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Abstract. We mainly discuss the existence of meromorphic (en-
tire) solutions of certain type of non-linear difference equation of
the form: f(z)m + P (z)f(z + c)n = Q(z), which is a supplement
of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence
of entire solutions of nonlinear difference equations, Czechoslovak
Math. J. 61 (2011), no. 2, 565–576, and X. G. Qi, Value distribu-
tion and uniqueness of difference polynomials and entire solutions
of difference equations, Ann. Polon. Math. 102 (2011), no. 2,
129–142].
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1. Introduction

In what follows, a meromorphic function will mean meromorphic in
the whole complex plane. We assume that the reader is familiar with
standard symbols and fundamental results of Nevanlinna Theory [7,14].
In particular, we denote the order and lower hyper order of growth of a
meromorphic f(z) by σ(f) and µ2(f), respectively. For a set E ⊂ R+, let
λ(E) be the logarithmic measure of E. The upper logarithmic densities
of E is defined by

log dens (E) = lim sup
r→∞

λ(E ∩ [1, r])

log r
.

We note that E may be different each time it occurs.
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Recently, many articles focused on complex difference equations [1–3,
9]. The background for these considerations lies in the recent difference
counterparts of Nevanlinna theory. The key result here is the differ-
ence analogue of the lemma on the logarithmic derivative obtained by
Halburd-Korhonen [5, 6] and Chiang-Feng [3], independently.

Yang and Laine considered the existence of entire solutions with finite
order of the following difference equation, they obtained:
Theorem A [15, Theorem 3.4]. Let P (z), Q(z) be polynomials. Then
a non-linear difference equation

f(z)2 + P (z)f(z + 1) = Q(z)

has no transcendental entire solutions with finite order.
One of the present authors improved Theorem A, and got the following

result.
Theorem B [13, Corollary 2]. Let P (z), Q(z) be polynomials, and
let n, m be two positive integers such that n ̸= m. Then, the equation

(1.1) f(z)m + P (z)f(z + c)n = Q(z),

has no transcendental entire solutions with finite order.
In [10], Liu, Yang and Liu considered the existence of entire solutions

of equation (1.1), where Q(z) is a nonzero rational function.
It is natural to ask what happens if P (z) and Q(z) in equation (1.1)

are transcendental. Corresponding to this question, we give the following
results:

Theorem 1.1. Let f(z) be a transcendental meromorphic function with
finite order, m and n be two positive integers such that m ≥ n + 4 (or
n ≥ m+4), Q(z) be a meromorphic function satisfying N(r, 1

Q) = S(r, f)

and P (z) be a non-zero meromorphic function satisfying that T (r, P ) =
S(r, f). Then, f(z) is not a solution of equation (1.1).

Remark 1.2. The proof of Theorem 1.1 is based on some ideas from [4].

Using a similar reasoning as in Theorem 1.1, we conclude that:

Corollary 1.3. Let f(z) be a transcendental entire function with finite
order, m and n be two positive integers such that m ≥ n + 2 (or n ≥
m + 2), Q(z) be a meromorphic function satisfying N(r, 1

Q) = S(r, f)

and P (z) be a non-zero meromorphic function satisfying that T (r, P ) =
S(r, f). Then f(z) is not a solution of equation (1.1).
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Remark 1.4. Corollary 1.3 is not true, if the assumption m ≥ n + 2
(or n ≥ m+ 2) is omitted. The following equation

f(z)2 + f(z + c) = e4z

can admit a transcendental entire solution f(z) = e2z − 1, and e2c = 2.
And a transcendental entire function ez is a solution of

f(z) + f(z + 2nπi) = 2ez.

The two examples above show that when m = n+ 1 or n = m, equation
(1.1) has transcendental entire solutions with finite order in Corollary
1.3.

Theorem 1.5. Consider the difference equation (1.1), where P (z) is a
polynomial and Q(z) is an entire function with finite order, m and n
are positive integers such that m ̸= n. Suppose an entire function f(z)
satisfies that σ(Q) < σ(f) and µ2(f) < 1, then f(z) is not a solution of
equation (1.1).

Remark 1.6. If the assumption m ̸= n is omitted, then Theorem 1.5
cannot be valid. For example, f(z) = sinz is a solution of

f(z)2 + f(z +
π

2
)2 = 1.

In addition, f(z) = ee
z
+e

z
2 is an entire function with infinite order and

satisfies f(z) − f(z + 2πi) = 2e
z
2 . Moreover, from the first example in

Remark 1.4, we know the assumption that σ(Q) < σ(f) is essential. In
particular, c can be equal to zero in Theorem 1.5.

Corollary 1.7. There exists no entire infinite order f(z) with µ2(f) < 1
that satisfies the difference equation of the type

(1.2) f(z)m + P (z)f(z + 1) = c sin bz

where P (z) is a polynomial, and b, c ∈ C are non-zero constants and
m ≥ 2 is an integer.

