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PROPERTIES OF GENERALIZED BERWALD
CONNECTIONS

B. BIDABAD* AND A. TAYEBI

Communicated by Karsten Grove

Abstract. Recently we introduced a general class of Finsler con-
nections which lead to a smart representation of connection the-
ory in Finsler geometry and yielded a classification of Finsler con-
nections into the three classes. Here, the properties of one of
these classes, namely the Berwald-type connection which contains
Berwald and Chern (Rund) connections as special cases are stud-
ied. It is proved, among other results, that the hv-curvature of these
connections vanishes if and only if the Finsler space is a Berwald
one. Some applications of this connection is discussed.

1. Introduction

Since there is always a hope to find a solution for some of unsolved
problems by developing a connection theory, then it is useful to intro-
duce new connections in Finsler geometry. As mentioned in [12], the
study of hv-curvature of Finsler connections is of urgent necessity for
the Finsler geometry as well as for theoretical physics. Similarly, as
another application of Finsler connections in physics one can mention
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an example in Relativistic field theory. In this theory, different con-
nections have been defined in Finsler geometry, where the connections,
torsions, or curvatures can be related to fields which might be identified
as electromagnetic or Yang-Mills fields. In this relation, see [2], [5] and
[11].

Historically, in Riemannian geometry, the connection of choice was
that constructed by Levi-Civita, which has two remarkable attributes;
metric-compatibility and torsion-freeness. In 1926, L. Berwald [5] in-
troduced a connection and two curvature tensors. The Berwald con-
nection is torsion-free, but is not necessarily metric-compatible. It was
Berwald who first successfully extended the notion of Riemann curva-
ture to Finsler spaces. He also introduced a notion of non-Riemannian
quantity called Berwald curvature. From this point of view, Berwald is
the founder of differential geometry of Finsler spaces [14]. Next, Car-
tan in 1934 found locally the coefficients of a metric-compatible and
h-torsion free connection, later called, Cartan connection. The global
construction of this connection is given in a remarkable work of Akbar-
Zadeh in 1988 [1]. Other progress came in 1943, when the Chern (Rund)
connection was defined. In 1943, Chern studied the equivalence prob-
lem for Finsler spaces using the Cartan exterior differentiation method
[8]. Chern came back to his connection in 1993, in a joint paper with
Bao [3] and showed its usefulness in treating global problems in Finsler
geometry. The Berwald and Chern connections also fail slightly, but
expectedly, to be metric-compatible. The Chern connection has a sim-
pler form, while the Berwald connection affects a leaner hh-curvature
for spaces of constant flag curvature. Indeed the Berwald connection
is particularly convenient when dealing with Finsler spaces of constant
flag curvature. It is most directly related to the nonlinear connection
coefficients and most amenable to the study of the geometry of paths.
These connections (Berwald and Chern) coincide when the underlying
Finsler structure is of Landsberg type. They further reduce to a linear
connection on M , when the Finsler structure is of Berwald type [9], [10].

Recently, we defined a general class of Finsler connections which lead
to a general representation of some Finsler connections in Finsler geom-
etry and yielded a classification of Finsler connections into the three
classes of Berwald-type, Cartan-type and Shen-type connections [6].
Here, we study the properties of a connection which contains Berwald
and Chern (Rund) connections as special cases and is the most gen-
eral connection of this kind. We prove in continuation of Berwald’s
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and Chern’s work that the hv-curvature of the Berwald-type connection
characterizes the Berwald structure.

A distinguished property of the introduced connection is its adaptive
form for different applications. In fact, one can use a suitable special
case of this connection to find a geometric interpretation for solutions
of certain differential equations formed by Cartan tensor and its deriva-
tives. For example, in Section 4 we prove that if (M,F) is a complete
Finsler manifold with bounded Landsberg tensor, then F is a Landsberg
metric if and only if its hv-curvature Pjkl vanishes.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. For a point x ∈ M , denote
by TxM , the tangent space of M at x. The tangent bundle of M is the
union of tangent spaces, TM := ∪x∈MTxM . We will denote elements in
TM by (x, y) if y ∈ TxM . Let TM0 = TM \{0}. The natural projection
π : TM → M is given by π(x, y) := x.
Throughout this paper, we use Einstein summation convention for ex-
pressions with indices.1

A Finsler structure on a manifold M is a function F : TM → [0,∞)
with the following properties:
(i)F is C∞ on TM0.
(ii)F is positively 1-homogeneous on the fibers of tangent bundle TM :

∀λ > 0 F (x, λy) = λF (x, y).

