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Abstract. In this paper, we introduce a new model of point free
topology for point-set topology. We study the basic concepts in
this structure and will find that it is naturally close to point-set
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1. Introduction

A lattice L is said to be complete if every subset of L has the supre-
mum. Notice that a complete lattice is necessarily a bounded lattice,
i.e., it has the largest element 1 and the least element 0. A frame F is a
complete lattice which satisfies the following distributive law: for each
a, bi ∈ F (i ∈ I),

a ∧ (
∨
i∈I

bi) =
∨
i∈I

(a ∧ bi).

In addition, if the dual of the above equation holds, then we say that F is
a symmetric frame. A pseudocomplement of an element a of a bounded
lattice L is defined by max(a⊥), if there exists, and denoted by a∗, where
a⊥ = {x ∈ L : x∧a = 0}. Clearly, if F is a frame, then a∗ = ∨(a⊥). Let
F be a frame, then a subset G of F which is closed under finite meets and
arbitrary joins is called a subframe. Closure under the empty infimum
and supremum implies that subframes inherit top and bottom elements.
Let (X, τ) be any topological space, then clearly, τ is a frame and if
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U ⊆ τ , then
∨

U∈U U =
∪

U∈U U and
∧

U∈U U = intX(
∩

U∈U U). This
example motivates topologist to study the frames as point free topology.

A complete lattice L is said to be completely distributive if whenever
xij ∈ X for every i ∈ I and j ∈ J , then

∨
i∈I

∧
j∈J xij =

∧
f∈JI

∨
i∈I xif(i);

Note that this equality is self-dual. Clearly, every completely distributive
lattice is a symmetric frame and consequently is a frame. However, the
converses of these implications are not true. For instance, every topology
τ on a set X is a frame whereas it is not necessarily a symmetric frame
and consequently is not necessarily completely distributive (In fact, if
(X, τ) is a T1-space, then τ is a symmetric frame if and only if (X, τ) is a
discrete space). Also, suppose that (X, τ) is an extremally disconnected
Hausdorff space without isolated point and L = {U ∈ τ : X \ U ∈ τ}.
We can see that L is a complete Boolean algebra and so is a symmetric
frame. On the other hand, by [10, 5.16, p 142], X is not a completely
distributive.

Since the set of open sets of a topological space is a frame, many
important properties of topological spaces may be expressed without
referring to the points. The first person who exploit this possibility of
applying lattice theory to topology was Henry Wallman. He used the
lattice-theoretic ideas to construct what is now called the “Wallman
compactification” of a T1-topological space. This idea was pursued by
McKinsey, Tarski, Nöbeling, Lesier, Ehresmann, Bénabou, etc. How-
ever, the importance of attention to open sets as a lattice appeared as
late as 1962 in [3] and [11]. After that, many authors such as C.H.
Dowker, D. Papert, J. Isbell, B. Banaschewski, etc. became interested
and developed the field. The pioneering paper [7] by J. Isbell merits
particular mention for opening several important topics. In 1983, John-
stone gave an excellent monograph “Stone Spaces” which is still the
standard reference book. Until then, all attempts had been about the
modeling of topology but not topological space. In a similar method as
we deal with general topology, Wang Guo-Jun in [12] and later in [13]
construct a model of the topological space on a completely distributive
lattice. He, also, introduce a concept, named molecule, which has the
point role in this structure. In this article, we will pursue this viewpoint
and will introduce a new structure of point free topology as a model of
topological space, and review the basic concepts of point-set topology
in this structure. Of course, this structure has potentiality for studying
more.
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Remark 1.1. The following simple assertions are useful throughout the
paper. Let L be a complete pseudocomplemented lattice.

• The map ∗ is decreasing and a ≤ a∗∗ for every a ∈ L.
• The map ∗∗ is identity on L∗, i.e., a∗∗∗ = a∗ for all a ∈ L.
• For every a, b ∈ L we have

a ∧ b = 0 ⇔ a ≤ b∗ ⇔ b ≤ a∗ ⇔ a∗∗ ≤ b∗ ⇔ a∗∗ ∧ b = 0.

• If L is a frame and S ⊆ L, then (∨s∈Ss)
∗ = ∧s∈Ss

∗.

2. LGT -space and basic properties

Definition 2.1. Let L be a bounded pseudocomplemented distributive
lattice. If τ is a sublattice of L,

∨
S ∈ τ for each S ⊆ τ and 0, 1 ∈ τ ,

then τ is called a generalized topology on L and (L, τ) (briefly L) is called
an l-generalized topology. Every member of τ is said to be open and any
member of τ∗ = {t∗ : t ∈ τ} is said to be a closed element. If F is a
frame, then τ ⊆ F is an l-generalized topology on F if and only if τ is a
subframe of F . Clearly, the set of closed elements is a ∧-structure, since
(∨λ∈Λtλ)

∗ = ∧λ∈Λt
∗
λ. Furtheremore, if τ∗ is a sublattice of F , then we

say τ is an l-topology on F and (F, τ) (briefly F ) is an l-topological space;
for convenience, we denote an l-generalized topological space (resp. l-
topological space) by LGT -space (resp. LT -space). Assuming that τ is
an l-generalized topology on F and a ∈ F , we define a◦ = ∨{t ∈ τ : t ≤
a} and a = ∧{x ∈ τ∗ : a ≤ x}. Sometimes, we use intτa and clτa
instead of a◦ and a, respectively.

From this point on, any lattice, under which we study LGT -spaces,
is a frame.

An LGT -space need not to be an LT -space. For instance, consider
the lattice F , denoted by B⊤

4 , as follows:rrr rr
�

�
@
@

@
@

�
�

1

c

a b

0It is obvious that F ∗ = {0, a, b, 1} and a ∨ b = c /∈ F ∗. Thus (F, F ) is
an LGT -space while it is not an LG-space.

Note that if (F, τ) is an LGT -space and for every t1, t2 ∈ τ we have
(t1 ∧ t2)

∗ = t∗1 ∨ t∗2, then τ∗ is a sublattice of F and therefore (F, τ) is an
LT -space. We will see in the next proposition that the converse is also
true.
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We need the following lemma in the next theorem.

Lemma 2.2. Let F be a frame and S ⊆ F be such that S∗ is closed
under the join. Then, for every r, s ∈ S, we have r∗ ∨ s∗ = (r∗∗ ∧ s∗∗)∗.

