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Abstract. We give some sufficient conditions under which the tu-
ple of the adjoint of weighted composition operators (C∗

ω1,φ1
, C∗

ω2,φ2
)

on the Hilbert space H of analytic functions is supercyclic.
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1. Introduction

An n-tuple of operators is a finite sequence of length n of commuting
continuous linear operators T1, T2, · · · , Tn acting on an infinite dimen-
sional separable Banach space X. If T = (T1, T2, · · · , Tn) is an n-tuple
of operators, then we let

F = FT = {T k1
1 T k2

2 · · ·T kn
n : ki ≥ 0, i = 1, 2, · · · , n}

be the semigroup generated by T. If x ∈ X, the orbit of x under the
tuple T is denoted by

Orb(T, x) = {Sx : S ∈ F}.
A vector x ∈ X is called a hypercyclic vector for the tuple T if

Orb(T, x) is dense in X and in this case the tuple T is called hyper-
cyclic. Also, a vector x is called a supercyclic vector for T if COrb(T, x)
is dense in X and in this case the tuple T is called supercyclic. Similarly,
a vector x is called a cyclic vector for the tuple T if the linear span of
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Supercyclic tuples 122

Orb(T, x) is dense in X and in this case the tuple T is called cyclic.
From the definition, supercyclicity is an intermediate property among
the hypercyclicity and the cyclicity.

Moreover, the tuple T becomes a single operator when n = 1. Thus
the above definitions generalize the hypercyclicity, supercyclicity and
cyclicity of a single operator to a tuple of operators.

Supercyclicity was introduced in the sixties by Hilden and Wallen [5].
They proved that every unilateral weighted shift is supercyclic. Since
1991, this property has been studied, for example, see Godefroy and
Shapiro’ work [4]. The first example of supercyclic operator in infinite
dimensional Banach spaces (moreover hypercyclic) was discovered by
Rolewicz [9] in 1969. Apart from supercyclicity, the other properties
have also been studied in recent years. Such as, Liang and Zhou [7]
characterized the hereditarily hypercyclicity of the unilateral (or bilat-
eral) weighted shifts and gave some conditions for the supercyclicity of
three different weighted shifts. Zhang and Zhou [17] studied disjoint
mixing weighted backward shifts on the space of all complex valued
square summable sequences. We refer the readers to these papers and
their references.

In the present paper, we want to extend some properties of super-
cyclicity from a single operator to a n-tuple of operators. But for sim-
plicity, we only prove our results for the case n = 2. That is, we consider
the tuple T = (T1, T2), a pair of commuting continuous linear operators.
In this case, we still let

F = {T k1
1 T k2

2 : ki ≥ 0, i = 1, 2}.

For x ∈ X, the orbit of x under the tuple T is the set

Orb(T, x) = {Sx : S ∈ F} = {T k1
1 T k2

2 x : ki ≥ 0, i = 1, 2}.

The notation T 2
d we will refer to the set of two copies of an element of

F , that is,

T 2
d = {S1 ⊕ S2 : Si ∈ F , i = 1, 2} = {T k1

1 T k2
2 ⊕ T k3

1 T k4
2 : ki ≥ 0, i = 1, 2, 3, 4}.

We say that T 2
d is hypercyclic provided there are x1, x2 ∈ X such that

{W (x1 ⊕ x2) : W ∈ T 2
d }

is dense in X
⊕

X, and similarly we say that T 2
d is supercyclic provided

there are x1, x2 ∈ X such that

C{W (x1 ⊕ x2) : W ∈ T 2
d }



123 Liang and Zhou

is dense in X
⊕

X. Also, we say that T 2
d is cyclic provided there are

x1, x2 ∈ X such that the linear span of {W (x1 ⊕ x2) : W ∈ T 2
d } is dense

in X
⊕

X.
We denote D the open unit disc in the complex plane C. In the follow-

ing, let H be an infinite dimensional separable Hilbert space of analytic
functions defined on D such that for each λ ∈ D, the linear functional of
point evaluation at λ given by f → f(λ) is bounded. In the following, a
Hilbert space of analytic functions H we mean one satisfying the above
conditions. Moreover, the constants and the identity function f(z) = z
are in the Hilbert space H.

For any λ ∈ D, let eλ denote the linear functional of point evaluation
at λ on H, that is, eλ(f) = f(λ) for every f ∈ H. Since eλ is a bounded
linear functional, the Riesz representation theorem states that

eλ(f) = ⟨f, kλ⟩

for some kλ ∈ H.
The weighted Hardy space is the well-known example of such Hilbert

space H. Let (β(n))n be a sequence of positive numbers with β(0) = 1.
The weighted Hardy space H2(β) is defined as the space of analytic

functions f =
∑∞

n=0 f̂(n)z
n on D satisfying

∥f∥2β =

∞∑
n=0

|f̂(n)|2|β(n)|2 < ∞.

