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Abstract. Let H be a subgroup of a group G. H is said to be
S-embedded in G if G has a normal subgroup T such that HT is
an S-permutable subgroup of G and H ∩ T ≤ HsG, where HsG

denotes the subgroup generated by all those subgroups of H which
are S-permutable in G. In this paper, we investigate the influence
of minimal S-embedded subgroups on the structure of finite groups.
We determine the structure of finite groups with some minimal S-
embedded subgroups. We also give some new characterizations of
p-nilpotency of finite groups in terms of the S-embedding property.
As applications, some previously known results are generalized.
Keywords: Finite groups, S-embedded subgroups, the generalized
Fitting subgroups, soluble groups, p-nilpotent groups.
MSC(2010): Primary: 20D10; Secondary: 20D15, 20D20, 20D25.

1. Introduction

Throughout this paper, all groups considered are finite.
Recall that a minimal subgroup of a group is a subgroup of prime

order. It is an interesting topic in finite group theory to determine the
structure of a group G whose minimal subgroups are well-situated in
G. The following theorem due to Gaschütz and Itô [13, Theorem 5.7]
shows that groups whose minimal subgroups are normal are soluble of
a special nature: Let G be a group such that all minimal subgroups of G
are normal in G. Then G is soluble and its commutator group G′ has
a normal Sylow 2-subgroup with nilpotent factor group. Furthermore,
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Buckley in [3] proved that if every minimal subgroup of a group G of
odd order is normal inG, thenG is supersoluble. Later on, many authors
have investigated the structure of groups whose minimal subgroups have
some embedding properties. For example, in [19–21], Skiba gives some
new characterizations of hypercyclically embedded subgroups in terms
of minimal subgroups which possess some given embedding properties.
The present paper is a contribution to the study of groups with some
minimal subgroups which have the following S-embedding property.

In recent years, Guo, Shum and Skiba in [6–10,18] have introduced a
series of generalized permutable subgroups and gave many new charac-
terizations about the solubility and the supersolubility of finite groups.
One example is the concept of S-embedded subgroups ( [10]). Let G be
a group and let H be a subgroup of G. H is said to be S-permutable in
G if H permutes with every Sylow subgroup of G. By [10], H is said to
be S-embedded in G if G has a normal subgroup T such that HT is an
S-permutable subgroup of G and H ∩ T ≤ HsG, where HsG denotes the
subgroup generated by all those subgroups of H which are S-permutable
in G. Some important results have been obtained by Guo, Shum and
Skiba in [10,11].

In this paper, we mainly focus our attention on groups with some S-
embedded minimal subgroups and prove the solubility of these groups.
In particular, we determine the structure of a group G with some mini-
mal subgroups which are S-embedded in G. On the other hand, we give
some new characterizations of p-nilpotency of finite groups by means of
S-embedded subgroups.

2. Preliminaries

A class of groups F is said to be a formation if F is a homomorph
and every group G has a smallest normal subgroup (denoted by GF)
whose quotient is still in F. A formation F is said to be s-closed if
every subgroup of G belongs to F whenever G ∈ F. A formation F is
said to be saturated if G/Φ(G) ∈ F always implies G ∈ F. A chief
factor H/K of a group G is said to be F-central (or F-eccentric) in G if
[H/K](G/CG(H/K)) ∈ F (or [H/K](G/CG(H/K)) /∈ F, respectively).
In this paper, ZF

∞(G) denotes the F-hypercenter of a groupG, that is, the
product of all such normal subgroups H of G whose G-chief factors are
F-central. Let U and N denote the class of all supersoluble groups and
the class of all nilpotent groups respectively. As usual, Z∞(G) denotes
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the hypercenter of a group G. The other notation and terminologies are
standard and the reader is referred to [12,14] if necessary.

The following two lemmas are well known.

Lemma 2.1. Let G be a group and A ≤ G. Let F be a non-empty
saturated formation and Z = ZF

∞(G). Then
(1) If A is normal in G, then AZ/A ≤ ZF

∞(G/A).
(2) If F is s-closed, then Z ∩A ≤ ZF

∞(A).
(3) If G ∈ F, then Z = G.