Proof. Since r∗ ∨ s∗ ∈ S∗, it follows that

r∗ ∨ s∗ = (r∗ ∨ s∗)∗∗ = (r∗∗ ∧ s∗∗)∗.

□

The following theorem is an extension of Lemma 212 of [6]

Proposition 2.3. For any LGT -space (F, τ), the following statements
are equivalent:

(a) (r ∧ s)∗ = r∗ ∨ s∗ for every r, s ∈ τ .
(b) τ∗ is a ∨-semi sublattice of F .
(c) (F, τ) is an LT -space.
(d) a ∨ b = a ∨ b for every a, b ∈ F .

Proof. The implications (a) ⇒ (b) ⇒ (c) are obvious.
(c) ⇒ (d). It is enough to show that a ∨ b ≤ a ∨ b. Since (F, τ) is an

LT -space and a, b ∈ τ∗, it follows that a ∨ b ∈ τ∗. Clearly, a ∨ b ≤ a ∨ b
and consequently we are done.

(d) ⇒ (a). Suppose that r, s ∈ τ . By (d), it follows that τ∗ is closed
under the join and so by above lemma, we can write as follow:

x ∈ (r∧s)⊥ ⇔ x∧r∧s = 0 ⇔ x∧r∗∗∧s∗∗ = 0 ⇔ x ≤ (r∗∗∧s∗∗)∗ = r∗∨s∗.

Therefore, r∗ ∨ s∗ = (r ∧ s)∗. □

Recall that a distributive pseudocomplemented lattice L is said to be
a Stone algebra if a∗ ∨ a∗∗ = 1 for every a ∈ L. In view of this, if S
is a sublattice of L and s∗ ∨ s∗∗ = 1 for every s ∈ S, then we say L
is a S-Stone algebra. Obviously, if τ = F , then the concept of τ -Stone
algebra coincide with the concept of Stone algebra.

Proposition 2.4. Let (F, τ) be an LGT -space. Then, the following
statements hold.

(a) If F is a τ -Stone algebra, then (r∧s)∗ = r∗∨s∗ for every r, s ∈ τ .
But, the converse is not true.

(b) If F = τ , then the converse of (a) is also true.

Proof. (a). We do, Similar to the proof of Lemma 212 of [6]. Clearly,
r∗ ∨ s∗ ∈ (r ∧ s)⊥. Assuming that x ∈ (r ∧ s)⊥, we must show that
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x ≤ r∗ ∨ s∗. To see this, by Remark 1.2, we can write

x ∧ r ∧ s = 0 ⇔ x ∧ r∗∗ ∧ s = 0 ⇔ x ∧ r∗∗ ≤ s∗

⇒ x = x ∧ 1 = x ∧ (r∗ ∨ r∗∗) = (x ∧ r∗) ∨ (x ∧ r∗∗) ≤ r∗ ∨ s∗.

Now, suppose that F = B⊤
4 . Assuming that τ = {0, a, 1}, clearly (F, τ)

is an LT -space but a∗∨a∗∗ = b∨a = c ̸= 1 and hence F is not a τ -Stone
algebra.

(b). It follows easily from Lemma 212 of [6]. □
The following proposition is simple to prove and is a basic model for

the structure of LGT -spaces.

Proposition 2.5. Let (X, τ) be a topological space. Then (P (X), τ) is
LT -space and τ∗ is the family of closed subsets in X.

It is obvious that if τ and F are two topology on X and τ ⊆ F ,
then (F, τ) is an LGT -space. The following proposition shows (F, τ) is
not necessarily an LT -space and moreover shows when (τ, τ) is an LT -
space, where τ is a topology on a set X. Also, the proposition shows
that extremally disconnected spaces have a prominent role in the study
of LGT -spaces. For more information about the extremally disconnected
spaces, see [4], [5] and [14].

The following proposition can also be deduced from 3.5 of [8]. Recall
that if τ is a topology on X, then U∗ = X \ U for every U ∈ τ .

Proposition 2.6. Let (X, τ) be a topological space. Then the following
statements are equivalent:

(a) (τ, τ) is an LT -space.
(b) The set A = {U : U ∈ τ} is closed under the finite intersection.
(c) X is extremally disconnected.

Proof. (a) ⇒ (b). Suppose that U, V ∈ A. By Proposition 2.4, we have
U∗ ∨ V ∗ = (U ∧ V )∗ and so we can write

X \ (U ∩ V ) = (X \ U) ∪ (X \ V ) = U∗ ∨ V ∗ = (U ∧ V )∗ = X \ U ∩ V .

Therefore, U ∩ V = U ∩ V ∈ A.
(b) ⇒ (c). Suppose that U ∈ τ , it is enough to show U ∈ τ . Taking

V = X \ U , by hypothesis, there exists W ∈ τ such that U ∩ V = W .

Clearly, (U ∩ V )◦ = ∅ and so W = ∅. Thus, U ∩ V = U ∩X \ U = ∅
and consequently U = U

◦
∈ τ .

(c) ⇒ (a). Suppose that U, V ∈ τ , it is sufficient to prove that (U ∧
V )∗ = U∗ ∨ V ∗. Since X is extremally disconnected, U ∩ V = U ∩ V .
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Now, we do, similar to the implication (a) ⇒ (b) and this completes the
proof. □

Note that extremally disconnected spaces are not rare, even there
exist extremally disconnected spaces which are far from discrete spaces,
more precisely every point of which is nonisolated (cf. [1, Proposition
1.6]).

Definition 2.7. Suppose that F is a frame and S ⊆ F . We denote the
set of finite meets of elements of S by Fm(S). Set < S >= {∨D : D ⊆
Fm(S)}. Clearly, < S > is the smallest subframe of F containing S.
If (F, τ) is an LGT -space and τ =< S > for some S ⊆ F , then S is
said to be a subbase for the topology τ . A set B ⊆ τ is called a base for
the topology τ if for every t ∈ τ there exists D ⊆ B such that t = ∨D.
Moreover, assuming that F is a frame and B ⊆ F , we say B is a base
for a topology if for every b1, b2 ∈ B there exists D ⊆ B such that
b1 ∧ b2 = ∨D.

The proof of the two following propositions is routine.