From the book [2] we know that the classical Hardy space, the Bergman
space and the Dirichlet space are weighted Hardy spaces with β(n) =

1, β(n) = (n+1)−1/2 and β(n) = (n+1)1/2, respectively. These spaces
are Hilbert spaces with the inner product defined by

⟨f, g⟩ =
∞∑
n=0

f̂(n)ĝ(n)(β(n))2

for each f, g ∈ H2(β).
A complex-valued function ω on D for which ωf ∈ H for every f ∈ H

is called a multiplier of H and collection of all multipliers is denoted by
M(H). A multiplication operator Mω defined on H is denoted by

Mωf = ωf, f ∈ H.

Also, note that for each λ ∈ D,

M∗
ωkλ = ω(λ)kλ.
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It is known that each multiplier Mω is a bounded analytic function on
D (see, e.g. [6, P552]), that is, M(H) ⊆ H∞.

If ω ∈ M(H) and φ is an analytic mapping from D into D such that
f ◦ φ ∈ H for every f ∈ H, then from the closed graph theorem we
obtain that the weighted composition operator Cω,φ defined by

Cω,φ(f)(z) = MωCφ(f)(z) = ω(z)f(φ(z))

is bounded. The mapping φ is called the composition map and ω is
called the weight. From now on, we always suppose ω1, ω2 ∈ M(H) and
φ1, φ2 satisfy these properties.

For a positive integer n, the nth iterate of φi, denoted by (φi)n for
i = 1, 2, is the function obtained by composing φi with itself n times;
also, φ0 is defined to be the identity function. Besides, if φi is invertible,
we can define the iterates (φi)−n = φ−1

i ◦ φ−1
i ◦ ... ◦ φ−1

i (n times) for
i = 1, 2.

Now for ω ∈ M(H) and an analytic function φ : D → D, since

C∗
ω,φ(kλ) = w(λ)kφ(λ) for every λ ∈ D, it follows that

C∗n
ω,φ(kλ) =

(
Πn−1

j=0ω(φj(λ))
)
kφn(λ)

for each f ∈ H, λ ∈ D, where kλ is the reproducing kernel of the H.
The holomorphic self-maps of the unit disc D are divided into classes

of elliptic and nonellptic. In this paper, we pay more attention to the
elliptic type. The elliptic type is an automorphism and has a fixed point
in D. It is well-known that this map is conjugate to a rotation z → λz
for some complex number λ with |λ| = 1. The maps that are not elliptic
are called of nonelliptic type. The iterate of a nonelliptic map can be
characterized by the Denjoy-Wolff Iteration Theorem as following,

Proposition 1.1. [2, Theorem 2.51] If φ, not the identity and not an
elliptic automorphism of D, is an analytic map of the disc D into itself,
then there is a point a ∈ D so that the iterates φn of φ converge to a
uniformly on compact subsets of D.

Recently, there has been a great interest in studying the dynamical
properties of a single adjoint weighted composition operator C∗

ω,φ on
the Hilbert space H, see for example monographs [3, 6, 8, 14, 16], which
are good resources for our understanding. We list a result which char-
acterizes the supercyclicity of a weighted composition operator for the
convenience of the readers.
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Proposition 1.2. [6, Theorem 3] Let φ be a disc automorphism. Set

E =
{
λ ∈ D :

{
Πn−1

j=0w ◦ φj(λ)
}
n
is a bounded sequence

}
,

F =
{
λ ∈ D : {(w ◦ φ−n(λ))

−1}n is not a Blaschke sequence
}
,

G =
{
λ ∈ D : {w ◦ φn(λ)}n is not a Blaschke sequence

}
,

H =
{
λ ∈ D :

{(
Πn

j=1w ◦ φ−j(λ)
)−1}

n
is a bounded sequence

}
.

If one of the following conditions holds then C∗
w,φ is a supercyclic oper-

ator.
(i) The sets E and F have limit points in D; moreover, {kφn(λ1)}n

and {kφ−n(λ2)}n are bounded sequences for all λ1 ∈ E and λ2 ∈ F.
(ii) The sets G and H have limit points in D; furthermore, {kφn(λ1)}n

and {kφ−n(λ2)}n are bounded sequences for all λ1 ∈ G and λ2 ∈ H.

For the tuple of adjoint weighted composition operators (C∗
ω1,φ1

,C∗
ω2,φ2

),

the very recent paper [10] gives the sufficient conditions for its hyper-
cyclicity on the Hilbert space H. In 2011, Yousefi characterized the su-
percyclity of multiple weighted composition operators in [11]. From [11],
we know the pair ((Mω1Cφ)

∗, (Mω2Cφ)
∗) can satisfy the Supercyclicity

Criterion under some conditions. We list in the following, under the
prerequisite Mω1CφMω2Cφ = Mω2CφMω1Cφ.

Proposition 1.3. [11, Lemma 2.2] Let φ(z) = eiθz for some θ ∈ [0, 2π]
and every z ∈ D. Also, let ωi : D → C be such that the sets

E1 = {λ ∈ D : lim
n→∞

Πn−1
j=0ω1(e

(j+n)iθλ) · ω2(e
jiθλ) = 0},

and

E−1 =
{
λ ∈ D :

{(
Πn

j=1ω1(e
jiθλ)·ω2(e

−(j+n)iθλ)
)−1}

n
is a bounded sequence

}
,

have limit points in D. Then the pair ((Mω1Cφ)
∗, (Mω2Cφ)

∗) satisfies
the Supercyclicity Criterion.