(iii) The Hessian of F 2 with elements gij(x, y) := 1
2 [F 2(x, y)]yiyj is pos-

itively defined on TM0.
The pair (M,F ) is called a Finsler manifold. F is Riemannian if gij(x, y)
are independent of y 6= 0.

Nonlinear connection.
Let us consider the tangent bundle (TM, π, M) of the manifold M . The
tangent bundle of the manifold TM is (TTM, π∗, TM), where π∗ is the
tangent mapping of the projection π. A tangent vector field on TM can

1That is, when an index appears twice as a subscript as well as a superscript in a
term, then the term is assumed to be summed over all values of that index.
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be represented in the local natural frame ( ∂
∂xi ,

∂
∂yi ) on TM by:

X̄ = Xi(x, y)
∂

∂xi
+ Y i(x, y)

∂

∂yi
.

It can be written in the form X̄ = (x, y, Xi, Y i) or shorter, X̄ =
(x, y, X, Y ). The mapping π∗ : TTM → TM has the local form,

π∗(x, y, X, Y ) = (x, y).

Put V TM := kerπ∗ = span{ ∂
∂yi }n

i=1. V TM is an n-dimensional sub-
bundle of T (TM0), whose fiber VvTM at v is just the tangent space
Tv(TxM) ⊂ Tv(TM0). V TM is called the vertical tangent bundle of
TM0.
We can write the vertical subbundle as (V TM, πV TM , TM). Its fibres
are the linear vertical spaces VuTM , u ∈ TM. The points of submani-
fold V TM are of the form (x, y, 0, Y ). Hence, the fibers VuTM of the
vertical bundle are isomorphic to the real vector space Rn.

Let us consider the pullback tangent bundle π∗TM defined as follows
[4]:

π∗TM = {(u, v) ∈ TM × TM |π(u) = π(v)} .

Take a local coordinate system (xi) in M. The local natural frame { ∂
∂xi }

for TxM determines a local natural frame ∂i for π∗TM , ∂i|y := (y, ∂
∂xi |x),

y ∈ TxM . This gives rise to a linear isomorphism between π∗TM |y and
TxM , for every y ∈ TxM. There is a canonical section ` of π∗TM defined
by ` = `i∂i, where `i = yi/F (x, y).
The fibers of π∗TM , i.e., π∗uTM are isomorphic to Tπ(u)M . One can
define the following morphism of vector bundle ρ : TTM → π∗TM ,
ρ(Xu) = (u, π∗(X̄u)). It follows that

kerρ = kerπ∗ = V TM.

By means of these considerations, one can see without any difficulties
that the following sequence is exact:

(2.1) 0→V TM
i→ TTM

ρ→ π∗TM → 0 ,

where i is natural inclusion map.

A nonlinear connection on the manifold TM is a left splitting of the
exact sequence (2.1). Therefore, a nonlinear connection on TM is a
vector bundle morphism C : TTM → V TM , with the property C ◦ i =
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1V TM . The kernel of the morphism C is a vector bundle of the tangent
bundle (TTM, π∗, TM), denoted by (HTM, πHTM , TM) and called the
horizontal subbundle. Its fibres HuTM determine a distribution u ∈
TM → HuTM ⊂ TuTM , supplementary to the vertical distribution
u ∈ TM → VuTM ⊂ TuTM . Therefore, a nonlinear connection N
induces the following Whitney sum:

(2.2) TTM = HTM ⊕ V TM.