Lemma 2.2. [11, Corollary 3.2.9] Let F be a saturated formation and
G a group. Then

[GF, ZF
∞(G)] = 1.

Lemma 2.3. [9, Lemma 2.1] Let G be a group and H ≤ K ≤ G.
(1) If H is S-embedded in G, then H is S-embedded in K.
(2) Suppose that H is normal in G. Then the subgroup HE/H is

S-embedded in G/H for every S-embedded subgroup E in G satisfying
(|H|, |E|) = 1.

(3) If H is S-embedded in G and K is normal in G, then G has
a normal subgroup T such that HT ≤ K is S-permutable in G and
H ∩ T ≤ HsG.

Lemma 2.4. [9, Lemma 2.2] Let P be a normal p-subgroup of a group
G. Suppose that P is of exponent p and every minimal subgroup of P is
S-embedded in G. Then P ≤ ZU

∞(G).

Lemma 2.5. Let p be an odd prime and P be a normal p-subgroup of
a group G such that every minimal subgroup of P is S-embedded in G.
Then P ≤ ZU

∞(G).

Proof. Assume that the result is false and consider a counterexample
(G,P ) for which |G||P | is minimal. Let P/R be a chief factor of G.
Then R ̸= 1 by Lemma 2.4. By Lemma 2.3(3), (G,R) satisfies the
hypothesis and so R ≤ ZU

∞(G) and P/R is not cyclic by the choice
of G. Let N be any normal subgroup of G with N < P . Similarly,
N ≤ ZU

∞(G). If N is not contained in R, then P/R = NR/R ≃ N/N∩R
and therefore P ≤ ZU

∞(G), a contradiction. Hence N ≤ R. Now, we
conclude that G has a normal subgroup R such that P/R is a non-cyclic
chief factor of G, R ≤ ZU

∞(G) and N ≤ R for any normal subgroup N of
G contained in P with N ̸= P . By [4, Ch.5, Theorem 3.13], P possesses
a characteristic subgroup D of exponent p such that every nontrivial
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p′-automorphism of P induces a nontrivial automorphism of D. This
implies that CG(D)/CG(P ) is a p-group. Hence, by Lemma 2.4, we have
D < P . Thus D ≤ ZU

∞(G). Let 1 = D0 < D1 < · · · < Dt = D be a G-
chief series ofD. Let Ci = CG(Di/Di−1) and C = C1∩C2∩· · ·∩Ct. Then
CG(D) ≤ C and C/CG(D) is a p-group (see [4, Ch.5, Theorem 3.2]).
Furthermore, since Di/Di−1 is of order p, G/C is abelian of exponent
p−1. Now we conclude that G/CG(P/R) is abelian of exponent dividing
p− 1 as CG(P ) ≤ CG(P/R) and Op(G/CG(P/R)) = 1 (see [11, Lemma
1.7.11] or [3, Ch.A, Lemma 13.6]). Hence, by [24, Ch.1, Theorem 1.4],
|P/R| = p, a contradiction. Thus, the proof is completed. □

Lemma 2.6. [13, Ch.6, Theorem 14.3] Let P be an abelian Sylow sub-
group of a group G. Then G′ ∩ Z(G) ∩ P = 1.

A group G is called quasinilpotent if for any chief factor H/K of G,
every automorphism of H/K induced by an element of G is inner. The
generalized Fitting subgroup F ∗(G) of a group G is the product of all
normal quasinilpotent subgroups of G. The following well known facts
about the generalized Fitting subgroup of a group G will be used in our
proofs (see [14, Chapter X]).

Lemma 2.7. Let G be a group. Then
(1) If N is a normal subgroup of G, then F ∗(N) = N ∩ F ∗(G).
(2) F (G) ≤ F ∗(G) = F ∗(F ∗(G)). If F ∗(G) is soluble, then F ∗(G) =

F (G).
(3) CG(F

∗(G)) ≤ F ∗(G).
(4) G is quasinilpotent if and only if G/Z∞(G) is semisimple.