Remark 1.8. 1 In fact, Corollary 1.7 gives a partial answer to a conjec-
ture raised by Yang and Laine in [15]. Peng and Chen [11] have obtained
Corollary 1.7. For the convenience of the reader, we give the conjecture:

Conjecture. There exists no entire infinite order f(z) that satisfies the
difference equation of the type

(1.3) f(z)m + P (z)f(z + 1) = c sin bz
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where P (z) is a non-constant polynomial, and b, c ∈ C are non-zero
constants and m ≥ 2 is an integer.

2. Some lemmas

Lemma 2.1. [3, Lemma 5.1] Let f(z) be a finite order meromorphic
function and ε > 0, then

T (r, f(z + c)) = T (r, f(z)) +O(rσ−1+ε) +O(log r)

and
σ(f(z + c)) = σ(f(z)).

Thus, if f(z) is a transcendental meromorphic function with finite
order, then we know

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2. [6, Theorem 2.1] Let f(z) be a meromorphic function
with finite order, and let c ∈ C and δ ∈ (0, 1). Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o

(
T (r, f)

rδ

)
= S(r, f).

Lemma 2.3. [8, Theorem 6 & 7] Let f(z) be a non-constant meromor-
phic function with finite order, c ∈ C. Then

N(r,
1

f(z + c)
) ≤ N(r,

1

f(z)
) + S(r, f),

outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.4. [12, Lemma 2.3] Let f(z) and g(z) be entire functions
such that σ(g) < σ(f). Then, there exists a set E with log dens (E) > 0
such that

|g(z)|
M(r, f)

= o(1)

for all z such that |z| = r ∈ E is sufficiently large.

3. Proof of Theorem 1.1

Suppose by contradiction that that f(z) is a transcendental meromor-
phic function with finite order satisfying equation (1.1). Then, we will
discuss the following two cases.

Case 1. m ≥ n+4. If T (r,Q) = S(r, f), then applying Lemma 2.1 to
equation (1.1), we have

mT (r, f) = nT (r, f) + S(r, f),
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which contradicts the assumption that m ≥ n+ 4.
If T (r,Q) ̸= S(r, f). Then from equation (1.1), we get

(3.1) fm(z) =

Q′

Q Pfn(z + c)− (Pfn(z + c))′

(fm(z))′

fm(z) − Q′

Q

.

First observe that (fm(z))′

fm(z) − Q′

Q cannot vanish identically. Indeed, if
(fm(z))′

fm(z) − Q′

Q ≡ 0, then we get

Q(z) = αfm(z),

where α is a non-zero constant. Substituting the above equality to equa-
tion (1.1), we have

Pfn(z + c) = (α− 1)fm(z).

From Lemma 2.1 and the above equation, we immediately see that

mT (r, f) = nT (r, f) + S(r, f),

or f(z) ≡ 0, which is impossible.

From equation (3.1), we know

T (r, fm) = mT (r, f) ≤ m(r, Pfn(z + c)) +m

(
r,
Q′

Q
− (Pfn(z + c))′

Pfn(z + c)

)
+N

(
r,
Q′

Q
Pfn(z + c)− (Pfn(z + c))′

)
+m

(
r,
(fm(z))′

fm(z)
− Q′

Q

)
+N

(
r,
(fm(z))′

fm(z)
− Q′

Q

)
+ S(r, f).

(3.2)

Then Lemma 2.1 together with equation (1.1), implies that

(m− n)T (r, f) + S(r, f) ≤ T (r,Q) ≤ (m+ n)T (r, f) + S(r, f),

and so

(3.3) S(r,Q) = S(r, f).

To apply Lemma 2.1, Lemma 2.2 and (3.3) to equation (3.2), we obtain
that

mT (r, f) ≤ nm(r, f) +N

(
r,
Q′

Q
Pfn(z + c)− (Pfn(z + c))′

)
+N

(
r,
(fm(z))′

fm(z)
− Q′

Q

)
+ S(r, f).

(3.4)
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In the following, we will estimate N
(
r, Q

′

Q Pfn(z + c)− (Pfn(z + c))′
)

and N
(
r, (f

m(z))′

fm(z) − Q′

Q

)
. Let

(3.5) H(z) =
Q′

Q
Pfn(z + c)− (Pfn(z + c))′,

and

(3.6) G(z) =
(fm(z))′

fm(z)
− Q′

Q
.

First of all, we deal with N(r,H(z)). From (1.1) and (3.5), we know the
poles of H(z) are at the zeros of Q(z), and at the poles of f(z), f(z+ c)
and P (z). (In fact, first impression of the reader is that the poles of
H(z) are at the poles of Q(z) as well. However, looking at the equation
(1.1) one realizes that the poles of Q(z) should be at the poles of f(z),
f(z + c) and P (z). Hence, it is enough to discuss the poles of f(z),
f(z+ c) and P (z) here.) Based on our assumption our assumption that
T (r, P ) = S(r, f), we will ignore the poles of P (z) here. If z0 is a zero
of Q(z) or z0 is a pole of f(z) but not a pole of f(z + c), then z0 is at
most a simple pole of H(z) by (3.5). If z0 is a pole of f(z+ c) but not a
pole of f(z), then z0 is at most a simple pole of H(z) by (3.1). If z0 is a
pole of f(z) with multiplicity s and a pole of f(z + c) with multiplicity
t, then z0 is a pole of H(z) with the multiplicity no more than nt+1 by
(3.5). From the above arguments and our assumption, we conclude that

N(r,H) ≤ N(r,
1

Q
) +N(r, fn(z + c)) +N(r, f) + S(r, f)

≤ nN(r, f(z + c)) +N(r, f) + S(r, f).