Let

(2.3)
δ

δxj
:=

∂

∂xj
−N i

j

∂

∂yi
,

where the above N i
j are the components of N and are known in the trade

as the nonlinear connection coefficients on TM0.
Restriction of the morphism ρ : TTM → π∗TM to the HTM is an
isomorphism of vector bundles, for which we have,

(2.4) ρ(
∂

∂xi
) = ∂i , ρ(

∂

∂yi
) = 0.

Let ∇ be a linear connection on π∗TM , ∇ : χ(TM0)× π∗TM → π∗TM

such that ∇ : (X̂, Y ) → ∇X̂Y . A Finsler connection is a pair of a linear
connection ∇, and a nonlinear connection N .

Given a Finsler metric F on M , F (y) = F (yi ∂
∂xi |x) is a function of

(yi) ∈ Rn at each point x ∈ M . Finsler metric F defines a fundamen-
tal tensor g : π∗TM ⊗ π∗TM → [0,∞) by the formula g(∂i|v, ∂j |v) =
gij(x, y), where v = yi ∂

∂xi |x and the gij are defined in the definition
of Finsler structure. Then, (π∗TM, g) becomes a Riemannian vector
bundle over TM0. Let

Aijk(x, y) =
1
2
F (x, y)[F 2(x, y)]yiyjyk .

Clearly, Aijk is symmetric with respect to i, j, k. The Cartan tensor
A : π∗TM ⊗ π∗TM ⊗ π∗TM → R is defined by A(∂i|v, ∂j |v, ∂k|v) =
Aijk(x, y). In some work, Cijk = Aijk/F is called Cartan tensor. Rie-
mannian manifolds are characterized by A ≡ 0. F is positively ho-
mogenous of degree 1 on M. Then, by the Euler’s theorem we see that
yiFyi = F and then yiFyiyj = 0. Using this the canonical section `
satisfies:

g(`, `) = 1 , A(X, Y, `) = 0,
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where the second equation is equivalent to A(X, Y, yi

F
∂

∂xi ) =
`iA(X, Y, ∂

∂xi ) = 0. Let ¯̀ denote the unique vector field in HTM such
that ρ(¯̀) = `. We call ¯̀ a geodesic or spray field on TM0.

Let ∇ be the Berwald (or Chern) connection. By means of ∇, the
tensor Ȧ is defined by Ȧ : π∗TM ⊗ π∗TM ⊗ π∗TM → R,

Ȧ(X, Y, Z) := ¯̀A(X, Y, Z)−A(∇¯̀X, Y, Z)−A(X,∇¯̀Y, Z)−A(X, Y,∇¯̀Z).

Putting
1

Aijk = Ȧijk,
2

Aijk = Äijk, ∀m ∈ N we define
m+1

A as follows:
m+1

A (X, Y, Z) := ¯̀ m

A(X, Y, Z)−
m

A(∇¯̀X, Y, Z)−
m

A(X,∇¯̀Y, Z)

−
m

A(X, Y,∇¯̀Z).

Obviously, ∀m ∈ N, the tensors
m

Aijk are symmetric with respect to

the three indices. Moreover, using ∇¯̀ ` = 0, we have
m

A(X, Y, `) = 0,
∀m ∈ N. A and Ȧ are basic tensors in Finsler geometry. In the Rie-
mannian case, both of them vanish. Therefore, by the above definition
we know that for the Riemannian case, ∀m ∈ N,

m

A = 0.

A Finsler metric F (x, y) on a manifold M is called Berwald metric if
in any standard local coordinate system (xi, yi) in TM0, the Christof-
fel symbols Γk

ij = Γk
ij(x) are functions of x ∈ M alone. In this case,

Gi(x, y) = 1
2Γi

jk(x)yjyk are quadratic in y = yi ∂
∂xi |x and F (x, y) is

called a Landsberg metric if Li
jk(x, y) = 0, that is,

Li
jk(x, y) =

∂2Gi

∂yj∂yk
(x, y)− Γi

jk(x, y).