Proposition 2.8. Let (F, τ) be an LGT-space. The following state-
ments hold:

(a) 0◦ = 0 and 1◦ = 1.
(b) a◦ ≤ a for every a ∈ F .
(c) If a, b ∈ F and a ≤ b, then a◦ ≤ b◦.
(d) ∀a ∈ F , a◦ = ∨{t ∈ B : t ≤ a}, where B is a base for τ .
(e) ∀a ∈ F , a◦ ∈ τ .
(f) a = a◦ if and only if a ∈ τ .
(g) ∀a ∈ F , (a◦)◦ = a◦.
(h) a◦ is a greatest element of τ that is less than or equal to a.
(i) If a1, ..., an ∈ F , then (

∧n
i=1 ai)

◦ =
∧n

i=1 a
◦
i .

Conversely, given a map φ : F −→ F satisfying (a), (b), (c), (g) and
(i), if we define τ = {a ∈ F : φ(a) = a}, then τ is an LG-topology on
F and the interior operator induced by τ coincides with the φ.

Proposition 2.9. Let (F, τ) be an LGT-space. The following state-
ments hold:

(a) 0 = 0 and 1 = 1.
(b) ∀a ∈ F , a ≤ a.
(c) If a, b ∈ F and a ≤ b, then a ≤ b.
(d) a ∈ τ∗ for every a ∈ F .
(e) a = a if and only if a ∈ τ∗.
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(f) a = a for all a ∈ F .
(g) a is a smallest closed element that is greater than or equal to a.
(h) Assuming that (F, τ) is an LT -space, if a1, ..., an ∈ F , then we

have (
∨n

i=1 ai) =
∨n

i=1 ai.

Note that the proof of part (h) of the above proposition follows from
Proposition 2.4.

Definition 2.10. A closure operator (resp. interior operator) on a poset
P is a function c : P 7−→ P (resp. i : P 7−→ P ) such that

i) for all x, y ∈ P if x ≤ y, then c(x) ≤ c(y) (resp. i(x) ≤ i(y));
ii) x ≤ c(x) (resp. i(x) ≤ x) for all x ∈ P ;
iii) c(c(x)) = c(x) (resp. i(i(x)) = i(x)) for all x ∈ P .

Recall that if “c” and “i” are closure and interior operators on a
poset P , then clearly ci and ic are order-preserving and idempotent.

Therefore, assuming that (F, τ) is an LGT -space, it follows that a◦
◦
= a◦

and a
◦
◦

= a
◦
for every a ∈ F .

The maps “int”, “cl” and “complement” have a close connection.
Now, we consider the connection between “int”, “cl” and “pseudocom-
plement” in LGT -spaces.

Proposition 2.11. Let (F, τ) be an LGT-space. For every a ∈ F , the
following statements hold.

(a) a = a
∗∗

= a
∗◦

∗

= a∗∗.
(b) a∗

◦ ≤ a
∗
and if a∗

◦
has complement in F , then the equality holds.

(c) a∗ ≤ a◦
∗
and if a has complement in F , then the equality holds.

(d) (Fr(a))◦ = 0, where Fr(a) = a ∧ a◦
∗
(Fr(a) is called the frontier

of a in F ).

Proof. (a). Clearly, a ∈ τ∗ and consequently a
∗∗

= a. To prove the
other equality, if we put A = {t ∈ τ : a ≤ t∗}, B = {t ∈ τ : t ≤ a∗}
and C = {t ∈ τ : a∗∗ ≤ t∗}, then by Remark 1.2, A = B = C. Thus,
we can write

a = ∧{t∗ : t ∈ τ, a ≤ t∗} = (∨A)∗ = (∨B)∗ = a∗
◦∗
,

a∗∗ = ∧{t∗ : t ∈ τ, a∗∗ ≤ t∗} = (∨C)∗ = (∨A)∗ = a.

(b). By (a), it is clear that a∗
◦ ≤ a∗

◦∗∗
= a

∗
. Now, suppose that a∗

◦

has a complement. Thus, by part (a) we can write

a
∗
= a

∗◦
∗∗

= a∗
◦
.
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(c). Since a◦ ≤ a and every t∗ ∈ τ∗ is closed, we can write

a∗ ≤ a◦
∗ ⇒ a∗ ≤ a◦∗ = a◦

∗
.

Now, suppose ac exists, then clearly a∗ = ac. Assume that t ∈ τ and
a∗ ≤ t∗, then t ≤ t∗∗ ≤ a∗∗ = a and consequently t ≤ a◦, so a◦

∗ ≤ t∗.
Therefore, a◦

∗ ≤ a∗.
(d). By Proposition 2.9 and part (b) of the proposition, we can write

(a ∧ a◦
∗
)◦ = a

◦ ∧ a◦
∗◦ ≤ a

◦ ∧ a◦
∗
≤ a ∧ a

∗
= 0.

□
Note that for identity in the part (b) of the above proposition if instead

of a∗
◦
we suppose that both a and a have complements, then the equality

does not necessarily hold. For example, suppose that F be as followsrr rr rr
�
�
�
�
�

�
@
@

@
@

�
�

1

c d

a b

0

Clearly, F is a frame, since it has not a copy of N5 or M3. Assuming
τ = {0, a, 1}, it is obvious that (F, τ) is LGT -space. We can easily see

that b = b has the complement whereas b∗
◦
= c◦ = a ̸= c = b

∗
= b

∗
.

Definition 2.12. Suppose that (F, τ) is an LGT -space. a ∈ F is said
to be a dense element if a = 1

In the following proposition, we consider some natural assertions
about density.

Proposition 2.13. Suppose that (F, τ) is an LGT -space and a ∈ F .
(a) a is a dense element in F if and only if t ∧ a ̸= 0 for every

t ∈ τ \ {0}.
(b) a = 1 if and only if a∗

◦
= 0.

(c) If a∗ = 1, then a◦ = 0. But the converse is not true.
(d) a ∨ a∗ is a dense element in F for every a ∈ F .
(e) If a is a dense element, then t ∧ a = t for every t ∈ τ .

Proof. (a) and (b) are evident.
(c). The first part of (c) is clear. Now, let F be the topology on R

such that every point x ∈ Q is isolated and every point x /∈ Q has the
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ordinary neighborhood base. Then (F, τ) is an LGT -space, where τ is
the ordinary topology on R. If we take a = Q, then a ∈ F and a◦ = 0
whereas a∗ = 0 ̸= 1.

(d). Suppose that r ∈ τ and a ∨ a∗ ≤ r∗. It is enough to show that
r = 0. To see this, we can write

(a ∧ r) ∨ (a∗ ∧ r) = (a ∨ a∗) ∧ r = 0 ⇒ r ∧ a = 0 = r ∧ a∗

⇒ r ≤ a∗ , r ∧ a∗ = 0 ⇒ r = 0.