Lemma 2.8. [18, Theorem B] Let F be any formation and G a group.
If N is a normal subgroup of G and F ∗(N) ≤ ZF

∞(G), then N ≤ ZF
∞(G).

Lemma 2.9. Let P be a nontrivial 2-group and H a nontrivial auto-
morphism group of P fixing the involutions of P . If H is cyclic of odd
order and H acts irreducibly on P/Φ(P ), then |P | = 23s, |Φ(P )| = 2s

with s ≥ 1, P ′ = Φ(P ) = Z(P ) = Ω1(P ) and |H| divides 2s + 1.

Proof. See Theorems 1.3 and 2.2 in [13]. □

3. Main results

In this section, we first characterize the structure of groups whose
minimal subgroups are S-embedded.
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Theorem 3.1. Let G be a group. If every minimal subgroup of G is
S-embedded in G, then G is soluble.

Proof. Suppose that the result is false and let G be a counterexample of
minimal order. We proceed the proof by the following steps.

(1) Every proper subgroup of G is soluble.
Let M be a proper subgroup of G. Then, by Lemma 2.3(1), every

minimal subgroup of M is S-embedded in M and therefore M satisfies
the hypothesis. The minimal choice of G yields that M is soluble.

(2) G is not a non-abelian simple group.
Assume that G is a non-abelian simple group and let L be a minimal

subgroup of G with |L| = p. Then, by the hypothesis, G has a normal
subgroup T such that LT is S-permutable in G and L∩T ≤ LsG. Since
G is simple, T = 1 or G, which implies that L is S-permutable in G.
Hence L ≤ Op(G), a contradiction. Thus, (2) holds.

(3) G = G/Φ(G) is a minimal simple group.
By (2), suppose that N is any nontrivial proper normal subgroup

of G. Let M be any maximal subgroup of G. By (1), both N and
M are soluble. If N is not contained in M , then G = MN and so
G/N ≃ M/M∩N is soluble. It follows that G is soluble, a contradiction.
Hence N ≤ Φ(G) and therefore (3) holds.

(4) Final contradiction.
By (3) and the well-known result of Thompson, G is isomorphic to

one of the following groups:
(i) L2(p), p > 3 is a prime, and 5 does not divide p2 − 1;
(ii) L2(3

r), r is an odd prime;
(iii) L2(2

r), r is a prime;
(iv) Sz(2r), r is an odd prime;
(v) L3(3).
By [13, Ch.II, Theorem 8.10], [25, p.117, Theorem 4.1] and the order of

L3(3), we know that for some odd prime t ∈ π(G), the Sylow t-subgroups
of G are cyclic. We assert that t /∈ π(Φ(G)). Otherwise, let P be a Sylow
t-subgroup of Φ(G) and Gt be a Sylow t-subgroup of G. Then Gt/P is
cyclic. By Lemma 2.5, we see that P ≤ ZU

∞(G). Since G/CG(P ) is
supersoluble by Lemma 2.2, CG(P ) = G by (1). Therefore P ≤ Z(G)
and so Gt is abelian. Moreover, by (3), we have that G = G′. It follows
that P ∩ Z(G) ∩G′ = P , which contradicts Lemma 2.6. Hence Φ(G) is
a t′-group. Let L/Φ(G) be a minimal subgroup of G of order t. Then,
by the preceding argument, we have that L/Φ(G) = ⟨x⟩Φ(G)/Φ(G) for
some x ∈ G with |x| = t. By Lemma 2.3(2), L/Φ(G) is S-embedded in
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G. Similar to (2), we derive a contradiction, finishing the proof of this
part. □
Remark 3.2. (1) The converse of Theorem 3.1 is not true in general.
For example, let G = A4, the alternating group of degree 4. Then G
is soluble. But any minimal subgroup of G is not S-embedded in G
because G has no subgroup of order 6.