Proposition 1.4. [11, Theorem 2.3] Let φ be an elliptic automor-
phism with interior fixed point p and ωi : D → C satisfies the in-
equality: |ωi(p)| < 1 < lim

|z|→1−
inf |ωi(z)| for i = 1, 2. Then the pair

((Mω1Cφ)
∗, (Mω2Cφ)

∗) satisfies the Supercyclicity Criterion.
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Building on these foundations, we continue to investigate the super-
cyclicity of the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) on the Hilbert space H. We gen-

eralize the results in [6] and [11] to a certain extent. The proofs of the
present paper are partially based on the work, but some properties are
not easily managed, we need some new methods and calculating tech-
niques. The paper is organized as follows. In Section 2, we list some
lemmas. In Section 3, we show some sufficient conditions for the super-
cyclicity of the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
).

As we all know, linear continuous operators T and S on a separable
infinite dimensional Banach spaceX are quasiconjugate (quasisimilar), if
there exists a continuous map ϕ on X with dense range such that T ◦ϕ =
ϕ ◦ S. Moreover, if ϕ can be chosen to be a homeomorphism, then T
and S are called conjugate (similar). The quasisimilarity and similarity
preserve supercyclicity and hypercyclicity. In this paper, we mainly
use the similarity preserves supercyclicty. For general case, S satisfies
the Supercyclicity Criterion if and only if T satisfies the Supercyclicity
Criterion when T is similar to S.

2. Some lemmas

Firstly, we give a necessary and sufficient condition for two weighted
composition operators Cω1,φ1 and Cω2,φ2 to commute. In the proof of
the Lemma, we use the fact that the constant and the identity function
f(z) = z are in the Hilbert space H.

Lemma 2.1. [10, Lemma 1] If ω1(z) and ω2(z) are nonzero for all
z ∈ D, then Cω1,φ1 and Cω2,φ2 can commute if and only if

φ1 ◦ φ2 = φ2 ◦ φ1 and ω1 · (ω2 ◦ φ1) = ω2 · (ω1 ◦ φ2).(2.1)

Remark 2.2. In the following, we will always assume that ω1(z) and
ω2(z) are nonzero for all z ∈ D and φ1, φ2 satisfy

φ1 ◦ φ2 = φ2 ◦ φ1, ω1 = ω1 ◦ φ2 and ω2 = ω2 ◦ φ1.(2.2)

It is clear that the condition (2.2) is a special case of (2.1). Thus, the
weighted composition operators Cω1,φ1 and Cω2,φ2 can commute under
the assumption (2.2). There are some examples in [10] satisfying the
condition (2.2). We show them for the convenience of the readers.

Suppose that φr(z) = eirπz where r = p
q , p and q are integers so that

(p, q) = 1. Define the weight wr(z) =
∑∞

n=0 anz
n, where

an =

{
1
2n , (n = 2kq

p for some k ∈ Z),
0, otherwise;
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then wr ∈ H∞. Moreover, wr ◦φr(z) = wr(z) for all z ∈ D and φr ◦φs =
φs ◦ φr.

In the following we denote Ti = C∗
ωi,φi

for i = 1, 2. By easy computa-
tion

Tn
i kz =

(
Πn−1

j=0 (ωi ◦ (φi)j)(z)
)
k(φi)n(z), i = 1, 2, n ≥ 1;

Thus using (2.2) it follows that

Tn
2 T

n
1 kz(2.3)

=
(
Πn−1

k=0(ω2 ◦ (φ2)k)(z)
)(

Πn−1
j=0 (ω1 ◦ (φ1)j ◦ (φ2)n)(z)

)
k(φ1)n◦(φ2)n(z)

=
(
Πn−1

k=0(ω2 ◦ (φ2)k)(z)
)(

Πn−1
j=0 (ω1 ◦ (φ2)n ◦ (φ1)j)(z)

)
k(φ1)n◦(φ2)n(z)

=
(
Πn−1

k=0(ω2 ◦ (φ2)k)(z)
)(

Πn−1
j=0 (ω1 ◦ (φ1)j)(z)

)
k(φ1)n◦(φ2)n(z)

=
[
Πn−1

j=0

(
(ω2 ◦ (φ2)j)(z) · (ω1 ◦ (φ1)j)(z)

)]
k(φ1)n◦(φ2)n(z)

=
[
Πn−1

j=0

(
(ω1 ◦ (φ1)j)(z) · (ω2 ◦ (φ2)j)(z)

)]
k(φ1)n◦(φ2)n(z).

Next, we first present the Supercyclicity Criterion for a single operator,
similarly we list the Supercyclicity Criterion for tuples.

