4,0hi,0hn—i,ihn—j,jhn73,3+ e
(0 <y j <mji#g5i#3,4] #3) (k #1,5,3,4)
12th hfr,l) (s=p—1) M a3 hi ohn—k kR 0hn—i,ihj0hn—j jh1,3+ -
(0<_i,j<n;i75j) (k #1,9)
13th| hf;) (s=p—1) IMTY] a%74akhnfkr,kh4,0hz‘,0hnfi,ihj,Ohnfj,jhn—&S"F e
(0<id,j <nji#jJ;i#3,45#3) (k#1,5,3)
14th h(71) (s=p—1) M7 as™* aghy g khnohjohiej jhn—iihaohn_3 3+ -
(0<i,j<m;i>g;j#4i#3) (k #0,3)
15th hg) (s=p—1) M a5 akhn g khn,ohiohn—iihjohi—j jhn_3,35+
(0<i<m0<j<disjis3) (k #0,4,3)
16th hé‘) (s=p—1) M s aghn—k ki ohn—i—jibjn_jhaohn—3,3 +
0<i<m;j<mn—ii#4) (k #3)
17th) h(ll()) (s=p—-1) M7 as™ aghy g haohiohn—iihn—3—j3hjn—j 4+

O<i<mn;j<n-—3;i#4)

(k #1)

In the above diagram the first May differential of the seventh generator
is zero since the first May differentials of a§73h370h2,0h170, hi2 and b3
are all zero. For the first six generators with May filtration M}, we
see that the first May differential of each generator contains at least a
term which is not in the first May differential of the other generators.
It follows that the first May differentials of the generators are linearly

implies that Ey

3+3,tq+373,Mjf

_ 3
independent and thus the cycle of Ef+3’tq+s M

= 0 for r > 2 and hence

-3 s+3,tq+s—3,M3
a3 “hsoh2,1hi2h1,0h2,0b1n—1 & dr(Er *

must be zero. This

) for r > 1.
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By the same method we can similarly show that for the generators count-
ing from 7 to 11, there is

a§ " hs ohah1 2k 0hoobn-1 ¢ dr(EiJrS’tqug’M?) for r >1
with corresponding ¢ and n for each mentioned generator.
We deal with the last six families of generators differently. By the
table (10) in the last part of the proof of Theorem 3.1, we see that hﬁ,‘f
(5 <m < 10) all come from the first May differential of

s—3
ay, "hnohiohaohn—iihn—33.

Thus dl(hgl) ) (5 < m < 10) will possibly be linearly dependent in this
case. In order to avoid this, we first just consider hg). Since dy (hg)) #0,
it follows that hg) vanishes in E;+5’tq+5_3’Mﬁ. Now for the remaining
five families of generators, according to the above table we see that the
first May differential of each generator contains at least a term which
is not in the first May differential of the other generators. It follows
that the first May differentials of these generators are linearly indepen-

dent. Thus h£2 (6 < m < 10) also vanish in E;+3’tq+s_3’Mﬁ. Hence
EZ+3’tq+s_3’M“ =0 for k > 2 and then

_ 13,tq+s—3,M™
a3 >h3oh21h1,2h1,0h2,0b1 n1 & dp(Br 700 W for 7> 1.

According to the above discussion, we see that
-3
as “hsoha1hi2hiohoobin—1

cannot be hit by any May differential for n > 2. Thus it is a per-

manent cycle in the MSS and converges nontrivially to sb,_190 €

Extf4+4’tq+373(Z/p, Z/p). Thus we have proven the part (b). O
We need also the following lemma:

Lemma 4.2. [3] Let p > 5 and n > 2. Then
(ivi0)+ (bu-190) € Ext " 7(H (V(1)),Z/p)
converges to a nontrivial homotopy element ¢, € 7T(2+p+pn)q_4V(1).

In what follows we give our proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2 we see that
(irio)s (b-190) € Bxty* 7 (H" (V (1)), 2/p)
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converges to a nontrivial homotopy element ¢, € moypipnyg—aV (1)
Consider the following composite of maps:

Fom@pteha-dg Sny ) 2y p9) Ly sos(bpptay (g
Joj132 sr—s(1+p+p?)g+(p+2)a+3 g
where v® denotes the n-times of composites of v. Thus ]?is represented
by
¢ = (jog1j2)«(v")«(i2i10)+ (bp—190) = (Joj1i2y i2i1%0)«(bn—190)
in the ASS. Since Vs € T(s_34(s—1)p+sp?)g—3 1S represented by
5, € Extz(s—iﬂ-(s—1)p+sp2)q+s—3(Z/p7 Z/p)

due to [12], by the knowledge of Yoneda products we know that the
composite

Ext%(2/p, 2/p) "8 BxtY(H*V(2),2/p)
(jojljzl;w)s Extii(s—?)-l-(s—1)p+sp2)‘I+S—3(Z/p’ 7./p)
is multiplication (up to a nonzero scalar) by
3, € EXtZ(S_3+(S_1)p+8p2)q+5_3(Z/p7 7./p)).
Hence fis represented up to a nonzero scalar by a non-zero element

~ s s+sp4sp2+p™ s—
Ysbn—190 € EXtA+47( Fophept et et S(Z/PaZ/P))

in the ASS (see Lemma 4.1(b)).
Moreover, by Lemma 4.1(a), Jsb,—190 cannot be hit by the Adams
differential
dr: Eﬁfr+4,(s+sp+sp2+p")q+sfr72 N Eﬁ+4,(s+sp+sp2+p")q+3737

for r > 2, hence the corresponding homotopy element ]7 € S is non-
trivial. Thus we have finished the proof of Theorem 1.1. O
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