(2) The condition in Theorem 3.1 that “every minimal subgroup of
G is S-embedded in G” can not be replaced by “every minimal sub-
group of each non-cyclic Sylow subgroup of G is S-embedded in G”. Let
G = SL(2, 5). Then every minimal subgroup of each non-cyclic Sylow
subgroup of G is normal in G. But G is a quasisimple group.

With respect to this example, the following question seems interesting.

Question 3.3. Let G be a group such that every minimal subgroup of
each non-cyclic Sylow subgroup of G is S-embedded in G. What can we
say about the structure of G?

Remark 3.4. The condition in Theorem 3.1 cannot guarantee the su-
persolubility of G. Let G = [Q8]Z3, the semi-direct product of Q8 by
Z3, where Q8 is the quaternion group of order 8 and Z3 is cyclic of order
3. Then every minimal subgroup of G is S-embedded in G, but G is not
supersoluble.

Note that in the above example G is a minimal non-nilpotent group.
In fact, we obtain the following more general result.

Theorem 3.5. Let F be a saturated formation containing U and N be
a normal subgroup of a group G such that G/N ∈ F. If every minimal
subgroup of F ∗(N) is S-embedded in G, then either G ∈ F or G contains
a minimal non-nilpotent subgroup K satisfying the following properties:

(i) K has a nontrivial normal Sylow 2-subgroup K2 such that K2 ≤
O2(G);

(ii) |K2| = 23s and |Φ(K2)| = 2s, where s ≥ 1;
(iii) K ′

2 = Φ(K2) = Z(K2) = Ω1(K2);
(iv) If 2 ̸= p ∈ π(K), then p divides 2s + 1.

Proof. Suppose that the theorem is false and let G be a counterexample
of minimal order. Then

(1) F = F ∗(N) = F (N).
By Lemma 2.3(1), every minimal subgroup of F ∗(N) is S-embedded

in F ∗(N). It follows from Theorem 3.1 that F ∗(N) is soluble. Hence
F ∗(N) = F (N) by Lemma 2.7(2).
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(2) 2 ∈ π(F ).
If not, then F is of odd order. By Lemma 2.5, F ∗(N) = F (N) ≤

ZU
∞(G) and consequently F ∗(N) ≤ ZF

∞(G) by the hypothesis. Applying
Lemma 2.8, we have that N ≤ ZF

∞(G). Hence G ∈ F by the hypothesis,
a contradiction. Thus, (2) holds.

(3) Conclusion.
We first claim that there exists a Sylow p-subgroup P of G such that

F2P is not 2-nilpotent, where p ̸= 2 and F2 is the Sylow 2-subgroup
of F . Suppose this is false. Then F2 ≤ Z∞(G) ≤ ZU

∞(G). By Lemma
2.5, every Sylow subgroup of F of odd order is also contained in ZU

∞(G).
Therefore F ∗(N) = F (N) ≤ ZU

∞(G). As in (2), we have that G ∈ F,
a contradiction. Hence G has a Sylow p-subgroup P such that F2P is
not 2-nilpotent, where p is an odd prime. Then F2P contains a minimal
non-2-nilpotent subgroup K. By [13, Ch.IV, Theorem 5.4], K is a min-
imal non-nilpotent group. It follows from [11, Theorem 3.4.11] that K
satisfies

(i) K = [K2]Kp, where K2 is normal in K with K2 = KN and Kp is
a cyclic Sylow p-subgroup of K with p ̸= 2;

(ii) K2/Φ(K2) is a chief factor of K.
ObviouslyK2 ≤ F2 ≤ O2(G). By (ii),Kp acts irreducibly onK2/Φ(K2).