Clearly, Minkowski and Riemannian metrics are trivial Berwald met-
rics. If F (x, y) is a Berwald metric, then it is a Landsberg metric. But
the converse might not be true, although no counter-example has been
found yet [14]. A fundamental theorem in Finsler geometry says that a
Finsler metric F is a Berwald metric if and only if the Cartan tensor is
covariantly constant along all horizontal directions on the slit tangent
bundle TM0 (see [15] and [4] for a proof). Thus, in the Berwald case,
the

m

Aijk vanish, ∀m ∈ N.

Flag curvature. A flag curvature is a geometrical invariant that gen-
eralizes the sectional curvature of Riemannian geometry. Let x ∈ M ,
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0 6= y ∈ TxM and V := V i ∂
∂xi . A flag curvature is obtained by carrying

out the following computation at the point (x, y) ∈ TM0, and viewing
y, V as section of π∗TM :

K(y, V ) :=
V i(yj Rjikl yl)V k

g(y, y)g(V, V )− [g(y, V )]2
,

where g is a Riemannian metric on π∗TM . If K is independent of
the transverse edge V , we say that the Finsler space has a scalar flag
curvature. Denote this scalar by λ = λ(x, y). When λ(x, y) has no
dependence on either x or y, then Finsler manifold is said to be of
constant flag curvature.

3. Berwald-type connection on π∗TM

Here, we introduce a new family of Finsler connections which are
torsion-free and almost compatible with the Finsler metric. In the se-
quel, we will refer to this connection by “Berwald-type connection”.

Definition 3.1. Let (M,F ) be a Finsler manifold. Suppose that g and
A denote the fundamental and the Cartan tensors in π∗TM , respectively.
Let D be a Finsler connection on M .
(i) D is torsion-free, if ∀X̂, Ŷ ∈ χX(TM0),

(3.1) TD(X̂, Ŷ ) := DX̂ρ(Ŷ )−DŶ ρ(X̂)− ρ([X̂, Ŷ ]) = 0.

(ii) D is almost compatible with the Finsler structure in the following
sense: If for all X, Y ∈ π∗TM and Ẑ ∈ Tv(TM0),

(DẐg)(X, Y ) := Ẑg(X, Y )− g(DẐX, Y )− g(X, DẐY ),

or equivalently,

(DẐg)(X, Y ) = −2k1Ȧ(ρ(Ẑ), X, Y )− · · · − 2km

m

A(ρ(Ẑ), X, Y )

+ 2F−1A(µ(Ẑ), X, Y ),(3.2)

where ρ(Ẑ) := (v, π∗(Ẑ)), µ(Ẑ) := DẐF`, m ∈ N and ki ∈ R.

The bundle map µ : T (TM0) → π∗TM defined in the above definition
satisfies µ( ∂

∂yi ) = ∂i. To prove this, take ˆ̀= `i ∂
∂xi , where ` = `i∂i. Now,
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ρ(ˆ̀) = `, and so from (3.1),

(3.3) µ(
∂

∂yi
) = D ∂

∂yi
F` = ρ([

∂

∂yi
, yk ∂

∂xk
]) = ∂i.

Theorem 3.1. Let (M,F ) be a Finsler n-manifold. Then there is a
unique linear torsion-free connection D in π∗TM , which is almost com-
patible with the Finsler structure in the sense of (2.2).

Proof. In a standard local coordinate system (xi, yi) in TM0, we write,

D ∂

∂xi
∂j = Γk

ij∂k , D ∂

∂yi
∂j = F k

ij∂k .

By replacing X̂, Ŷ in (2.1) with the basis of Tv(TM0), i.e., { ∂
∂xi ,

∂
∂yi },

we get,

(3.4) Γk
ij = Γk

ji,

(3.5) F k
ij = 0,

and by replacing X, Y (resp. Ẑ ) in (3.2) with the basis of π∗TM , i.e.,
{∂i}, (resp. with the basis of Tv(TM0)), we get,

∂

∂xk
(gij) = Γl

kiglj + Γl
kjgli − 2k1Ȧijk − · · · − 2km

m

Aijk

+ 2AijlΓl
km`m,(3.6)

