ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 41 (2015), No. 1, pp. 101–107

Title:

On the eigenvalues of normal edge-transitive Cayley graphs

Author(s):

M. Ghorbani

Published by Iranian Mathematical Society http://bims.ims.ir

ON THE EIGENVALUES OF NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS

M. GHORBANI

(Communicated by Jamshid Moori)

ABSTRACT. A graph Γ is said to be vertex-transitive or edge-transitive if the automorphism group of Γ acts transitively on $V(\Gamma)$ or $E(\Gamma)$, respectively. Let $\Gamma = Cay(G,S)$ be a Cayley graph on G relative to S. Then, Γ is said to be normal edge-transitive, if $N_{Aut(\Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-transitive Cayley graphs of the groups D_{2n} and T_{4n} are given.

Keywords: Eigenvalues, Cayley graphs, normal graph. **MSC(2010):** Primary: 05C40; Secondary: 05C90.

1. Introduction

Throughout this paper, all graphs are finite, simple, undirected and connected. For a graph Γ , we denote the vertex set, the edge set and the automorphism group of Γ by $V(\Gamma), E(\Gamma)$ and $Aut(\Gamma)$, respectively. Let G be a finite group and S a subset of G such that $1 \notin S$, $S = S^{-1}$ and $G = \langle S \rangle 5$. The Cayley graph $\Gamma = Cay(G, S)$ on G is a graph with vertex set $V(\Gamma) = G$ and two vertices $x, y \in G$ are adjacent if and only if $xy^{-1} \in S$. The Cayley graph $\Gamma = Cay(G, S)$ is normal if G is a normal subgroup of $Aut(\Gamma)$.

Recently, edge-transitive Cayley graphs of small valency are considered by mathematicians. In [7], all edge-transitive Cayley graphs of valency four and odd order are characterized.

Normal edge-transitive Cayley graphs on the groups \mathbb{Z}_{pq} , where p and q are distinct primes, are classified by Houlis [6]. In [1] the authors

Article electronically published on February 15, 2015. Received: 18 May 2013, Accepted: 15 December 2013.

studied normal edge-transitive Cayley graphs on some abelian groups of valency at most 5 and in [2] edge-transitive Cayley graphs of valency 4 on non-abelian simple groups are considered.

In this paper, we compute the eigenvalues of normal edge-transitive Cayley graphs on the groups D_{2n} and T_{4n} . It should be noted that for the group T_{4n} , we will investigate all cases for which the Cayley graph $\Gamma = Cay(T_{4n}, S)$ is normal edge-transitive of valency four.

In the next section, we give necessary definitions and some preliminary results. Section 3 contains the main results, i.e., the explicit formulas for eigenvalues of normal edge-transitive Cayley graphs $Cay(T_{4n}, S)$ and $Cay(D_{2n}, S)$.

2. Definitions and preliminaries

Our notation is standard and mainly taken from the standard books of graph theory such as [5]. A graph Γ is said to be vertex-transitive if $Aut(\Gamma)$ acts transitively on $V(\Gamma)$, that is, for every pair of vertices $u,v\in V(\Gamma)$ there exits an automorphism $\alpha\in Aut(\Gamma)$ such that $\alpha(u)=v$. An edge-transitive graph can be defined similarly.

Given any element $g \in G$, we define the permutation ρ_g on G by $\rho_g(x) = xg$ for all $x \in G$. Then $R(G) = \{\rho_g | g \in G\}$ is a permutation group isomorphic to G, which is called the right regular representation of G. Then the subgroup Aut(G,S) of Aut(G) is defined as $Aut(G,S) = \{\alpha \in Aut(G), S^{\alpha} = S\}$. In [1] it is proved that Aut(G,S) is a subgroup of $Aut(Cay(G,S))_1$, the stabilizer of the vertex 1 in Aut(Cay(G,S)).

Given a positive integer s an s-arc is a sequence $(v_0, v_1, ..., v_s)$ of s+1 vertices of $V(\Gamma)$ such that $(v_{i-1}, v_i) \in E(\Gamma)$ and $v_{i-1} \neq v_{i+1}$ for all i.

Definition 2.1. A Cayley graph Γ is called normal edge-transitive or normal arc-transitive if $N_A(R(G))$ acts transitively on the set of edges or arcs of Γ , respectively. If Γ is normal edge-transitive, but not normal arc-transitive, then it is called a normal half- arc-transitive Cayley graph.