Now we show that Kp fixes the involutions of K2. Let x be any invo-
lution of K2. Let L = ⟨x⟩. Then, by Lemma 2.3, L is S-embedded in
K and so K has a normal subgroup T such that LT is S-permutable
in K and L ∩ T ≤ LsG. Set V = K2 ∩ T . Then LV is S-permutable
in K and L ∩ V ≤ LsG. If V = 1, then L is S-permutable in K and
so Kp fixes x. Suppose that V ̸= 1. If V is not contained in Φ(K2),
then, by (ii), V = K2 and therefore L is S-permutable in K. As above,
Kp ≤ CG(x). Assume that V ≤ Φ(K2). If LVKp < K, then Kp fixes
x as LVKp is nilpotent. If LVKp = K, then LV = K2, which implies
that K2 is cyclic, a contradiction. Hence, by the preceding argument, we
see that Kp fixes all the involutions of K2. By Lemma 2.9, |K2| = 23s,
|Φ(K2)| = 2s, where s ≥ 1, and K ′

2 = Φ(K2) = Z(K2) = Ω1(K2); in
addition, |Kp/CKp(K2)| divides 2s+1 and so does p. This contradiction
completes the proof. □

Recall that a subgroup H of a group G is said to be c-normal in G if
G has a normal subgroup T such that G = HT and H ∩T ≤ HG, where
HG denotes the largest normal subgroup of G contained in H (see [22]).
It is easy to see from the definition of S-embedded subgroups that all
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the normal subgroups, the S-permutable subgroups and the c-normal
subgroups are S-embedded subgroups.

Corollary 3.6. (Buckley, [3]). Let G be a group of odd order. If every
minimal subgroup of G is normal in G, then G is supersoluble.

Corollary 3.7. (Li, Wang, [16]). Let G be a groups with a normal
subgroup N such that G/N is supersoluble. If every cyclic subgroup
of F ∗(N) of prime order or order 4 is S-permutable in G, then G is
supersoluble.

Proof. Assume that G is not supersoluble. Then, G contains a minimal
non-nilpotent group K satisfying the properties (i)-(iii) in Theorem 3.5.
Let L be any cyclic subgroup of K2 of order 4. Then L is not contained
in Ω1(K2). By the hypothesis, LKp = KpL, where Kp is a Sylow p-
subgroup of K with p ̸= 2. Clearly LKp < K, so Kp ≤ CG(L). This
shows that Kp acts trivially on Ω2(K2). By the well-known Theorem
Blackburn, Kp ≤ CK(K2), a contradiction. Hence G is supersoluble. □

Corollary 3.8. (Wei, Wang, Li, [24]). Let F be a saturated formation
containing U. Suppose that G is a group with a normal subgroup N
such that G/N ∈ F. If all minimal subgroups of F ∗(N) and all cyclic
subgroups of F ∗(N) of order 4 are c-normal in G, then G ∈ F.

Proof. Assume that G /∈ F. Then G contains a minimal non-nilpotent
group K with properties (i)-(iii) in Theorem 3.5. Let L be a cyclic
subgroup of K2 of order 4. Then L is not contained in Z(K2) by (iii).
By the hypothesis, K has a normal subgroup T such that K = LT and
L∩T ≤ LG. Note that T < K. If not, L is normal in K and since CK(L)
does not contain K2, CK(L)Kp is a proper subgroup of K, where Kp is
a Sylow p-subgroup of K with p > 2. Therefore Kp ≤ CK(L) and so Kp

is normal in K, a contradiction. Hence T < K. But, since Kp ≤ T , Kp

is normal in K, also a contradiction. Thus, G ∈ F, as desired. □

The following part is devoted to investigating the influence of S-
embedded subgroups on the p-nilpotency of groups.

Lemma 3.9. Let G be a group with a normal subgroup N such that
G/N is p-nilpotent, where p ∈ π(G). Assume that every subgroup of N
with order p is contained in Z∞(G) and every cyclic subgroup of N of
order 4 (if p = 2) not contained in Z∞(G) is S-embedded in G. Then G
is p-nilpotent.
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Proof. Assume that the assertion is false and let G be a counterexample
of minimal order.