(e). Suppose that r ∈ τ and t ∧ a ≤ r∗, It is enough to show that
t ≤ r∗. Since t ∧ a ≤ r∗ and a is a dense element, it follows that
t ∧ a ∧ r = 0 and so t ∧ r = 0, consequently t ≤ r∗. □

3. Subspace and product space

Definition 3.1. Suppose that (F, τ) is an LGT -space and a ∈ F . If
we take Fa =↓ a and τa = {t ∧ a : t ∈ τ}, then clearly (Fa, τa) is an
LGT -space. We call (Fa, τa) as a subspace of (F, τ) (briefly, we say Fa

is a subspace of F ).

In the following, we are going to study the basic properties of sub-
spaces in LGT -spaces.

Proposition 3.2. Suppose that (F, τ) is an LGT -space and a ∈ F .
(a) If S is a subbase for τ , then Sa = {s∧ a : s ∈ S} is a subbase for

τa.
(b) If B is a base for τ , then Ba = {t ∧ a : t ∈ B} is a base for τa.

Proof. The proof is straightforward. □
We need the following lemma for the next proposition.

Lemma 3.3. Suppose F is a frame, a, b ∈ F and b∗ = 0. Then (a∧b)∗ =
a∗.

Proof. By the following implication, it is easy.

(a∧b)⊥ = {x ∈ F : x∧a∧b = 0} = {x ∈ F : x∧a ≤ b∗ = 0} = a⊥. □
□

Proposition 3.4. Suppose that (F, τ) is an LGT -space and a ∈ F .
Then, the following statements hold.

(a) {(t ∧ a)∗ ∧ a : t ∈ τ} is the set of closed elements of Fa. In
particular, if a ∈ F ∗, then {t∗ ∧ a : t ∈ τ} is the set of closed elements
of Fa.
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(b) If x ≤ a, then clτax = (intτx
∗ ∧ a)∗ ∧ a.

(c) If a ∈ F ∗ and x ≤ a, then clτax = clτx ∧ a. In particular, if a is
a closed element in F , then clτax = clτx.

(d) If x ≤ a, then intτx ≤ intτax, and the converse of the inclusion
is not necessarily true.

(e) If a is an open element in F and x ≤ a, then intτx = intτax.

Proof. (a). It is enough to show that (t ∧ a)∗Fa
= (t ∧ a)∗ ∧ a for every

t ∈ τ (the notion (t ∧ a)∗Fa
means the pseodocomplement of t ∧ a with

respect of Fa). In fact, if we take A = {c ∈ Fa : c ∧ (t ∧ a) = 0}, then
A = {x∧a : x ∈ F, (x∧a)∧ (t∧a) = x∧ (t∧a) = 0} and consequently
(t∧a)∗Fa

= ∨FaA = ∨A = (∨{x ∈ F : x∧ (t∧a) = 0})∧a = (t∧a)∗∧a.
Now, suppose that a = b∗ for some b ∈ F . Note that (a ∨ a∗)∗ = 0 for
every a ∈ F . Therefore, using above lemma, for every t ∈ τ , we can
write

(t ∧ a)∗ ∧ a = (t ∧ b∗)∗ ∧ b∗ = ((t ∧ b∗) ∨ b)∗

= ((t ∨ b) ∧ (b∗ ∨ b))∗ = (t ∨ b)∗ = t∗ ∧ b∗ = t∗ ∧ a.

(b). Let x ∈ Fa, then we can write

clτax = ∧{(t∧a)∗∧a : x ≤ (t∧a)∗∧a} = ∧{(t∧a)∗ : x∧ t∧a = 0}∧a

= (∨{t∧a : x∧t = 0})∗∧a = (∨{t : t ≤ x∗}∧a)∗∧a = (intτx
∗∧a)∗∧a.

(c). Since a ∈ F ∗, by part (a) of the proposition and part (a) of
Proposition 2.12, we can write

clτax = (intτx
∗ ∧ a)∗ ∧ a = (intτx

∗)∗ ∧ a = (clτx) ∧ a.

Now, suppose that a = t∗ is a closed element in F and x ≤ a. Therefore,
x ∧ t = 0 and so (clτx) ∧ t = 0. Thus, clτx ≤ t∗ = a and clτax =
(clτx) ∧ a = clτx.

(d). Clearly, intτx = (intτx) ∧ a is an open element in τa contained
in x and consequently intτx ≤ intτax.

(e). Let a ∈ τ and x ∈ Fa, then we can write

intτax = ∨{t ∧ a : t ∈ τ, t ∧ a ≤ x} = ∨{r ∈ τ : r ≤ x} = intτx.

□
Definition 3.5. Suppose that (F, τ) is an LGT -space. We say a ∈ F
is τ -compact (briefly, compact) whenever if S ⊆ τ and a ≤ ∨S, then
there exists a finite subset D of S such that a ≤ ∨D. We say a ∈ F
is ∗∗-compact whenever if S ⊆ τ and a ≤ ∨S, then there exists a finite
subset D of S such that a ≤ (∨D)∗∗. We can similarly define Lindelöf,
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countably compact ∗∗-Lindelöf, ∗∗-countably compact etc. If 1 (i.e., the
top element of F ) is a compact element in (F, τ), then we say (F, τ)
(briefly, F ) is a compact space. Let L be a lattice and S ⊆ L, then we
say S has the finite meet property if for every finite subset D of S we
have ∧S ̸= 0.

The following lemma may be well-known.

Lemma 3.6. Suppose that L is a pseodocomplemented lattice. Then,
the following statements are equivalent.

(a) The map ∗ is injective.
(b) ker(∗) = 1 where ker(∗) = {a ∈ F : a∗ = 0}.
(c) The map of pseudocomplementation coincides with the map of

complementation.
(d) L is a Boolean algebra.
(e) For every a, b ∈ L if b∗ ∧ a = 0, then a ≤ b.

Proof. (a) ⇒ (b). It is evident.
(b) ⇒ (c). Assuming a ∈ L, it is enough to show that a ∨ a∗ = 1. To

see this, it is clear that (a ∨ a∗)∗ = a∗ ∧ a∗∗ = 0 and so a ∨ a∗ = 1.
(c) ⇒ (d). By Theorem 6.5 of [2, p. 80], it is clear.
(d) ⇒ (e). It is clear.
(e) ⇒ (a). Suppose that a, b ∈ L and b∗ = a∗. Clearly, b∗ ∧ a =

a∗ ∧ a = 0 and consequently by assumption a ≤ b. Similarly, it follows
that b ≤ a. Therefore, a = b. □

Inspired by the above lemma, we formulate the following definition.