Let Γ be a graph with vertex set $V(\Gamma) = \{v_1, v_2, \dots, v_n\}$, the adjacency matrix $A(\Gamma)$ of Γ is the $n \times n$ symmetric matrix $[a_{ij}]$, such that $a_{ij} = 1$ if v_i and v_j are adjacent and 0, otherwise. The characteristic polynomial $\phi(\Gamma, x)$ of the graph Γ is defined [5] as:

$$\phi(\Gamma, x) = det(xI - A).$$

The roots of the characteristic polynomial are the eigenvalues of the graph G and form the spectrum of this graph.

103 Ghorbani

A circulant matrix is a matrix whose rows are a cyclic permutation of the first row. Thus,

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}$$

is a circulant matrix, denoted by $[[a_1, a_2, \dots, a_n]]$. The eigenvectors of a circulant matrix are given by

$$v_j = (1, \omega^j, \omega^{2j}, \cdots, \omega^{(n-1)j}), j = 0, 1, \cdots, n-1,$$

where $\omega = e^{\frac{2\pi}{n}i}$ are the n-th roots of unity and $i=\sqrt{-1}$ is the imaginary unit. The corresponding eigenvalues are then given by

$$\lambda_j = a_1 + a_2 \omega^j + a_3 \omega^{2j} + \dots + a_n \omega^{(n-1)j}$$
.

A block matrix M is a matrix whose entries are again a matrix. Suppose A, B, C, and D are matrices of dimension $(n \times n), (n \times m), (m \times n)$, and $(m \times m)$, respectively. Then

$$det \left(\begin{array}{cc} A & 0 \\ C & D \end{array} \right) = det(A)det(D).$$

Motivated by the above results, we can prove that for the matrix

$$C = \left(\begin{array}{cc} 0 & A \\ A^t & B \end{array}\right)$$

the characteristic polynomial is

$$\phi(C,\lambda) = |\lambda I - C| = |\lambda I - AA^t|.$$

3. Main results

In this section we present the eigenvalues of some normal edge-transitive Cayley graphs. Throughout this paper, the following results are crucial and play a significant role in computing the eigenvalues of Cayley graphs.

Lemma 3.1. [8] Let $\Gamma = Cay(G, S)$ be a connected Cayley graph on S. Then

(1) Γ is normal edge-transitive if and only if Aut(G,S) is either transitive on S, or has two orbits in S in the form of T and T^{-1} , where T is a non-empty subset of S such that $S = T \cup T^{-1}$.

(2) Γ is normal arc-transitive if and only if Aut(G, S) is transitive on S.

Corollary 3.2. Let $\Gamma = Cay(G, S)$ and H be the subset of all involutions of the group G. If $H \neq G$ and Γ with respect connected normal edge-transitive, then its valency is even.

Let $T_{4n} = \langle a, b, a^{2n} = 1, b^2 = a^n, bab^{-1} = a^{-1} \rangle$. It is easy to prove that the elements of T_{4n} are

$$1, a, \dots, a^{2n-1}, b, ba, \dots, ba^{2n-1}.$$

We can also prove that for $1 \le i \le 2n-1, \ ba^iba^i = b^2$ and so $o(ba^i) = 4.$

Theorem 3.3. We have

$$|Aut(T_{4n})| = 2n\varphi(2n),$$

where, φ is Euler function.

Proof. Consider the map $f_{i,j}: T_{4n} \to T_{4n}$, where

$$f_{i,j}: \begin{cases} a \leadsto a^i \\ b \leadsto ba^j \end{cases}$$

and set $Y = \{f_{i,j} | (i,2n) = 1, 0 \le j \le 2n-1\}$. All elements of Y are automorphism. Conversely, let α be an automorphism of T_{4n} . Since, $\langle a \rangle$ is characteristic subgroup of T_{4n} , then necessarily, under every automorphism of T_{4n} , a maps to $a^i, (i,2n) = 1$, and b maps to an element of order 4, e.g. ba^i . This implies that $\alpha \in Y$. On the other hand, assume that $f_{i,j}, f_{r,s} \in Y$. By definition, $f_{i,j}of_{r,s}(a) = a^{ir}$ and $f_{i,j}of_{r,s}(b) = f_{i,j}(ba^s) = ba^{si+j}$. This means that $f_{i,j}of_{r,s} = f_{ir,si+j}(0 \le si+j \le 2n-1, (ir,2n) = 1)$ and so Y is closed respect to multiplication. One can also prove easily that all elements have an inverse and this completes the proof.