∂

∂yk
(gij) = F l

kjgli + F l
ikgjl − 2{k1Ȧijk + · · ·+ km

m

Aijk}F l
mk`

m

+ 2F−1Aijk,(3.7)

where gij , Aijk and A
(m)

ijk , ∀m ∈ N, are all functions of (x, y). We shall
compute Γk

ij by “Christoffel’s trick” from (3.4) and (3.6). Then, making
a permutation to i, j, k in (3.6), and using (3.4), we obtain,

Γk
ij = γk

ij + k1Ȧ
k
ij + · · ·+ km

m

Ak
ij

+ gkl
{
AijmΓm

lb −AjlmΓm
ib −AlimΓm

jb

}
`b,(3.8)

where we let,

γk
ij =

1
2
gkl

{
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

}
,

and Ak
ij = gklAijl. Multiplying (3.8) by `i, we obtain,

(3.9) Γk
ib`

b = γk
ib`

b −Ak
imΓm

lb `l`b.
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Multiplying (3.9) by `j , yields:

(3.10) Γk
ab`

a`b = γk
ab`

a`b.

Substituting (3.10) into (3.9), we obtain,

(3.11) Γk
ib`

b = γk
ib`

b −Ak
imγm

ab`
a`b.

Substituting (3.11) in (3.8), we obtain,

Γk
ij = γk

ij + k1Ȧ
k
ij + · · ·+ km

m

Ak
ij

+gkl
{
Aijmγm

lb −Ajlmγm
ib −Alimγm

jb

}
`b

+
{

Ak
jmAm

is + Ak
imAm

js −Ak
smAm

ij

}
γs

ab`
b`a.(3.12)

Then using (2.3), (3.12), we will have,

(3.13) Γi
jk =

gis

2
{δgsj

δxk
−

δgjk

δxs
+

δgks

δxj
}+ k1Ȧ

i
jk + · · ·+ km

m

Ai
jk.

This proves the uniqueness of D. The set {Γk
ij , F

k
ij = 0}, where the {Γk

ij}
are given by (3.13), defines a linear connection D on π∗TM satisfying
(3.1) and (3.2). �

Definition 3.2. Let (M,F ) be a Finsler manifold. A Finsler connection
is called of Berwald-type (resp. of Cartan-type or Shen-type) if and only
if vanishing of its hv-curvature, reduces the Finsler structure to the
Berwaldian (resp. Landsbergian or Riemannian) one.

From this view point, one can compare some of the non-Riemannian
Finsler connections according to the compatibility of the tensors S and
T , as shown in Table 1.
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Table 1: A classification of Finsler connections according to
their compatible tensors S and T

Compatible tensors
Connection S T Metric compatibility Torsion

1. Berwald A +
•
A 0 almost compatible free

2. Chern- Rund A 0 almost compatible free

3. Berwald-type A + κ1

•
A + · · ·+ κm

m

A 0 almost compatible free

4. Cartan A A metric compatible not free

5. Hashiguchi A +
•
A A almost compatible not free

6. Cartan-type A + κ1

•
A + · · ·+ κ

m

m

A A depends on κ
i

not free

7. Shen 0 0 almost compatible free

8. Shen-type κ1

•
A + · · ·+ κ

m

m

A 0 almost compatible free

9. General-type κ0A + κ1

•
A + · · ·+ κ

m

m

A rA depends on κ
i

and r depends on r

In Table 1, A, Ȧ, Ä,...,
m

A are Cartan tensors and their covariant deriva-
tives κi and r are arbitrary real constants. The connections 1, 2, and
3 belong to the Berwald-type category. The connections 4, 5, and 6
are Cartan-type connections. The connections 7 and 8 belong to the
Shen-type category. The connection 9 contains all other connections.

Remark 3.1. The Berwald and Chern connections are special cases of
Berwald-type connection in the following way:
Putting k1 = · · · = km = 0 yields the Chern connection.
Putting k2 = · · · = km = 0 and k1 = 1 yield the Berwald connection.