Proposition 2.3. (Supercyclicity Criterion for a single operator) Let X
be a separable infinite dimensional Banach space and T be a continuous
linear mapping on X. Suppose that there exist two dense subsets Y and
Z in X, a sequence (nk)k∈N of positive integers, and also there exist
mappings Snk

: Z → X such that

(1) TnkSnk
z → z, for every z ∈ Z.

(2) ∥Tnky∥∥Snk
z∥ → 0 for every y ∈ Y and every z ∈ Z.

Then T is supercyclic.

If an operator T holds in the assumptions of Proposition 2.3, then we
will say that T satisfies the Supercyclicity Criterion.

Lemma 2.4. (Supercyclicity Criterion for tuples) [12, Definition 2.1]
Suppose X is a separable infinite dimensional Banach space and T =
(T1, T2) is a pair of continuous linear mappings on X. We say that T
satisfies the Supercyclicity Criterion if there exist two dense subsets Y
and Z in X, and a pair of strictly increasing positive integer sequences
(mk)k∈N and (nk)k∈N, and a sequence of mappings Sk : Z → X such
that
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(1) Tmk
1 Tnk

2 Skz → z, for every z ∈ Z.

(2) ∥Tmk
1 Tnk

2 y∥∥Skz∥ → 0 for every y ∈ Y and every z ∈ Z.

For a bounded linear operator T on a Hilbert space H, we refer to

∞∪
n=1

Ker(Tn)

as the generalized kernel of T, where Ker(Tn) = {f ∈ H : Tnf = 0}.
The following lemma comes from [1, Corollary 3.3].

Lemma 2.5. Let T be a bounded linear operator on a separable Hilbert
space H with dense generalized kernel. Then, the following conditions
are equivalent:

(1) T has a dense range.

(2) T is supercyclic.

(3) T satisfies the Supercyclic Criterion.

Remark 2.6. (1) We refer the interested readers to [15, Theorem 2.3]
to get the proof for this lemma.
(2) The generalized kernel of the tuple T = (T1, T2) is defined as follows
(see, e.g. [13, P392]), by a polynomial p(., .) we will mean

p(z, w) =

m∑
i=1

n∑
j=1

cijz
iwj , z, w ∈ C.

We will denote the generalized kernel of the pair T = (T1, T2) by GK(T ),
that is defined as,

GK(T ) =
∪

{Ker(p(T1, T2)) : p(., .) is a polynomial }.

It is obvious that the set
∪∞

n=1Ker(Tn
2 T

n
1 ) is a subset of GK(T ).

Similarly, the range of the tuple T = (T1, T2) on H can be represented
as follows, ∪

{p(T1, T2)g : p(., .) is a polynomial , g ∈ H}.

Lemma 2.7. [12, Theorem 2.2] Let X be a separable infinite dimen-
sional Banach space and T = (T1, T2) be a pair of operators T1, T2. Then,



129 Liang and Zhou

the following are equivalent,

(i) T satisfies the Supercyclicity Criterion.

(ii) T 2
d is supercyclic on X

⊕
X.

Remark 2.8. In the following, we will use these operators:

T = (T1, T2) = (C∗
ω1,φ1

, C∗
ω2,φ2

),

T 2
d = {T k1

1 T k2
2 ⊕ T k3

1 T k4
2 : ki ≥ 0, i = 1, 2, 3, 4}.

Then from Lemma 2.7, T 2
d is supercyclic on H

⊕
H, when (C∗

ω1,φ1
, C∗

ω2,φ2
)

satisfies the Supercyclicity Criterion.

3. Supercyclicity of the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

)

In this section, we give some sufficient conditions for the supercyclicity
of the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) on the Hilbert space H. Firstly we give the

following four sets A, B, C, D,

A =
{
z ∈ D : the sequence

{
Πn−1

j=0

(
ω1 ◦ (φ1)j(z) · ω2 ◦ (φ2)j(z)

)}
n
is bounded

}
,

B =
{
z ∈ D : lim

n→∞
Πn

j=1

(
ω1 ◦ (φ1)−j(z) · ω2 ◦ (φ2)−j(z)

)−1

= 0
}
,

C =
{
z ∈ D : lim

n→∞
Πn−1

j=0

(
ω1 ◦ (φ1)j(z) · ω2 ◦ (φ2)j(z)

)
= 0

}
,

D =
{
z ∈ D : the sequence

{
Πn

j=1

(
ω1 ◦ (φ1)−j(z) · ω2 ◦ (φ2)−j(z)

)−1}
n
is bounded

}
.

Theorem 3.1. Let ω1(z), ω2(z) be two nonzero complex-valued functions
for all z ∈ D and φ1(z), φ2(z) be two automorphisms on the unit disc D
satisfying (2.2). Suppose

M := sup
z∈D

sup
n∈Z

∥k(φ1)n◦(φ2)n(z)∥ < ∞.(3.1)

If one of the following holds:

(i) The sets A and B have limit points in D.
(ii) The sets C and D have limit points in D.

Then the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

) is supercyclic on H. Moreover, T 2
d is

supercyclic on H
⊕

H.