First, we claim that every proper subgroup of G is p-nilpotent. Let L
be a proper subgroup of G. Since G/N is p-nilpotent, L/L∩N ≃ LN/N
is p-nilpotent. On the other hand, if R is a cyclic subgroup of L ∩N of
order p, then R ≤ L ∩ Z∞(G) ≤ Z∞(L) by the hypothesis and Lemma
2.1. Besides, if R is a cyclic subgroup of L∩N of order 4 not contained in
Z∞(L), then R is S-embedded in L by the hypothesis and Lemmas 2.1
and 2.3. Thus L satisfies the hypothesis and so it is p-nilpotent by the
minimality of G. Therefore every proper subgroup of G is p-nilpotent.
Hence G is a minimal non-p-nilpotent group. By [13, Ch.IV, Theorem
5.4], G is a minimal non-nilpotent group. Then, by [11, Theorem 3.4.11],
G has the following properties:

(i) G = [P ]Q, where P = GN is the Sylow p-subgroup of G and Q is
a Sylow q-subgroup of G with p, q ∈ π(G) and p ̸= q;

(ii) P/Φ(P ) is a chief factor of G;
(iii) P is of exponent p or 4;
(iv) Φ(P ) = P ∩ Φ(G) and Φ(G) = Z∞(G).
Write Φ = Φ(P ). Note that P ≤ N . Otherwise, P ∩ N is a proper

subgroup of P which is normal in G. Therefore P ∩ N ≤ Φ since by
(ii), P/Φ is a chief factor of G. As the class of all p-nilpotent groups
is a saturated formation, we have that G/P ∩ N is p-nilpotent. It fol-
lows that G is p-nilpotent [11, Lemma 1.8.1], which violates our initial
assumption on G. Hence P ≤ N . If P is of exponent p, then P is
contained in Z∞(G) by the hypothesis, from which we deduce that G
is nilpotent, a contradiction. Hence p = 2 and P is of exponent 4 by
(iii). If all cyclic subgroups of G of order 4 are contained in Z∞(G),
then P is also contained in Z∞(G) by the hypothesis, a contradiction.
Thus, there must exist a cyclic subgroup H of P of order 4 such that
H ⊈ Z∞(G). Note that H is also not contained in Φ since Φ ≤ Z∞(G).
By the hypothesis, H is S-embedded in G. First, if H is S-permutable
in G, then HΦ/Φ is S-permutable in G/Φ and so it is a normal sub-
group of (HΦ/Φ)(QΦ/Φ). Since P/Φ is elementary abelian, HΦ/Φ is
also normalized by P/Φ and so HΦ/Φ is normal in G/Φ. This induces
that P = H, by which we have that G is nilpotent, a contradiction.
Therefore, by the hypothesis and Lemma 2.3, G has a normal subgroup
T such that HT ≤ P is S-permutable in G and H ∩ T ≤ HsG ̸= H.
Clearly, T ̸= P and so TΦ ̸= P . This implies that T ≤ Φ. But then
HΦ/Φ = HTΦ/Φ is an S-permutable subgroup of G/Φ. Similarly as
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above, we have that P = H, which implies that G is nilpotent, a final
contradiction finishing the proof. □

Lemma 3.10. Let F be a saturated formation containing N. Then G ∈
F if and only if G has a normal subgroup N satisfying that:

(i) G/N ∈ F and
(ii) for each p ∈ π(N), every subgroup of N of order p is contained

in ZF
∞(G) and every cyclic subgroup of N with order 4 (if p = 2) not

contained in ZF
∞(G) is S-embedded in G.

Proof. The necessity is evident and we only prove the sufficiency. As-
sume that the assertion is false let G be a minimal counterexample.