Definition 3.7. Assuming (F, τ) is an LGT -space, we say the map ∗
is topologically injective whenever ker(∗) ∩ τ = {1}.

Evidently, the topologically injectivity does not imply the injectivity.
For example, let F = B⊤

4 and τ = {0, a, 1}. Clearly the map ∗ is
topologically injective but not injective.

Proposition 3.8. Suppose that (F, τ) is an LGT -space. Then the fol-
lowing statements hold.

(a) If a ∈ F and x ∈ Fa, then x is compact in (F, τ) if and only if it
is compact in (Fa, τa).

(b) If the map ∗ is topologically injective, then F is compact if and
only if for every S ⊆ τ∗ with finite meet property, we have ∧S ̸= 0.

(c) If the map ∗ is topologically injective, then F is compact if and
only if it is ∗∗-compact.
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(d) If the map ∗ is topologically injective and F is ∗∗-compact, then
every closed element in (F, τ) is ∗∗-compact.

Proof. (a). The proof is straightforward.
(b ⇒). Suppose that S ⊆ τ and ∧s∈Ss

∗ = 0, then it follows that
(∨S)∗ = 0 and so, by hypothesis, ∨S = 1. Therefore, there exists a
finite subset R of S such that ∨R = 1. Thus, ∧r∈Rr

∗ = 0.
(b ⇐). Suppose that S ⊆ τ and 1 = ∨S. Thus, ∧s∈Ss

∗ = (∨S)∗ = 0
and so there exists a finite subset R of S such that ∧r∈Rr

∗ = (∨R)∗ = 0.
Therefore, by assumption, ∨R = 1.

(c). Clearly, if F is compact, then it is ∗∗-compact. Conversely,
suppose that F is ∗∗-compact, S ⊆ τ and ∨S = 1. By hypothesis,
there exists a finite subset R of S such that (∨R)∗∗ = 1. Therefore,
(∨R)∗ = (∨R)∗∗∗ = 0 and so, by assumption, ∨R = 1.

(d). By part (c), we may suppose that F is compact. Let x = r∗ be
a closed element in F and {ti}i∈I is an open cover for r∗. Therefore, we
can write

r∗ ≤ ∨i∈Iti ⇒ r∗∧(∨i∈Iti)
∗ = 0 ⇔ (r∨(∨i∈Iti))

∗ = 0 ⇒ r∨(∨i∈Iti) = 1.

Since F is compact there exists n ∈ N such that r ∨ (∨n
i=1ti) = 1. Thus,

r∗ ∧ (∨n
i=1ti)

∗ = 0 and consequently x = r∗ ≤ (∨n
i=1ti)

∗∗. □

Although the following definition is not an accurate model for the
ordinary product topology, it is close to it.

Definition 3.9. Suppose that (Fi, τi) is an LGT -space, for every i ∈ I.
Clearly, F =

∏
i∈I Fi with ordinary order is a frame. Now, we define

two topologies on F as follows:
i) τp = {t = (ti)i∈I : ti ∈ τi, and ti = 1 for all except finitely many i ∈

I} ∪ {0}. This topology is called product topology on F . Sometimes we
use τ instead of τp. When we deal with

∏
i∈I Fi as an LGT -space, we

have in view this topology.
ii) τb = {t = (ti)i∈I : ∀i ∈ I, ti ∈ τ}. This topology is called box

topology on F .

Clearly, if πi is the projection map from F to Fi, then for every S ⊆ F
we ∨S = (∨s∈Sπi(s))i∈I .

The proof of the following proposition is not difficult and so we left
it. Note that for every x, y ∈ F =

∏
i∈I Fi, we have y = x∗ if and only

if yi = x∗i for every i ∈ I.
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Proposition 3.10. Suppose that (Fi, τi) is an LGT -space, for every
i ∈ I, F =

∏
i∈I Fi, and τ and τb are the the product topology and box

topology on F , respectively. Then the following statements hold.
(a) τ∗ = {x = (xi)i∈I ∈ F : xi ∈ τ∗i , and xi = 0, for all except

finitely many i ∈ I} ∪ {1}.
(b) τ∗b = {x = (xi)i∈I ∈ F : xi ∈ τ∗i , ∀i ∈ I}.
(c) For every x ∈ F , if I is infinite, then we have intτx ̸= 0 if and

only if xi = 1 for all except finitely many i ∈ I, and if I is finite, then
we have intτx ̸= 0 if and only if there exists i ∈ I such that x◦i ̸= 0.

(d) For every x ∈ F , if I is finite or intτx ̸= 0, then intτx = (x◦i )i∈I .
(e) For every x ∈ F , if I is infinite, then we have clτx ̸= 1 if and

only if xi = 0 for all except finitely many i ∈ I, and if I is finite, then
we have clτx ̸= 1 if and only if there exists i ∈ I such that clτxi ̸= 1.

(f) For every x ∈ F , if I is finite or clτx ̸= 1, then clτx = (xi)i∈I .
(g) If x ∈ F , then intτbx = (x◦i )i∈I .
(h) If x ∈ F , then clτbx = (xi)i∈I .
(i) F is compact with respect to product topology if and only if Fi is

compact for every i ∈ I.
(j) F is compact with respect to box topology if and only if I is finite

and Fi is compact for every i ∈ I.

4. Separation axioms

The separation axioms are already defined in the literature of point
free topology, but we prefer the following definition in this structure.

Definition 4.1. Let (F, τ) be an LGT -space and a ∈ F . We say (F, τ)
is T0 if for any two different nonzero elements a, b ∈ F there exist 0 ̸=
a1 ≤ a, 0 ̸= b1 ≤ b and t ∈ τ such that a1 ≤ t and b1 ∧ t = 0 or b1 ≤ t
and a1 ∧ t = 0. We say (F, τ) is T1 if for any two different nonzero
elements a, b ∈ F there exist 0 ̸= a1 ≤ a, 0 ̸= b1 ≤ b and t ∈ τ such
that a1 ≤ t and b1 ∧ t = 0. We say (F, τ) is T2 if for any two different
nonzero elements a, b ∈ F there exist 0 ̸= a1 ≤ a, 0 ̸= b1 ≤ b and r, s ∈ τ
such that a1 ≤ r, b1 ≤ s and r ∧ s = 0. We say (F, τ) is regular if for
every 0 ̸= a ∈ F and every closed element t∗ ∈ τ∗ with a ≰ t∗ there exist
0 ̸= a1 ≤ a and r, s ∈ τ such that a1 ≤ r, t∗ ≤ s and r ∧ s = 0. A T0

regular LGT -space is said to be T3. Using the elements of τ∗∗ instead of
elements of τ we can define the concepts ∗ ∗ −T0, ∗ ∗ −T1, ∗ ∗ −T2 and
∗ ∗ −regular.