Proof. We will use Lemma 2.3 to prove the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

) is su-
percyclic. Firstly, we suppose the condition (i) is true.

Take SA = span{kz : z ∈ A} and SB = span{kz : z ∈ B}. Then, the
sets SA and SB are dense in Hilbert space H, that is, SA = SB = H.
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In fact, if f ∈ H is orthogonal to kz for every z ∈ SA, then f(z) =
⟨f, kz⟩. From the condition (i), the set A has the limit point in D, hence
the identity theorem for holomorphic functions implies that f vanishes
identically on H. Thus (SA)

⊥ = {0}. That is SA = H. By the similar
argument, we can obtain that SB = H.

If we take Y = SA and Z = SB. Then Y and Z are two dense subsets
of the Hilbert space H.

Since φ1 and φ2 are two automorphisms on the unit disc D, thus φ−1
1

and φ−1
2 exist on D. Then from (2.2), it follows that

φ−1
1 ◦ φ−1

2 = φ−1
2 ◦ φ−1

1 , ω1 = ω1 ◦ φ−1
2 and ω2 = ω2 ◦ φ−1

1 .(3.2)

We still denote Ti = C∗
ωi,φi

for i = 1, 2. From (2.3), we have that

Tn
2 T

n
1 kz =

[
Πn−1

j=0

(
(ω1 ◦ (φ1)j)(z) · (ω2 ◦ (φ2)j)(z)

)]
(3.3)

· k(φ1)n◦(φ2)n(z), n ≥ 1.

To find the desired right inverse of T2T1. Next, we divide the proof
into two cases by the fact that the set GB = {kz : z ∈ B} is linearly
independent or not.

Case (I) Suppose that GB is a linearly independent set. Define the
operator S : GB → H by

Skz = [(ω1 ◦ φ−1
1 (z)) · (ω2 ◦ φ−1

2 (z))]−1kφ−1
2 ◦φ−1

1 (z), z ∈ D.

Thus, we can define Sn on GB for all n ≥ 1 by (3.2). That is,

Snkz = Πn
j=1[ω1 ◦ (φ1)−j(z) · ω2 ◦ (φ2)−j(z)]−1k(φ2)−n◦(φ1)−n(z).(3.4)

Since GB is linearly independent, then we can extend S by linearity on
SB = span{kz : z ∈ B}. Therefore Sn is well-defined on SB for all
n ≥ 1.

In this case, by the following conditions from (3.2)

φ1 ◦ φ2 = φ2 ◦ φ1, ω2 = ω2 ◦ φ1,
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it is clear that

T2T1Skz = T2T1

(
[(ω1 ◦ φ−1

1 (z)) · (ω2 ◦ φ−1
2 (z))]−1kφ−1

2 ◦φ−1
1 (z)

)
= T2

(
[ω2 ◦ φ−1

2 ◦ φ1(z)]−1kφ−1
2 (z)

)
= ω2(z)[ω2 ◦ φ−1

2 ◦ (φ1 ◦ φ2)(z)]−1kz

= ω2(z)[ω2 ◦ φ−1
2 ◦ (φ2 ◦ φ1)(z)]−1kz

= ω2(z)[ω2(φ1(z))]−1kz

= ω2(z)[ω2(z)]−1kz

= kz.

From which it follows that T2T1S is the identity on SB. Therefore,
Tn
2 T

n
1 S

n is the identity on SB for every n ≥ 1. That is

Tn
2 T

n
1 S

nz → z for every z ∈ Z = SB.(3.5)

On the other hand, by condition (i) and (3.1) it follows that

lim
n→∞

∥Tn
2 T

n
1 ky∥∥Snkz∥(3.6)

= lim
n→∞

∥
[
Πn−1

j=0

(
(ω1 ◦ (φ1)j)(y) · (ω2 ◦ (φ2)j)(y)

)]
k(φ1)n◦(φ2)n(y)∥

·∥Πn
j=1[ω1 ◦ (φ1)−j(z) · ω2 ◦ (φ2)−j(z)]−1k(φ2)−n◦(φ1)−n(z)∥

≤ M2 sup
n∈N

|Πn−1
j=0

(
(ω1 ◦ (φ1)j)(y) · (ω2 ◦ (φ2)j)(y)

)
|

· lim
n→∞

|Πn
j=1[ω1 ◦ (φ1)−j(z) · ω2 ◦ (φ2)−j(z)]−1|

= 0, for ∀y ∈ Y, ∀z ∈ Z.

From (3.5), (3.6) and Lemma 2.3, it follows the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

)

satisfies the Supercyclicity Criterion. By Lemma 2.5, T 2
d is supercyclic

on H
⊕

H.
Case (II). Now suppose that GB = {kz : z ∈ B} is not necessarily

linearly independent. In this case, we use the method which has been
used by Godefroy and Shapiro in [4, Theorem 4.5]. For the convenience
of the readers, we include this method. Consider a countable dense
subset

B1 = {wn ∈ D : n ≥ 1}
of the set B. Next we will use induction to choose a sequence zn. Take
z1 = w1, denote

B2 = B1 \ {w ∈ B1 : kw ∈ span{kz1}}.