(3.7)

Next, we appraise N(r,G(z)). We obtain that the poles of G(z) are at
the zeros of Q(z) and f(z), and at the poles of f(z), f(z+ c) from (1.1)
and (3.6). If z0 is a zero of Q(z), zero of f(z), or pole of f(z + c), then
z0 is at most a simple pole of H(z) by (3.6). If z0 is a pole of f(z) but
not a pole of f(z + c), then by the Laurent expansion of G(z) at z0, we
obtain that G(z) is analytic at z0. Therefore, from the discussions above
and our assumption, we know

N(r,G) ≤ N(r,
1

Q
) +N(r, f(z + c)) +N(r,

1

f
) + S(r, f)

≤ N(r, f(z + c)) +N(r,
1

f
) + S(r, f).

(3.8)
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From equations (3.4), (3.7) and (3.8), we have

mT (r, f) ≤ nm(r, f) + nN(r, f(z + c)) +N(r, f)

+N(r, f(z + c)) +N(r,
1

f
) + S(r, f)

≤ (n+ 3)T (r, f) + S(r, f),

which contradicts the assumption that m ≥ n+ 4.
Case 2. If n ≥ m + 4, then set F (z) = f(z + c), F (z − c) = f(z)

follows. We obtain

F (z − c)m + P ∗(z)F (z)n = Q∗(z).

By Lemma 2.1 and Lemma 2.3, we know N(r, 1
Q(z−c)) = N(r, 1

Q∗ ) =

S(r, F ) and T (r, P ∗) = S(r, F ). Similarly as in Case 1, we get a conclu-
sion as well, completing the proof of Theorem 1.1.

4. Proof of Theorem 1.5

Let f(z) be an entire solution of equation (1.1) such that σ(Q) < σ(f)
and µ2(f) < 1. If P (z) = 0, then we get σ(Q) = σ(f), which contradicts
our assumption. It remains to discuss the case P (z) ̸= 0.

Case 1. If m > n. From (1.1), we obtain that

(4.1) |f(z)m| ≤ |P (z)||f(z + c)n|+ |Q(z)|.

We know |P (z)| ≤ rp+1 for any r > r1, where p = deg{P (z)}. By Lemma
2.4, we know

(4.2) |Q(z)| = o(1)M(r, f), r ∈ E, r > r2,

where E is a set with log dens (E1) > 0. Combining equation (4.1) with
(4.2), we conclude that

|f(z)m| ≤ rp+1|f(z + c)n|+ o(1)M(r, f), r ∈ E, r > r3,

and so

|f(z)m| − o(1)M(r, f) ≤ rp+1|f(z + c)n|, r ∈ E, r > r3.

This means

M(r, f)m − o(1)M(r, f) ≤ rp+1M(r, f(z + c))n, r ∈ E, r > r3,

where r3 = max{r1, r2}. By a simple geometric observation, we get

M(r, f)m(1− o(1)) ≤ rp+1M(r + |c|, f(z))n, r ∈ E, r > r3.
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Moreover,

m logM(r, f) ≤ n logM(r + |c|, f(z)) + (p+ 1) log r, r ∈ E, r > r3.

The assumption that σ(f) > σ(Q) implies log r
logM(r+|c|,f(z)) = o(1) for

r > r4. Hence,

m

n
logM(r, f) ≤ logM(r + |c|, f(z))(1 + o(1)), r ∈ E, r > R,

where R = max{r3, r4}. By induction, we get

logM(r + k|c|, f(z)) ≥
(m
n

)k
logM(r, f)(1 + o(1)), r ∈ E, r > R.

Therefore, we have

log logM(r + k|c|, f(z)) ≥ k log
m

n
+ log logM(r, f)

= k log
m

n

(
1 +

log logM(r, f)

k log m
n

)
, r ∈ E, r > R.

From the above inequality, we know
(4.3)

log log logM(r + k|c|, f(z))
log(r + k|c|)

≥
log k + log log m

n + log
(
1 + log logM(r,f)

k log m
n

)
log(r + k|c|)

,

where r ∈ E, r > R. It follows from the definition of µ2(f) and (4.3)
that µ2(f) ≥ 1, when k → ∞. This contradicts the assumption.

Case 2. If n > m, then set F (z) = f(z + c), F (z − c) = f(z) follows.
We obtain F (z − c)m + P ∗(z)F (z)n = Q∗(z). By the definitions of the
σ(f) and µ2(f), we know that σ(Q∗) < σ(F ) and µ2(F ) < 1. Similarly
as in Case 1, we get the conclusion, completing the proof of Theorem
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