Since for every a, b ∈ F , we have a∧ b = 0 if and only if a∗∗ ∧ b∗∗ = 0,
we can define ∗∗-separations as follows. For example, (F, τ) is ∗∗-regular
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if and only if for every 0 ̸= a ∈ F and every closed element c ∈ τ∗ with
a ≰ c there exist 0 ̸= a1 ≤ a and r, s ∈ τ such that a1 ≤ r∗∗, c ≤ s∗∗

and r ∧ s = 0.
It is clear that T2 ⇒ T1 ⇒ T0. Moreover, in the following result it

is shown that T3 ⇒ T2.

Proposition 4.2. Suppose that (F, τ) is an LGT -space. Then the fol-
lowing statements hold.

(a) If (F, τ) is T3, then it is T2.
(b) If (F, τ) is regular, then for every a ∈ F and t ∈ τ , if 0 ̸= a ≤ t

there exist 0 ̸= a1 ≤ a and r ∈ τ such that a1 ≤ r ≤ r ≤ t∗∗.
(c) (F, τ) is ∗∗-regular if and only if for every a ∈ F and t ∈ τ ,

if 0 ̸= a ≤ t∗∗, then there exist 0 ̸= a1 ≤ a and r ∈ τ such that
a1 ≤ r∗∗ ≤ r∗∗ ≤ t∗∗.

(d) If τ is a topology on X, then ∗∗-regularity in (P (X), τ) coincides
with ordinary regularity.

Proof. The proofs of (a) and (b) are routine.
(c ⇒). Suppose that t ∈ τ and 0 ̸= a ≤ t, then a ∧ t∗ = 0 and

by hypothesis there exist 0 ̸= a1 ≤ a and r, s ∈ τ such that a1 ≤ r∗∗,
t∗ ≤ s∗∗ and r ∧ s = 0. Therefore, a1 ≤ r∗∗ ≤ s∗∗∗ ≤ t∗∗. On the other
hand, Clearly, we have r ∧ s = 0 and so r ≤ s∗. Therefore, by part (a)
of Proposition 2.12, it follows that r∗∗ = r ≤ s∗ = s∗∗∗.

(c ⇐). Suppose that 0 ̸= a ∈ F , t∗ ∈ τ∗ and a ≰ t∗. Therefore,
0 ̸= a ∧ t ≤ t and by hypothesis there exist 0 ̸= a1 ≤ a and r ∈ τ such
that a1 ≤ r∗∗ ≤ r∗∗ ≤ t. Clearly, by Proposition 2.12, r∗∗ = r and
so there exists s ∈ τ such that r∗∗ = r = s∗. Therefore, t∗ ≤ s∗∗ and
r∗∗ ∧ s∗∗ = 0.

(d). It is trivial, since in any topological space (P (X), τ) we have
A∗ = X \A for every A ∈ P (X). □

Remark 4.3. It is clear that if one of the separation condition T0, T1

and T2 holds, then for every different nonzero elements a, b ∈ F there
exist a1, b1 ∈ F such that 0 ̸= a1 ≤ a, 0 ̸= b1 ≤ b and a1 ∧ b1 = 0.
If a frame F has this preliminary separation property, we say F has
ps-property. Therefore, in the definition of separation axioms in an
LGT -space (F, τ), we can suppose that F has the ps-property and use
the phrase “for any two non-comparable nonzero elements a, b ∈ F” or
“for any two orthogonal nonzero elements a, b ∈ F” instead of “for any
two different nonzero elements a, b ∈ F”. Note that, assuming L is a
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lattice and a, b ∈ L, in this paper, when we say a and b are disjoint, we
mean a ∧ b = 0.

Proposition 4.4. Let F and τ be two topology on X such that F has
the ps-property and τ ⊆ F . The following statements hold.

(a) (F, τ) is T0 if and only if for every two disjoint nonempty elements
A,B ∈ F there exists U ∈ τ such that A ∩ U ̸= ∅ and B ⊈ clFU , or
B ∩ U ̸= ∅ and A ⊈ clFU .

(b) (F, τ) is T1 if and only if for every two disjoint nonempty elements
A,B ∈ F there exists U ∈ τ such that A ∩ U ̸= ∅ and B ⊈ clFU .

(c) (F, τ) is T2 if and only if for every two disjoint nonempty elements
A,B ∈ F there exists U ∈ τ such that A ∩ U ̸= ∅ and B ⊈ clτU .

(d) (F, τ) is a regular LGT -space if and only if for every A ∈ F and
every U ∈ τ if A ∩ U ̸= ∅, then there exist ∅ ̸= B ∈ F and V ∈ τ such
that B ⊆ A ∩ U and B ⊆ V ⊆ clτV ⊆ clFU .

Proof. (a ⇒). Let A,B ∈ F be two disjoint nonempty elements. By
hypothesis, without loss of generality, there exist A1, B1 ∈ F with ∅ ̸=
A1 ⊆ A, ∅ ̸= B1 ⊆ B and U ∈ τ such that A1 ⊆ U and U ∩ B1 = ∅.
Clearly, U ∩A ̸= ∅, and clFU ∩B1 = ∅, consequently B ⊈ clFU .

(a ⇐). Let A,B ∈ F be two disjoint nonempty elements. By hypoth-
esis, without loss of generality, there exists U ∈ τ such that A ∩ U ̸= ∅
and B ⊈ clFU . Thus, there exists b ∈ B \ clFU . Clearly, B1 ∈ F
exists such that b ∈ B1 ⊆ B and B1 ∩ clFU = ∅. Therefore, if we set
A1 = A ∩ U , then ∅ ̸= A1 ⊆ A, ∅ ̸= B1 ⊆ B, A1 ⊆ U and B1 ∩ U = ∅.

