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ABSTRACT. In this paper, we defined two classes S;(n, A, A, B) and
Kp(n, A, A, B) of meromorphic p—valent functions associated with a new
linear operator. We obtained convolution properties for functions in these
classes.
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1. Introduction

In this paper, we obtain conditions on meromorphic functions defined by
(1.1) to be in the classes Sy(n,\, A, B) and K,(n,\, A, B) which defined by
(1.12) and (1.13), using convolution properties. Also we obtain conditions
required for inclusion of the classes S;(n,\, A, B) and S;(n + 1,\, A, B) and
the classes K,(n, A\, A, B) and K,(n+1,\, A, B).

Let >_, be the class of functions of the form:

(1.1) ) =27+ a"? (peN={1,2..1}),
k=1

which are analytic and p-valent in the punctured unit disk U* = U\{0}, where
U={2:2€C, |z| <1}.If f and g are analytic functions in U, we say that
f is subordinate to g, denoted by f < g if there exists a Schwarz function
w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for
all z € U, such that f(z) = g(w(z)), z € U. Furthermore, if the function g is
univalent in U, then we have the following equivalence (see [13]):
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f(z) < g(z) & f(0) = g(0) and f(U) C g(U).
For functions f given by (1.1) and g € }_ given by

(1.2) g(z)=2"P+ Z b2 P,
k=1

the Hadamard product (or convolution) of f and g is defined by

(f9)(z) =277+ Y axbpz"7 = (9% [)(2).
k=1
Aouf et al. [4] defined the linear operator DY (f x g)(z) : ¥, — ¥, (f, g €
Y, A>0, peN, neNy=NU{0}) as follows:
D} p(f*9)(2) = (f * 9)(2),

D}, (f % 9)(2) = Dap(f + 9)(2) = (1 = N)(f % 9)(2) + A7 (P (f % g)(2))",

=27+ (1+Ak)arbz" P (A > 0; pEN),
k=1

D3 (£ £9)(2) = Dap(Dap(f %9))(2),
= (1= N)Dxp(f * 9)(2) + A7 (2P Dy (f * 9)(2))

=2 Y (14 k) 2abizt P (A2 0; peN)
k=1
and ( in general )

D}, (f 9)(2) = Dap(D5 N (f *9)(2))

(1.3) =277+ (14 M) arbrz" P (A > 0; p €Ny n € Np).
k=1
From (1.3) it is easy to verify that:
1 n 1 n
(14) =(D3, (7« 9)()) = 3 D35 * 9)(2) — (04 1)D3, (7 # 9)(2) (A > 0).

Specializing the parameters n, A and the function g, we obtain some opera-
tors different from those studied earlier.
(i) For n =0 and b, = 'y (1),

__(@)r(aglk o
(1.5) Ti(an) = (B (B)x(Dr (01, .y ag; By oy Bs € C,

B¢ Zy =4{0,-1,-2,..};7=1,2,...,5,¢g < s+ 1;5,q € Ng),
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where

P (k=0;d € C* = C\{0})
( )k{ d(d+1)...(d+k—-1) (keN;deC).

we have
(1.6) DS, (f*9)(2) = Hygslan)f(2) =277+ > Thlon)axz"7,
k=1

where the operator H, , s(o1) was investigated and studied by Liu and Sri-
vastava [11] (see also [1,10] and [12]). The operator Hp 4, 5( 1) has as special
cases interesting operaors such as Ly(a,c)(a > 0,c # 0,—1,—-2,..) (see [10])
and D"™P~1(y > —p) (see [2] and 10])

(#4) For n = 0 and b, = (M)m(l>0 6 > 0,m € Np), we have

1) DR, = 605 =+ Y () st
k=1

where the operator I;"(&,l) was introduced and studied by El-Ashawh and
Aouf [8];

(#t) For n =0 and by, = (1>0,6 >0,m e Ny), we have

(st

(18) DY, (F *0)(2) = JF (5.0 f () = =7 + Z (Z+ ) o

where the operator J)*(6,1) was introduced and studied by El-Ashawh [7].
For -1 < A< B<1,B>0and z € U*, Mogra [14] defined the class

(1.9) S Ip.A B = {fez ZZ piigz,zeU}

and Srivastava et al. [16] defined the class

(L10) S K,[A,B] = {f ey i-l+ ij(g)] %piigz,z € U}.

It is clear that

(1.11) f(z) €Y K A, Bl & Zf;?(z) €S Ip.A B,

Z[l 200 — Z S*(a) ( see Juneja and Reddy [9]),
ZKl[Qa -1,1] = ZK(@) (0 < a < 1) ( see Srivastava et al. [16]),

Z[p, 2?(1 ~1,1] = Z Sy () (see Aouf and Hossen B) (0<a<p)
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and
2

ZKZ,[?O[ -1,1] = ZKp(a) ( see Aouf and Srivastava [5]) (0 < « < p).

Using the operator DY (f * ¢)(2),~1 < B < A < 1,A > 0,n € Ny and
z € U* we define the classes Sj(n, A\, A, B) and K(n, A, A, B) as follows:
(L12)  S;mAAB) ={fed D}, (fro)(:) €Y b ABlLzeU},
and
(1.13) K,(n,\ A,B) = {fez D3+ 9)(2) € YK (A, B,z € U},
We notice that

(1.14) £(2) € Kp(n,\, A, B) & Zf;f %) ¢ St (n, A\, A, B).