Theorem 3.4. Let $S = \{ba^i, b, (ba^i)^{-1}, b^{-1}\}$, then $\Gamma = Cay(G, S)$ is a normal edge-transitive Cayley graph.

Proof. Assume that $f_{i,j}(b) = ba$ so that $ba^j = ba$, then j = 1. On the other hand, $f_{i,j}(ba) = b$ implies that i = 2n - 1. Hence, $f_{2n-1,1}(b) = ba$ and $f_{2n-1,1}(ba) = b$. Further, if $f_{r,s}(b) = b^{-1}$, then $ba^s = b^{-1}$ and thus

105 Ghorbani

s = n. Since $f_{r,s}(ba) = (ba)^{-1}$, one can conclude that r = 1. This implies that $f_{r,s} = f_{1,n}$. By continuing this method one can see that

$$id = f_{1,0}, f_{n-1,n+1}, f_{n+1,n}, f_{n+1,0}, f_{n-1,1} \in Aut(G, S).$$

Suppose now

$$id \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, f_{2n-1,1} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix},$$

$$f_{1,n} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, f_{n+1,0} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix},$$

$$f_{n-1,n+1} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, f_{n+1,n} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix},$$

$$f_{n-1,1} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, f_{2n-1,n+1} \cong \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

By using a GAP program, we can prove that $Aut(G, S) \cong D_{2n}$ and Aut(G, S) acts transitively on S.

Corollary 3.5. Let $S = \{ba^i, ba^t, (ba^i)^{-1}, (ba^t)^{-1}\}$, where $1 \le i, t \le 2n$ and $i \ne t$, then $\Gamma = Cay(G, S)$ is a normal edge-transitive Cayley graph.

Proof. Similar to the last theorem, we have

$$\{id, f_{2n-1,t+i}, f_{1,n}, f_{2n-1,n+i+t}\} \subseteq Aut(G, S)$$
 and so $S = T \cup T^{-1}$, where $T = \{ba^i, ba^t\}$.

Corollary 3.6. The tetravalent Cayley graph $\Gamma = Cay(G, S)$ for $S = \{b, b^{-1}, ba, (ba)^{-1}\}$ is normal arc-transitive.

Theorem 3.7. For $S = \{b, ba, b^{-1}, (ba)^{-1}\}$, the spectrum of $\Gamma = Cay(G, S)$ is

$$Spec(\Gamma) = \begin{pmatrix} -4 & \pm \alpha & 4 \\ 1 & 1 & 1 \end{pmatrix},$$

where $\omega = e^{\frac{\pi}{n}i}$, $\alpha = 1 + \omega + \omega^{nr} + \omega^{(n+1)r}$ and $r = 1, \dots, 2n-1$.

Proof. Let $S = \{b, ba, b^{-1}, (ba)^{-1}\}$. We claim that the Cayley graph $\Gamma = Cay(G, S)$ be a circulant bipartite graph. Let

$$X = \{1, a, \dots, a^{2n-1}\}, Y = \{b, ba, \dots, ba^{2n-1}\}.$$

The vertices of X are not adjacent, since for all integers $n, a^n \notin S$ and similarly, all vertices of Y are not adjacent. This implies that $\Gamma =$

Cay(G,S) is bipartite and so, the adjacency matrix of Γ can be written as the following form

$$A = \left(\begin{array}{cc} O & B \\ B^t & O \end{array}\right),$$

where B is the circulant matrix $[[1,1,0,0,\cdots,0,\overbrace{1}^{n},\overbrace{1}^{n+1},0,\cdots,0]]$. Hence, $\phi(\Gamma,\lambda)=\det(\lambda^{2}I-B^{2})=\det(\lambda I-B)\det(\lambda I+B)$. Since B is a circulant matrix, its eigenvalues are

$$\lambda_r = 1 + \sum_{j=2}^{2n} \omega^{(j-1)r}, \ r = 0, 1, \dots, 2n - 1, \ \omega = e^{\frac{\pi}{n}i}.$$

If r=0, then $\lambda_0=4$ and so ± 4 are eigenvalues of Γ , because it is bipartite. If $r\geq 1$, then $\lambda_r=1+\omega+\omega^{nr}+\omega^{(n+1)r}$ and the proof is completed.