Supercyclic tuples 132

Denote the first element of B2 by z2 and let

B3 = B2 \ {w ∈ B2 : kw ∈ span{kz1 , kz2} }.
The infinite dimensionality of H insures the process never terminates.
Then we can obtain an infinite subset L = {zn ∈ D : n ≥ 1} of the set B,
for which the corresponding set of kernel functions HL = {kz : z ∈ L}
is linearly independent and is dense in H. Now the operator S can be
defined exactly as above, just with HL in place of GB. Therefore, the
Supercyclicity Criterion holds too in this case.

To sum up, in both cases, the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

) satisfies the Su-

percyclicity Criterion, thus it is supercyclic and T 2
d is supercyclic on

H
⊕

H.
Similarly, if the condition (ii) holds, we can also give the proof for the

supercyclicity of the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

). This completes the proof. □
From Theorem 3.1, we can easily obtain the supercyclicity of the tuple

(M∗
ω1
,M∗

ω2
).

Corollary 3.2. Let ω1(z), ω2(z) be two nonzero complex-valued func-
tions for all z ∈ D. Denote the sets

Ã =
{
z ∈ D : the sequence {(ω1(z)ω2(z))

n}n is bounded
}
,

B̃ =
{
z ∈ D : lim

n→∞

1

(ω1(z)ω2(z))n
= 0

}
,

C̃ =
{
z ∈ D : lim

n→∞
(ω1(z)ω2(z))

n = 0
}
,

D̃ =
{
z ∈ D : the sequence

{ 1

(ω1(z)ω2(z))n

}
n
is bounded

}
.

If (i) or (ii) holds,

(i) The sets Ã and B̃ have limit points in D.
(ii) The sets C̃ and D̃ have limit points in D.

then the tuple (M∗
ω1
,M∗

ω2
) is supercyclic on H. Moreover,

{M∗k1
ω1

M∗k2
ω2

⊕M∗k3
ω1

M∗k4
ω2

; ki ≥ 0, i = 1, 2, 3, 4}
is supercyclic on H

⊕
H.

Proof. Let φ1(z) = φ2(z) = z in Theorem 3.1. It is clear that M :=
sup
z∈D

∥kz∥ < ∞ defined in (3.1) holds. Then the desired result easily

follows from Theorem 3.1. □
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We give a simple example for understanding the Corollary 3.2.

Example 3.3. Let w1(z) = z and w2(z) = z + 4. It is obvious that

{x : 0 ≤ x <
√
5− 2} ⊆ {z ∈ D : the sequence {(z(z + 4))n}n is bounded};

and

{x : −1 < x < −2 +
√
3} ⊆ {z ∈ D : lim

n→∞

1

(z(z + 4))n
= 0}.

That is, the sets Ã and B̃ have limit points in D. Hence by Corollary
3.2, it follows that the tuple (M∗

ω1
,M∗

ω2
) is supercyclic on H.

If φ1 and φ2 are two elliptic disc automorphisms (note every one of
them only has unique fixed point in D) satisfying φ1 ◦ φ2 = φ2 ◦ φ1,
then they have the same interior fixed points. In fact, suppose that
φ1(z1) = z1 ∈ D and φ2(z2) = z2 ∈ D. Then

φ1◦φ2(z2)=φ2◦φ1(z2) ⇒ φ1(z2)=φ2(φ1(z2)) ⇒ φ1(z2)= z2 ⇒ z1= z2.

Remark 3.4. For general case, when both φ1 and φ2 have interior fixed
points in D and satisfy φ1 ◦ φ2 = φ2 ◦ φ1, the interior fixed points are
the same one.

For a ∈ D, an automorphism ϕa(z) of D is defined by

ϕa(z) =
a− z

1− az
, z ∈ D.(3.7)

As we all know that there are so many spaces that contain ϕa, such as
the Hardy space, Bergman space and Dirichlet spaces and so on. We
call such spaces the automorphism invariant.

Theorem 3.5. Suppose that H is automorphism invariant. Let ω1(z), ω2(z)

be two nonzero complex-valued functions for all z ∈ D and φ1, φ2 be two
elliptic disc automorphisms with an interior fixed point a ∈ D satisfying
(2.2). If one of the conditions (i) and (ii) in Theorem 3.1 holds, then the
tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) is supercyclic on H. Moreover, T 2

d is supercyclic on
H

⊕
H.

Proof. Case (I) Suppose that a = 0. Then there are θ1, θ2 ∈ [0, 2π]
such that

φ1(z) = eiθ1z, φ2(z) = eiθ2z.