2. Main results

Unless otherwise mentioned, we shall assume in this paper that —1 < B <
A<1,0<A<1,A>0,neNy0<6<2mpe N zeU* and g(z) is given by
(1.2).

To prove our results we need the following lemmas.

Lemma 2.1. [15]. The function f(z) defined by (1.1) is in the class > [p, A, B]
if and only if

(2.1) [ L 20,
where

e+ B
(2.2) = p(T—B)

Lemma 2.2. [15] The function f(z) defined by (1.1) is in the class > K,[A, B
P
if and only if 2P {f(z) * [p {24p=(p=D)(D-D}z—(p+1)(D-1)2" }} £ 0.

pzP(1—2)3

Lemma 2.3. [6]. Let h be convex (univalent) in U, with Re[Bh(z) +~] > 0
for all z € U. If p is analytic in U, with p(0) = h(0), then
zp'(2)
2.3 p(z) + =———— < h(z) = p(z) < h(z2).
(2.3) (2) (2 + (2) = p(z) < h(z)
Theorem 2.4. The function f(z) defined by (1.1) is in the class Sy (n, \, A, B)
if and only if

(2.4) 1+ i [k’e—ie _;(pj‘f'é]; —p)B (1 + Mk)"agpbpz® # 0.
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Proof. From Lemma 1, we find that f(z) € S;(n, A, 4, B) if and only if

2 [P, w0« P 2o

1+(D—1)z

)7 Ve have (2.4) which completes the proof of Theorem 1.

Expanding

Theorem 2.5. The function f(z) defined by (1.1) is in the class Kp(n, A, A, B)
if and only if

(25) 1- i [k (ke 4 pA+ (k= p)B] (14 Xk)"agbyz" # 0.

p*(A - B)

k=1

Proof. From Lemma 2, we find that f(z) € K,(n, A, A, B) if and only if
(2.6)

2 (g, (1) [P DO UL 02 DD DZ ] 4,
Now it can be easily shown that

(2.7) 2Pl—2) 3 =2P 4 ;;1 w k=p,

(2.8) A7P(1—2)78 = gl @zk_p,

(2.9) 227P(1—2) 78 = i @z’w.

Using (2.7)—(2.9) and (2.2) in (2.6), we have the desired result which completes
the proof of Theorem 2.

Theorem 2.6. If the function f(z) defined by (1.1) belongs to the class Sy (n, X\, A, B),
then

(2.10) i [k +pA+ (k—p)B] (14 Ak)" |ax| < p(A— B).
k=1

Proof. Since

ke-i9+pA+(k—p)B’ _ |ke=" + pA+ (k — p)B]| _k+pA+(k—p)B
p(A— B) p(A—B) B p(A—B)
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and

, i [ke™ 4+ pA + (k — p)B] (14 Ak)™ |ay2"]

Pt p(A—B)
20 | [1.p—if B

Loy |k ;(”jjg; PIBL| (1 4 aky ).
k=1

The result follows from Theorem 1.
Using the same technique, we can also prove the following theorem.

Theorem 2.7. If the function f(z) defined by (1.1) belongs to the class K,(n, A, A, B),
then

(2.11) > klk+pA+ (k—p)B] (14 X)" |ax| < p*(A - B).
k=1
Theorem 2.8. Let the function f(z) be defined by (1.1). If

1+ AB+ (A+ B)cosf < Ap +1
1+ B2+2Bcos) — A2
and f(z) € Sj(n+1,\, A, B) with DY (f*g)(2) # 0, then f(z) € S;(n, A, A, B).

Proof. Let f(z) € S;(n+1,), A, B) and define the function

2 (D3,(F+9)(2))
Dy, (F )@

we see that P is analytic in U with P(0) = 1. Using the identity (1.4) in (2.13)
we have

(2.12)

(2.13) P(z) = —

DYEN(f * 9)(2) 1
. T VI \p ).
(2.14) DY+ 9 (2) +(p+7)
Differentiating (2.14) logarithmically and using (2.13), we have
z (D;L;l(f * g)(z))/ 2P’ (2) 1+ Az
CB - Torream P T Pe e D (Tre )

Simple computations show that the inequalty R{—h(z) + 3 (p + 5)} > 0 can
be written in the form

1+A42 1 (p+ l) <0
1+Bz APTN S0
which is equivalent to (2.12). Since the function h(z) is a convex function, by
applying Lemma 3, we see that the subordination (2.15) implies P(z) < h(z).

This completes the proof of Theorem 2.8.
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Putting n = 0 and by, = T'x (1), where T'g (1) is defined by (1.5), in Theorem
2.8, we have the follwoing corollary which improves the result obtained by
Sarkar et al. [15, Theorem 2.7].

Corollary 2.9. Let the function f(z) be defined by (1.1). If ay > 0,
1+ AB+ (A+ B)cosf bt
14 B2+ 2cosf - p?
and f(z) € Sy, (a1 +1, A, B) with Hy 4 s f(2) # 0, then f(z) € S;(a1, A, B).
Using (1.14) and the fact that
$p(—2f)(z) = =2 (D3, f(2)
Theorem 5 yields the following theorem.

Theorem 2.10. Let the function f(z) be defined by (1.1). If (2.12) holds and
f(2) € Kp(n+1,\ A, B) with DY ,(f *g)(2) # 0, then f(2) € K,(n, A, A, B).

(2.16)
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