The bundle map µ : T (TM0) → π∗TM defined in Definition 1 can be
expressed in the following form:

(3.14) µ(
∂

∂xi
) = Nk

i ∂k, µ(
∂

∂yi
) = ∂i,

where Nk
i = FΓk

ij`
j = F{γk

ij`
j −Ak

ilγ
l
ab`

a`b}.
Using the nonlinear connection coefficients, for Berwald-type connection
we have,
(3.15)

Γi
jk = γi

jk + k1Ȧ
i
jk + · · ·+ km

m

Ai
jk − gil{CljsN

s
k − CjksN

s
l + CklsN

s
j }.
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We summarize that Kerρ = V TM , Kerµ = HTM , ρ restricted to
HTM is an isomorphism onto π∗TM , and µ restricted to V TM is the
bundle isomorphism onto π∗TM.

4. Curvature tensors

Here, we study the curvature tensors of the Berwald-type connection.
This connection is torsion-free and almost compatible with Finsler met-
ric in the sense of (3.2). As a torsion-free connection, it defines two
curvatures R and P . The R-term is the so-called Riemannian curva-
ture tensor which is a natural extension of the usual Riemannian cur-
vature tensor of Riemannian metrics, while the P -term is a purely non-
Riemannian quantity. We prove also that the hv-curvature P of this
connection vanishes if and only if the Finsler structure is a Berwald
structure. The curvature tensor Ω of D is defined by:

(4.1) Ω(X̂, Ŷ )Z = DX̂DŶ Z −DŶ DX̂Z −D[X̂,Ŷ ]Z,

where X̂, Ŷ ∈ χ(TM0) and Z ∈ π∗TM.

Let {ei}n
i=1 be a local orthonormal (with respect to g) frame field for

the vector bundle π∗TM such that g(ei, en) = 0, i = 1, ..., n − 1, and
en := `. Put `i := gij`

j = Fyi . Let {ωi}n
i=1 be its dual co-frame field.

The ωi are local sections of the dual bundle π∗TM . One readily finds
that ωn : ∂F

∂yi dxi = ω, which is the Hilbert form. It is obvious that
ω(`) = 1.

Put
ρ = ωi ⊗ ei, Dei = ω j

i ⊗ ej , Ωei = 2Ω j
i ⊗ ej .

{Ω j
i } and {ω j

i } are called the curvature forms and connection forms of
D with respect to {ei}. We have µ := DF` = F{ω i

n + d(logF )δi
n} ⊗ ei.

Put ωn+i := ω i
n + d(logF )δi

n. It is easy to see that {ωi, ωn+i}n
i=1 is a

local basis for T ∗(TM0). By definition,

ρ = ωi ⊗ ei, µ = Fωn+i ⊗ ei.

According to Theorem 3.1, there exits a connection 1-forms {ωi
j} which

satisfies the following torsion-freeness and almost compatibility as fol-
lows:

(4.2) dωi = ωj ∧ ω i
j ,
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(4.3) dgij = gkjω
k

i +gikω
k

j −2{k1Ȧijk + · · ·+km

m

Aijk}ωk +2Aijkω
n+k.

In fact, using the local orthonormal frame field {ei}n
i=1 for the vector

bundle π∗TM and its dual co-frame field {ωi}n
i=1, (3.1) and (3.2), re-

spectively, after a straightforward calculation analogous to the proof of
Theorem 3.1, we will have (4.2) and (4.3).
Let,

(4.4) dgij − gkjω
k

i − gikω
k

j = gij|kω
k + gij.kω

n+k,

where gij.k and gij|k are respectively the vertical and horizontal covariant
derivatives of gij . This gives:

(4.5) gij|k = −2{k1Ȧijk + · · ·+ km

m

Aijk},
and

(4.6) gij.k = 2Aijk.

Moreover, the torsion freeness is equivalent to:

(4.7) ω i
j = Γi

jkdxk.

Clearly, (4.1) is equivalent to:

(4.8) dω j
i − ω k

i ∧ ω j
k = Ω j

i .