Since G/N ∈ F, GF ⊆ N . By Lemma 2.2, we have that ZF
∞(G)∩GF ⊆

Z(GF) ⊆ Z∞(GF). Thus, every subgroup of GF of order prime is con-
tained in Z∞(GF) by the hypothesis. If p = 2, then every cyclic sub-
group of GF of order 4 not contained in Z∞(GF) is S-embedded in GF by
the hypothesis and Lemmas 2.1 and 2.3. Lemma 3.9 suggests that GF is
nilpotent. Let M be a maximal subgroup of G such that GF ⊈ M . Then

G = MGF. Let Z = ZF
∞(G) ∩ M . Since [ZF

∞(G), GF] = 1 by Lemma
2.2, every G-chief factor H/K below Z is still an M -chief factor and
GF ⊆ CG(H/K). Hence M/CM (H/K) ≃ MCG(H/K)/CG(H/K) =
G/CG(H/K) ∈ F. Therefore Z ⊆ ZF

∞(M). Now, it is easy to see that
M satisfies the hypothesis by Lemmas 2.1 and 2.3. Hence M ∈ F by the
choice of G. By [11, Theorem 3.4.2], G possesses the following proper-
ties:

(i) GF is a p-group, for some prime p ∈ π(G);
(ii) GF/Φ(GF) is F-eccentric;
(iii) If p > 2, then GF is of exponent p, and if p = 2, then GF is of

exponent 2 or 4.
Set Φ = Φ(GF). Let A/Φ be a subgroup of GF/Φ of order p which is

normal in some Sylow p-subgroup of G/Φ. Then A/Φ = HΦ/Φ, where
H is a cyclic subgroup of GF of order p or 4. If H ⊆ ZF

∞(G), then
A/Φ = HΦ/Φ ≤ GF/Φ ∩ ZF

∞(G)Φ/Φ ≤ GF/Φ ∩ ZF
∞(G/Φ) by Lemma

2.1. It follows that GF/Φ ≤ ZF
∞(G/Φ) and so GF/Φ is F-central, a

contradiction. Thus, by the hypothesis and (iii), p = 2 and H is a
cyclic subgroup of order 4 not contained in ZF

∞(G). Therefore H is S-
embedded in G by our assumption on G. By Lemma 2.3, G has a normal
subgroup T contained in GF such that HT is S-permutable in G and
H ∩ T ≤ HsG. If H is S-permutable in G, then A/Φ = HΦ/Φ is S-
permutable in G/Φ and so O2(G/Φ) ≤ NG(A/Φ). Since A/Φ is normal
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in some Sylow 2-subgroup of G/Φ, we obtain that A/Φ is normal in
G/Φ, so that A/Φ = GF/Φ is an F-central chief factor, contrary to (ii)
above. Hence 1 ̸= T ≤ Φ. But HΦ/Φ = HTΦ/Φ, which shows that
A/Φ is S-permutable in G/Φ since HT is S-permutable in G. As above,
one derive a contradiction. Thus, the proof is complete. □

Lemma 3.11. A group G is nilpotent if and only if G has a normal
subgroup N such that:

(i) G/N is nilpotent and
(ii) for each p ∈ π(F ∗(N)), every subgroup of F ∗(N) of order p is

contained in Z∞(G) and every cyclic subgroup of F ∗(N) of order 4 (if
p = 2) not contained in Z∞(G) is S-embedded in G.

Proof. The necessity part is obvious. Now we prove the sufficiency part.
Assume that this is not true and let G be a minimal counterexample.

Suppose that M is a maximal normal subgroup of G. Clearly, M/M ∩
N ≃ MN/N is nilpotent because G/N is nilpotent. Since F ∗(M ∩N) ≤
F ∗(N) by Lemma 2.7, M satisfies the hypothesis by Lemmas 2.1 and
2.3. Hence M is nilpotent by the choice of G. It follows that F (G) is
the unique maximal normal subgroup of G and G/F (G) is a non-abelian
simple chief factor of G. Therefore, if N < G, then N is nilpotent and
so F ∗(N) = F (N) = N . Thus, by Lemma 3.9, G is nilpotent. This
contradiction shows that N = G. If F ∗(N) = F ∗(G) = G, then G is
nilpotent by Lemma 3.9 again, a contradiction. Thereby F ∗(G) < G
and so F ∗(G) = F (G). Now let GN denote the nilpotent residual of
G. Suppose that GN < G. Then, since F ∗(GN) = GN ≤ F ∗(G), G is
nilpotent by Lemma 3.9, a contradiction. This induces that GN = G,
especiallyG = G′. By Lemma 2.2, we have that Z∞(G)∩GN ⊆ Z(GN) =
Z(G) and so Z∞(G) = Z(G).