(b). The proof is similar to (a).
(c ⇒). Let A,B ∈ F be two disjoint nonempty elements. By hy-

pothesis, there exist A1, B1 ∈ F with ∅ ̸= A1 ⊆ A, ∅ ̸= B1 ⊆ B and
U, V ∈ τ such that A1 ⊆ U , B1 ⊆ V and U∩V = ∅. Clearly, A∩U ̸= ∅,
V ∩ clτU = ∅ and consequently B ⊈ clτU .

(c ⇐). Let A,B ∈ F be two disjoint nonempty elements. By hypoth-
esis, there exists U ∈ τ such that A ∩ U ̸= ∅ and B ⊈ clτU . Thus,
there exists b ∈ B \ clτU . Clearly, V ∈ τ exists such that b ∈ V and
V ∩ clτU = ∅. Therefore, if we set A1 = A ∩ U and B1 = V ∩ B, then
∅ ̸= A1 ⊆ A, ∅ ̸= B1 ⊆ B, A1 ⊆ U , B1 ⊆ V and U ∩ V = ∅.

(d ⇒). Assume that A ∈ F , U ∈ τ and A ∩ U ̸= ∅. Obviously,
(A∩U)∩U∗ = ∅ and consequently there exist B ⊆ A∩U and V,W ∈ τ
such that ∅ ̸= B ⊆ V , U∗ ⊆ W and V ∩W = ∅. Clearly, it follows that

B ⊆ V ⊆ clτV ⊆ X \W ⊆ X \ U∗ = clFU.
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(d ⇐). Suppose that A ∈ F , U ∈ τ and ∅ ̸= A ⊈ U∗. Thus,
A∩ clFU ̸= ∅ and so A∩U ̸= ∅. Therefore, there exist ∅ ̸= B ∈ F and
V ∈ τ such that B ⊆ A ∩ U and B ⊆ V ⊆ clτV ⊆ clFU . Now, if we set
W = X \ clτV , then the proof will be completed. □

As we saw, the ps-property has a basic role in the studying separa-
tion axioms. Hence, in some of the following propositions we pay more
attention to this concept.

The following lemma is easy to prove.

Lemma 4.5. Let F be a frame. Then the following statements are
equivalent.

(a) F has the ps-property.
(b) For every a ∈ F , either a is an atom or there exist nonzero ele-

ments b, c ∈ F such that b, c ≤ a and b ∧ c = 0.
(c) For every a, b ∈ F whenever 0 ̸= a ≨ b, it follows that there exist

a1, b1 ∈ F such that 0 ̸= a1 ≤ a, 0 ̸= b1 ≤ b and a1 ∧ b1 = 0.

Lemma 4.6. Let (X, τ) be a topological space.
(a) If X is T2, then τ has the ps-property.
(b) If X is a T1-space, then τ has not necessarily ps-property.
(c) If τ has the ps-property, then X is not necessarily a T0-space.

Moreover, even if X is T0 and τ has the ps-property, then X is not
necessarily a T1-space.

Proof. (a). Assume that A,B ∈ τ and ∅ ̸= A ⫋ B. Thus, there exist
a ∈ A and b ∈ B \ A. Since X is T2, there exist two points separated
by two disjoint nonempty open sets A1 and B1 such that A1 ⊆ A and
B1 ⊆ B.

(b). Let X be infinite and τ be the cofinite topology on X. Clearly,
X is a T1-space whereas τ has not the ps-property.

(c). Clearly, if τ is the trivial topology on a set X with more than one
element, then X is not T0 whereas τ has the ps-property. To complete
the proof, suppose (X, τ1) is a Hausdorff topological space and a, b ∈ X
with a ̸= b. Set τ = {U ∈ τ1 : b /∈ U or a, b ∈ U}. Clearly, (X, τ) is a
T0-space and τ has the ps-property but (X, τ) is not a T1-space. □

Lemma 4.7. Let F be a frame. Then F has the ps-property if and only
if (F, F ) is a T2 − LGT -space.

Proof. It is straightforward. The following result is an immediate con-
sequence of Remark 4.3, Proposition 4.4 and Lemma 4.7. □
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Corollary 4.8. Suppose that τ is a topology on X. Then τ has the
ps-property if and only if for every U, V ∈ τ , if ∅ ̸= U ⫋ V , then there

exists a W ∈ τ such that W ∩ U ̸= ∅ and V ⊈ W .

Definition 4.9. Let L be a bounded lattice. 1 ̸= x ∈ L is called ∧-prime
whenever if a ∧ b ≤ x, then a ≤ x or b ≤ x. Using the duality, we
obtain the definition of the ∨-prime element. A topological space (X, τ)

is called sober if every proper ∧-prime element of τ is of the form X\{x}
for some x ∈ X; equivalently every ∨-prime closed subset of X is of the
form {x} for some x ∈ X, for more information about sober spaces see,
for example see [9].

Assume that F is a frame and ΣF is the set of all frame homomor-
phism from F to the frame {0, 1}. For every a ∈ F define Coz(a) =
{θ ∈ ΣF : θ(a) = 1}, then τΣ = {Coz(a) : a ∈ F} is a topology on
ΣF . In the literature, one can see that if (X, τ) is a topological space
and E : X −→ Στ is a map such that E(x)(U) = 1 if and only if x ∈ U
for every x ∈ X and every U ∈ τ , then X is a sober space if and only if
the map E is homeomorphism; equivalently, E is bijective, see [?]. One
can also see that a Hausdorff space is sober and a sober space is T0. But
neither “sober” implies “T1” nor “T1” implies “sober”.

Remark 4.10. A natural question at this point is that “what is the
connection between sober space and ps-property?”. In fact, these two
concepts are not comparable. For example, let τ = {(a, 0] : a ∈ R} ∪
{(−∞, 0]} be a topology on X = (−∞, 0]. Since every nonempty closed
subset of X is of the form (−∞, a]. Therefore, every ∨-prime closed

subset of X is of the form {a} and consequently X is a sober space
(note that, by definition, any ∨-prime closed subset is nonempty). But
every nonempty element of τ intersects nontrivially the other one and
this concludes that τ has not ps-property. In the next proposition we
find that even if (X, τ) is a T1-space and τ has the ps-property, then X
is not necessarily a sober space.

Proposition 4.11. Let (X, τ) be a T1-space. If X is a sober space,
Then τ has the ps-property. The converse is not true.