Since the Ω i
j are 2-forms on the manifold TM0, they can be generally

expanded as:

(4.9) Ω j
i =

1
2
R j

i klω
k ∧ ωl + P j

i klω
k ∧ ωn+l +

1
2
Q j

i klω
n+k ∧ ωn+l.

Let {ēi, ėi}n
i=1 be the local basis for T (TM0), which is dual to {ωi, ωn+i}n

i=1,
i.e., ēi ∈ HTM, ėi ∈ V TM such that ρ(ēi) = ei, µ(ėi) = Fei. The ob-
jects R, P and Q are respectively the hh-, hv- and vv-curvature ten-
sors of the connection D and with R(ēk, ēl)ei = R j

i klej , P (ēk, ėl)ei =
P j

i klej , and Q(ėk, ėl)ei = Q j
i klej . From (4.9) we see that

(4.10) R j
i kl = −R j

i lk and Q j
i lk = −Q j

i kl.

If D is a torsion-free, then Q = 0. Differentiating (4.2), then we have
the first Bianchi identity,

(4.11) ωi ∧ Ωj
i = 0,

which implies the first Bianchi identity for R:

(4.12) R j
i kl + R j

k li + R j
l ik = 0,
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and

(4.13) P j
i kl = P j

k il.

The Exterior differentiation of (4.8) gives rise to the Second Bianchi
identity:

(4.14) dΩ j
i − ω k

i ∧ Ω j
k + ω j

k ∧ Ω k
i = 0.

We decompose the covariant derivatives of the Cartan tensor on TM as:

(4.15) dAijk −Aljkω
l

i −Ailkω
l

j −Aijlω
l

k = Aijk|lω
l + Aijk.lω

n+l,

and in a similar way, ∀m ∈ N, for
m

Aijk we have,

(4.16) d
m

Aijk −
m

Aljkω
l

i −
m

Ailkω
l

j −
m

Aijlω
l

k =
m

Aijk|lω
l +

m

Aijk.lω
n+l.

Clearly, from (4.15) and (4.16), we find that for each l and ∀m ∈ N,

Aijk|l, Aijk.l,
m

Aijk|l and
m

Aijk.l,(4.17)

are symmetric in i, j, k. Put
m

Aijk =
m

A(ei, ej , ek) and
m

Al
ij = gkl

m

Aijk,

∀m ∈ N . By definition of Ȧ and
m

A, one has,

(4.18) Aijk|n = Ȧijk,

where we use the notation
m

Aijk|n =
m

Aijk|s`
s for all m ∈ N and

(4.19)
m

Aijk|n =
m+1

A ijk.

It follows from (4.15),

(4.20) Anjk|l = 0 , Anjk.l = −Ajkl,

and from (4.16) we have,

(4.21) ∀m ∈ N,
m

Anjk|l = 0 ,
m

Anjk.l = −
m

Ajkl.

In this relation the following results are well known.

Theorem A. ([7], [10]) Let (M,F ) be a Finsler manifold. Then, for the
Cartan connection (or Hashiguchi connection), hv-curvature P i

j kl = 0
if and only if F is a Landsberg metric.

Theorem B. ([4])Let (M,F ) be a Finsler manifold. Then, for the
Chern connection (or Berwald connection), hv-curvature P i

j kl = 0 if
and only if F is a Berwald metric.
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Theorem C. ([13]) Let (M,F ) be a Finsler manifold. Then, for the
Shen connection, hv-curvature P i

j kl = 0 if and only if F is Riemannian.

Analogously we have the following result.