It is obvious that

(φ2)n ◦ (φ1)n(z) = einθ1einθ2z.
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Thus the iterate {(φ2)n ◦ (φ1)n : n ∈ Z} ⊆ z∂D. Since z∂D is compact
subset of D, thus for every f ∈ H, f is analytic on the unit disc D, then(

f((φ2)n ◦ (φ1)n)
)
n∈Z

is a bounded sequence. Thus, by the uniform boudedness principle, it
follows that

M := sup
z∈D

sup
n∈Z

∥k(φ2)n◦(φ1)n∥ < ∞.(3.8)

Employing (3.8) and Theorem 3.1, it follows that the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

)

satisfies the Supercyclicity Criterion.
Case (II) The general case a ̸= 0 is a fixed point of φ. We notice

that H is automorphism invariant. Let

φ̃1 = ϕa ◦ φ1 ◦ ϕ−1
a , φ̃2 = ϕa ◦ φ2 ◦ ϕ−1

a

be two automorphisms with the interior fixed point zero, and let

ω̃1 = ω1 ◦ ϕ−1
a , ω̃2 = ω2 ◦ ϕ−1

a

be two multipliers of H, where ϕa is the automorphism defined in (3.7).
It is clear that the tuple (C∗

ω̃1,φ̃1
, C∗

ω̃2,φ̃2
) is supercyclic on H from Case

(I), where Cω̃i,φ̃i
= C−1

ϕa
◦ Cω1,φ1 ◦ Cϕa for i = 1, 2. Finally, taking into

account that Cωi,φi is similar to Cω̃i,φ̃i
for i = 1, 2 and the similarity

preserves supercyclicity, the result follows. This completes the proof. □
Example 3.6. Take two elliptic disc automorphisms φ1(z) = iz, φ2(z) =
−iz with an interior fixed point a = 0 ∈ D and w1(z) = z4, w2(z) =
z4 + 3. It is obvious that the conditions of Theorem 3.5 are true. The
sets A and B mentioned in Theorem 3.1 are

A =
{
z ∈ D : the sequence

{
z4n(z4 + 3)n

}
n
is bounded

}
,

and

B =
{
z ∈ D : lim

n→∞

1

z4n(z4 + 3)n
= 0

}
.

It is easily to show that [0, 12) ⊆ A and ( 1
4√2

, 1) ⊆ B. Hence (C∗
ω1,φ1

, C∗
ω2,φ2

)

is supercyclic on H from Theorem 3.5.

Theorem 3.7. Suppose that H is automorphism invariant. Let ω1(z), ω2(z)

be two nonzero complex-valued functions for all z ∈ D and φ1, φ2 be two
elliptic automorphism with an interior fixed point a ∈ D satisfying (2.2).
Moreover ω1, ω2 : D → C satisfy the inequality |ω1(a)ω2(a)| < 1 and
there is 0 < δ < 1 satisfying |ω1(z)ω2(z)| ≥ 1 for all |z| > 1− δ, then the
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tuple (C∗
ω1,φ1

, C∗
ω2,φ2

) is supercyclic on H. Moreover, T 2
d is supercyclic

on H
⊕

H.

Proof. The same argument as in Theorem 3.5 can be applied. Since H
is automorphism invariant, we can assume a = 0. Thus

φ1(z) = eiθ1z, φ2(z) = eiθ2z

for some θ1, θ2 ∈ [0, 2π]. By the similar proof in Case (I) in Theorem
3.5, (3.8) is true.

On the other hand, since |ω1(0)ω2(0)| < 1, there is a constant 0 <

r < 1 and a positive number δ̃ ∈ (0, 1) such that

|ω1(z)ω2(z)| < r < 1, whenever |z| < δ̃.

Since |φi(z)| = |z| for i = 1, 2. Thus if |z| < δ̃, it follows that∣∣∣Πn−1
j=0ω1 ◦ (φ1)j(z) · ω2 ◦ (φ2)j(z)

∣∣∣ < rn → 0, n → ∞.

Thus the set {z ∈ D : |z| < δ̃} is a subset of C in Theorem 3.1.
On the other hand, there is 0 < δ < 1 satisfying |ω1(z)ω2(z)| ≥ 1 for

all |z| > 1− δ. And since |φ−1
i (z)| = |z| for i = 1, 2, then we have that∣∣Πn

j=1ω1 ◦ (φ1)−j(z) · ω2 ◦ (φ2)−j(z)
∣∣−1 ≤ 1,

for all n ≥ 1.
Therefore, the set {z ∈ D : |z| > 1 − δ} is a subset of D in Theorem

3.1. Since both {z ∈ D : |z| < δ̃} and {z ∈ D : |z| > 1 − δ} have limit
points in D, then both C and D have limit points in D. Besides by (3.8)
and from Theorem 3.1, we obtain that the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) satisfies

the Supercyclicity Criterion. This completes the proof. □

Remark 3.8. It is easy to check that Example 3.6 holds for Theorem
3.7. Since |w1(0)w2(0)| = 0 < 1 and there is 0 < δ = 1 − 1

4√2
< 1

satisfying |w1(z)w2(z)| = |z|4|z4 + 3| ≥ |z|4(3 − 1) = 2|z|4 ≥ 1 for all
|z| > 1 − δ. Hence the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) is supercyclic on H from

Theorem 3.7.