It is well-known fact that the dihedral group D_{2n} can be presented as follows:

$$D_{2n} = \langle a, b : a^n = b^2 = 1, bab^{-1} = a^{-1} \rangle$$

Similar to group T_{4n} , we compute the eigenvalues of $\Gamma = Cay(D_{2n}, S)$, where Γ is normal edge-transitive. First let us recall the following lemma which present conditions that Γ is normal edge-transitive:

Theorem 3.8. [9] Let $\Gamma = Cay(D_{2n}, S)$ is a Cayley graph on the dihedral group D_{2n} of valency four. If $S = \{b, ba, ba^i, ba^{1-i}\}$ such that $(n, 2i - 1) = 1, 2i(1 - i) \equiv 0 \pmod{n}$, then Γ is normal edge-transitive.

We claim that the Cayley graph $\Gamma = Cay(D_{2n}, S)$ be a circulant bipartite graph. Let

$$X = \{1, a, \dots, a^{n-1}\}, Y = \{b, ba, \dots, ba^{n-1}\}.$$

Similar to the proof of Theorem 3.7, one can prove that the elements of X and Y are not adjacent with themselves. Hence, $\Gamma = Cay(D_{2n}, S)$ is a bipartite Cayley graph. It should be noted that 1 is adjacent with all elements of S. If ba^j be adjacent with a^i , then $ba^{j-i} \in S$ and thus, $j-i \equiv 0, 1, i$ or $1-i \pmod{n}$. This implies the adjacency matrix of Γ is as follows,

$$A = \left(\begin{array}{cc} O & B \\ B^t & O \end{array} \right),$$

107 Ghorbani

where B is the circulant matrix $[[1,0,\cdots,0,\overbrace{1}^{i},0,\cdots,\overbrace{1}^{n-i+1},0,\cdots,0]]$. Hence, $\phi(\Gamma,\lambda)=\det(\lambda^{2}I-B^{2})=\det(\lambda I-B)\det(\lambda I+B)$. Since B is a circulant matrix, its eigenvalues are

$$\lambda_r = 1 + \sum_{j=2}^n \omega^{(j-1)r}, \ r = 0, 1, \dots, 2n - 1, \ \omega = e^{\frac{\pi}{n}i}.$$

If r=0, then $\lambda_0=4$ and so ± 4 are eigenvalues of Γ , because it is bipartite. If $r\geq 1$, then $\lambda_r=1+\omega^r+\omega^{ir}+\omega^{(n-i+1)r}$ and we have proved the following theorem.

Theorem 3.9. Let $S = \{b, ba, ba^i, ba^{1-i}\}$ and $\Gamma = Cay(D_{2n}, S)$ be normal edge-transitive Cayley graph on D_{2n} respect with S, then the spectrum of Γ is

$$Spec(\Gamma) = \left(\begin{array}{ccc} -4 & \pm \beta & 4 \\ 1 & 1 & 1 \end{array} \right),$$

where $\omega = e^{\frac{2\pi}{n}i}$, $\beta = 1 + \omega^k + \omega^{ik} + \omega^{(n-i+1)k}$ and $k = 1, \dots, n-1$.

References

- [1] B. Alspach, D. Marušić and L. Nowitz, Constructing graphs which are $\frac{1}{2}$ -transitive, J. Austral. Math. Soc. A **56** (1994), no. 3, 391–402.
- [2] C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247–256.
- [3] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, *J. Combin. Theory Ser. B* **42** (1987), no. 2, 196–211.
- [4] Y. Q. Feng, K. S. Wang and C. X. Zhou, Tetravalent half-transitive graphs of order 4p, European J. Combin. 28 (2007), no. 3, 726–733.
- [5] C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
- [6] P. C. Houlis, Quotients of normal edge-transitive Cayley graphs, MS Thesis, University of Western Australia, 1998.
- [7] C. H. Li, Z. P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, *J. Combin. Theory Ser. B* **96** (2006), no. 1, 164–181.
- [8] C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc. 60 (1999), no. 2, 207–220
- [9] A. A. Talebi, Some normal edge-transitive Cayley graphs on dihedral groups, *J. Math. Comput. Sci.* **2** (2011) 448–452.

(Modjtaba Ghorbani) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SHAHID RAJAEE TEACHER TRAINING UNIVERSITY, P.O. BOX 16785-136, TEHRAN, IRAN

 $E ext{-}mail\ address: mghorbani@srttu.edu}$