Proof. Let, on the contrary, U, V ∈ τ and ∅ ̸= U ⫋ V be such that for
every ∅ ̸= U1 ⊆ U and ∅ ̸= V1 ⊆ V we have U1 ∩ V1 ̸= ∅. It follows
that for every nonempty A,B ∈ τ contained in U we have A ∩ B ̸= ∅.
Define θ : τ −→ {0, 1} with θ(W ) = 1 if and only if W ∩ U ̸= ∅. We
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show that θ ∈ Στ . Clearly, if Wi ∈ τ for every i ∈ I, then

θ(∪i∈IWi) = 0 ⇔ (∪i∈IWi)) ∩ U = ∅

⇔ ∀i ∈ I, θ(Wi) = 0 ⇔ ∨i∈Iθ(Wi) = 0 ∴ θ(∪i∈IWi) = ∨i∈Iθ(Wi).

Also, if W1,W2 ∈ τ , then

θ(W1 ∩W2) = 0 ⇔ W1 ∩W2 ∩U = ∅ ⇔ W1 ∩U = ∅ or W2 ∩U = ∅

⇔ θ(W1) ∧ θ(W2) = 0 ∴ θ(W1 ∩W2) = θ(W1) ∧ θ(W2).

Thus, θ ∈ Στ and since X is sober, there exists x ∈ X such that
θ = E(x). Clearly, x ∈ U and U ̸= {x}. Therefore, there exists a
point y ∈ U \ {x}. Suppose W0 is an arbitrary open neighborhood of y.
Clearly, θ(W0) = 1 and so x ∈ W0. Thus, X cannot be T1 and this is a
contradiction. Now, we construct a T1-space (X, τ) such that τ has the
ps-property but X is not sober. Let A and B be two infinite disjoint
sets. Put X = A ∪ B and τ = {U ⊆ X : U ⊆ A or X \ U is finite }.
Clearly, (X, τ) is a T1-topological space and τ has the ps-property. To
complete the proof, we show that X is not sober. It is easy to see that A
is ∧-prime element in τ , whereas it is not of the form X \{x}. Therefore,
X is not sober. □
Proposition 4.12. Suppose that (F, τ) is an LGT -space and a ∈ F .
Then the following statements hold.

(a) If F has the ps-property, then Fa has also the ps-property.
(b) If (F, τ) is a T0 (T1, T2) space, then (Fa, τa) is too.
(c) If (F, τ) is regular and a ∈ F ∗, then (Fa, τa) is too.
Proof. (a) and (b) are straightforward.
(c). Suppose that x ∈ Fa, y is a closed element in (Fa, τa) and x ≰ y.

By Proposition 3.4, there exists t ∈ τ such that y = t∗ ∧ a. Clearly,
x ≰ t∗ and by hypothesis there exist 0 ̸= x1 ≤ x and r, s ∈ τ such that
x1 ≤ r, t∗ ≤ s and r ∧ s = 0. Putting ra = r ∧ a and sa = s ∧ a, then
clearly ra, sa ∈ τa and x1 ≤ ra, y = t∗ ∧ a ≤ sa and ra ∧ sa = 0. □

The following proposition is easy to prove.

Proposition 4.13. Suppose that (Fi, τi) is an LGT -space, for every
i ∈ I and F =

∏
i∈I Fi. Then F has the ps-property if and only if Fi

has the ps-property, for every i ∈ I.

Proposition 4.14. Suppose that (Fi, τi) is an LGT -space, for every
i ∈ I and F =

∏
i∈I Fi and τ is the product topology on F . Then the

following statements hold.
(a) (F, τ) is T0 if and only if Fi is T0, for every i ∈ I.
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(b) (F, τ) is T1 if and only if (Fi, τi) is T1, for every i ∈ I.
(c) If I is infinite, then (F, τ) is not T2 (∗ ∗ −T2) at all. But, if I is

finite, then (F, τ) is T2 (resp. ∗∗−T2) if and only if (Fi, τi) is T2 (resp.
∗ ∗ −T2), for every i ∈ I.

(d) If I is infinite, then (F, τ) is not regular (∗∗-regular) at all. But, if
I is finite, then (F, τ) is regular (resp. ∗∗-regular) if and only if (Fi, τi)
is regular (resp. ∗∗-regular), for every i ∈ I.

Proof. (a ⇒). Suppose that j ∈ I is arbitrary and aj , bj ∈ Fj are two
different nonzero elements. Taking x, y ∈ F so that xi = 0 = yi for every
i ̸= j, xj = aj and yj = bj , then clearly x and y are two different nonzero
elements in F and by assumption, there exist 0 ̸= c ≤ x, 0 ̸= d ≤ y and
t ∈ τ such that c ≤ t and t ∧ d = 0 or d ≤ t and t ∧ c = 0. Clearly, cj
and dj are nonzero and cj ≤ tj , tj ∧ dj = 0 or dj ≤ tj , tj ∧ cj = 0.

(a ⇐). Suppose that x, y ∈ F and 0 ̸= x ̸= y ̸= 0. By hypothesis,
there exists j ∈ I such that xj ̸= yj . Without loss of generality, suppose
that xj ̸= 0 ̸= yj . Therefore, there exist 0 ̸= aj ≤ xj , 0 ̸= bj ≤ yj and
rj ∈ τj such that aj ≤ rj , rj ∧ bj = 0 or bj ≤ rj , rj ∧ aj = 0. Taking
c, d ∈ F so that ci = 0 = di for every i ̸= j, cj = aj , dj = bj , ti = 1 for
every i ̸= j and tj = rj , it is easy to see that c ≤ t and t∧d = 0 or d ≤ t
and t ∧ c = 0.

We do similarly for the remainder of the proof. Note that if I is
infinite, then for every r, s ∈ τ we have r ∧ s ̸= 0. □

Proposition 4.15. Suppose that (Fi, τi) is an LGT -space, for every
i ∈ I, F =

∏
i∈I Fi and τb is the box topology on F . Then the following

statements hold.
(a) (F, τb) is T0 (resp. ∗∗−T0) if and only if Fi is T0 (resp. ∗∗−T0),

for every i ∈ I.
(d) (F, τb) is T1 (resp. ∗ ∗ −T1) if and only if (Fi, τi) is T1, (resp.

∗ ∗ −T1) for every i ∈ I.
(e) (F, τb) is T2 (resp. ∗ ∗ −T2) if and only if (Fi, τi) is T2 (resp.

∗ ∗ −T2), for every i ∈ I.
(f) (F, τb) is regular (resp. ∗∗-regular) if and only if (Fi, τi) is regular

(resp. ∗∗-regular), for every i ∈ I.

Proof. The proof is straightforward. □
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