Now if φ is an elliptic automorphism, a rotation through a rational
multiple of π, then there is m ∈ N such that φm(z) = z for all z ∈ D.
Now, we consider two general analytic self-maps φ1, φ2 on D with the
properties (3.9) or (3.10).
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Theorem 3.9. Let ω1(z), ω2(z) be two nonzero complex-valued func-
tions for all z ∈ D and φ1, φ2 be two analytic self-maps of D satisfying
(2.2). For λ ∈ D, let {λm}m∈N be a sequence in D satisfying the follow-
ing conditions

(φ1)m(λm) = λ, m = 1, 2, 3..., and ω1(λ) = 0,(3.9)

or

(φ2)m(λm) = λ, m = 1, 2, 3..., and ω2(λ) = 0.(3.10)

Also, suppose that the set {λm : m ≥ 1} has a limit point in D
and (3.1) holds. Then, the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) is supercyclic on H.

Moreover, T 2
d is supercyclic on H

⊕
H.

Proof. It is clear that the set K = span{kλm : m = 1, 2, 3, ...} is a dense
set in H. In fact, suppose that ⟨f, kλm⟩ = f(λm) = 0, m = 1, 2, 3, ...,
since the set {λm : m ≥ 1} has a limit point in D, then the identity
theorem for holomorphic functions implies that f ≡ 0. Thus K = H.
On the other hand, we still denote Ti = C∗

ωi,φi
for i = 1, 2. From (2.3) it

follows that

Tn
2 T

n
1 kz =[

Πn−1
j=0

(
(ω1 ◦ (φ1)j)(z) · (ω2 ◦ (φ2)j)(z)

)]
k(φ1)n◦(φ2)n(z), z ∈ D, n ≥ 1.

We suppose that (3.9) holds. Hence, using (3.1) and (3.9), it follows
that, for every positive integer n

Tn
2 T

n
1 kλm = 0, m = 0, 1, 2, ..., n− 1,(3.11)

where λ0 = λ. Then kλm ∈ Ker(Tn
2 T

n
1 ), m = 0, 1, 2, ..., n− 1.

Since K = span{kλm : m = 1, 2, 3, ...} is a dense set in H, then the
set

∞∪
n=1

Ker(Tn
2 T

n
1 )

is dense in H. As we all know that the set
∪∞

n=1Ker(Tn
2 T

n
1 ) is the subset

of GK(T ), which is the generalized kernel of the tuple (T1, T2). Hence,
the generalized kernel of the tuple (T1, T2) is dense in H. By Lemma 2.5
we only need to prove the tuple (T1, T2) = (C∗

ω1,φ1
, C∗

ω2,φ2
) has a dense

range.
If for every g ∈ H such that

Tn
2 T

n
1 (g) =

[
Πn−1

j=0

(
ω1 ◦ (φ1)j · ω2 ◦ (φ2)j

)]
g ◦ (φ1)n ◦ (φ2)n = 0.
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Since ω1 and ω2 are two nonzero complex-valued functions for all z ∈ D.
Then we have g ≡ 0. Hence the set {Tn

2 T
n
1 g : g ∈ H} is a dense set

in H. However, {Tn
2 T

n
1 g : g ∈ H} is a subset of the range of the

tuple (T1, T2). Therefore the tuple (T1, T2) = (C∗
ω1,φ1

, C∗
ω2,φ2

) has a dense
range. Employing Lemma 2.5, the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) satisfies the

Supercyclicity Criterion on H. This completes the proof. □
Theorem 3.10. Suppose that H is automorphism invariant. Let ω1, ω2

be two nonzero complex-valued functions for all z ∈ D and φ1, φ2 be
two elliptic automorphisms with interior fixed point a ∈ D satisfying
(2.2). Further suppose that (3.1) is true. If (i) or (ii) holds for some
λ ∈ D \ {a},

(i) φ1 is conjugate to a rotation through an irrational multiple of π

and ω1(λ) = 0.

(ii) φ2 is conjugate to a rotation through an irrational multiple of π

and ω2(λ) = 0.

Then the tuple (C∗
ω1,φ1

, C∗
ω2,φ2

) is supercyclic on H. Moreover, T 2
d is

supercyclic on H
⊕

H.

Proof. Since H is automorphism invariant. Similarly, we suppose that
a = 0. Assume (i) holds, then φ1(z) = eiπθ1z for some irrational number
θ1 ∈ [0, 2π]. Let

λm = ei(−m)πθ1λ, m = 1, 2, 3....,

Then (φ1)m(λm) = λ. Note that the set

{ei(−m)πθ1 : θ1 is irrational number , m ≥ 0} = ∂D.
Since λ∂D is a compact subset of D. Thus {λm}m∈N has a limit point in
D. Since similarity preserves supercyclicity, then by Theorem 3.9 it fol-
lows that the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) satisfies the Supercyclicity Criterion

under the condition (i).
Similarly, the tuple (C∗

ω1,φ1
, C∗

ω2,φ2
) also satisfies the Supercyclicity

Criterion under the condition (ii). This completes the proof. □
Remark 3.11. Our results are also valid for n-tuples of the adjoint of
the weighted composition operators on H. The interested readers can try
to prove them.
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