Now suppose that p is a prime dividing the order of F ∗(G) and let
P be a Sylow p-subgroup of F ∗(G). Then P is normal in G. Let Q
be a Sylow q-subgroup of G, where q ̸= p. Put L = PQ. Then L
is p-nilpotent by Lemma 3.9 and the hypothesis, and so L = P × Q,
i.e. Q ≤ CG(P ), from which we conclude that Op(G) ≤ CG(P ). Hence
CG(P ) = G since GN = G and therefore P ≤ Z(G). Consequently
F ∗(G) = F (G) ≤ Z(G) = Z∞(G), which implies that F (G) = Z∞(G) by
the above arguments. It follows that G/Z∞(G) is a non-abelian simple
group. By Lemma 2.7, G is quasinilpotent and therefore F ∗(G) = G, a
contradiction. Thus, the proof of this lemma is complete. □
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Theorem 3.12. Let F be a saturated formation containing N. Then
G ∈ F if and only if G has a normal subgroup N satisfying that:

(i) G/N ∈ F and
(ii) for each p ∈ π(F ∗(N)), every subgroup of F ∗(N) of order p is

contained in ZF
∞(G) and every cyclic subgroup of F ∗(N) with order 4 (if

p = 2) not contained in ZF
∞(G) is S-embedded in G.

Proof. The necessity is clear and we need only prove the sufficiency. Ob-
viously, GF ⊆ N . Hence F ∗(GF) ⊆ F ∗(N) by Lemma 2.7(1). Besides,
ZF
∞(G) ∩ GF ⊆ Z(GF) ⊆ Z∞(GF) by Lemma 2.2. Therefore every sub-

group of F ∗(GF) of prime order is contained in Z∞(GF) and every cyclic
subgroup of F ∗(GF) of order 4 (if p = 2) not contained in Z∞(GF) is
S-embedded in GF by the hypothesis and Lemmas 2.1 and 2.3. Hence
GF is nilpotent by Lemma 3.11 and therefore F ∗(GF) = GF. It follows
from Lemma 3.10 that G ∈ F, as desired. □

Now, we present some applications of Theorem 3.12.

Corollary 3.13. (Ballester-Bolinches, Wang, [1]). Let F be a saturated
formation containing N. Suppose that every cyclic subgroup of GF of
order 4 is c-normal in G. Then G belongs to F if and only if every
cyclic subgroup of GF with prime order is contained in ZF

∞(G).

Corollary 3.14. (Ballester-Bolinches, Wang, [1]). Let G be group such
that every cyclic subgroup of F ∗(G) of order 4 is c-normal in G, where
F ∗(G) is the generalized Fitting subgroup of G. If every cyclic subgroup
of F ∗(G) of prime order is contained in Z∞(G), then G is nilpotent.

Corollary 3.15. (Wang, [23]). Let G be a group and N be a normal
subgroup of G such that G/N is nilpotent. Suppose that every cyclic
subgroup of F ∗(N) of order 4 is c-normal in G. Then G is nilpotent if
and only if every cyclic subgroup of F ∗(N) of prime order is contained
in Z∞(G).

Corollary 3.16. (Li, Wang, [17]). Suppose that N is a normal sub-
group of a group G such that G/N is p-nilpotent, where p is a fixed
prime number. Assume that every cyclic subgroup of N with order p is
contained in Z∞(G). If p = 2, in addition, suppose that every cyclic
subgroup of order 4 of N is S-permutable in G or lies in Z∞(G). Then
G is p-nilpotent.

Corollary 3.17. (Li, Wang, [17]). Suppose that N is a normal subgroup
of a group G such that G/N is nilpotent. Suppose that every cyclic
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subgroup of F ∗(N) of order 4 is S-permutable in G. Then G is nilpotent
if and only if every cyclic subgroup of F ∗(N) of prime order is contained
in Z∞(G).
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