Theorem 4.1. Let (M,F ) be a Finsler manifold. Then, for the Berwald-
type connection, hv-curvature P i

j kl = 0 if and only if F is a Berwald
metric.

proof. Let (M,F ) be a Finsler manifold. Differentiating (4.3), and
using (4.2), (4.3), (4.8), (4.15), (4.16), (4.17), (4.18) , (4.19), (4.20) and
(4.21) lead to:

gkjΩ k
i + gikΩ k

j = −2AijkΩk
n − 2Aijk|lω

l ∧ ωn+k + 2Aijk.lω
n+k ∧ ωn+l

+ k1(Ȧijk|lω
l + Ȧijk.lω

n+l) ∧ ωk + · · ·

+ km(
m

Aijk|lω
l +

m

Aijk.lω
n+l) ∧ ωk.(4.22)

By using (4.9) and (4.22), we have the followings:

Rijkl + Rjikl = 2k1

{
Ȧijl|k − Ȧijk|l

}
+ · · ·+ 2km

{
m

Aijl|k −
m

Aijk|l

}
− 2AijsR

s
n kl,(4.23)

(4.24) Pijkl+Pjikl = −2{k1Ȧijk.l+· · ·+km

m

Aijk.l}−2Aijl|k−2AijsP
s

n kl,

(4.25) Aijk.l = Aijl.k.

Permuting i, j, k in (4.24) yields:

Pijkl = −{k1Ȧijk.l + · · ·+ km

m

Aijk.l} − (Aijl|k + Ajkl|i −Akil|j)

+AkisP
s

n jl −AjksP
s

n il −AijsP
s

n kl,(4.26)

and

(4.27) Pnjkl = {k1Ȧjkl + · · ·+ km

m

Ajkl} − Ȧjkl,

Because Pnjnl = 0. Now, if F is a Berwald metric, then from (4.26) and
(4.27) we conclude P = 0.
Conversely, let P = 0. It follows from (4.27),

(4.28) k1Ȧjkl + · · ·+ km

m

Ajkl = Ȧjkl,

By means of (4.26) we have,

k1Ȧijk.l + · · ·+ km

m

Aijk.l = Akil|j −Aijl|k −Ajkl|i.
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Permuting i, j, k in the above identity yields:

k1Ȧijk.l + · · ·+ km

m

Aijk.l = Ajkl|i −Akil|j −Aijl|k,

and then,
Aijl|k = Ajkl|i.

Letting k = n in the above relation, we conclude:

(4.29) Ȧijk = 0.

It is obvious that

(4.30) ∀m ∈ N,
m

Aijk = 0.

Therefore, from (4.24), (4.26), (4.27) and (4.30), we conclude that Aijk|l =
0, and thus F is a Berwald metric. �

5. Some applications

5.1. Preliminaries on geodesics and completeness. Here, we ex-
plore the notion of geodesics to introduce the concept of completeness
for Finsler manifolds. Let c : [a, b] → M be a unit speed C∞ curve in
(M,F ). The canonical lift of c to TM0 is defined by:

ĉ :=
dc

dt
∈ TM0.

It is easy to see that ρ(dĉ
dt ) = `ĉ, where c is called a geodesic if its

canonical lift ĉ satisfies:
dĉ

dt
= `ĉ,

where ¯̀ is the geodesic field on TM0, defined for ` ∈ HTM by ρ(¯̀) = `.
Let IxM = {v ∈ TxM,F (v) = 1} and IM =

⋃
p∈M IxM , where IxM

is called the indicatrix, and it is a compact set. We can show that the
projection of integral curve ϕ(t) of ¯̀ with ϕ(0) ∈ IM is a unit speed
geodesic c whose canonical lift is ĉ(t) = ϕ(t).

A Finsler manifold (M,F ) is said to be backward geodesically com-
plete (or forward geodesically complete) if every geodesic c(t), a ≤ t < b
(a < t ≤ b), parameterized to have a constant Finslerian speed, can
be extended to a geodesic defined on a ≤ t < ∞ (−∞ < t ≤ b). A
Finsler manifold (M,F ) is said to be complete if it is both forward and
backward geodesically complete.
Let c be a unit speed geodesic in M . A section X = X(t) of π∗TM
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along ĉ is said to be parallel if D dĉ
dt

X = 0. For v ∈ TM0, define

‖A‖v = supA(X, Y, Z) and ‖Ȧ‖v = supȦ(X, Y, Z), where the supre-
mum is taken over all unit vectors of π∗vTM . Put ‖A‖v = supv∈IM‖A‖v

and ‖Ȧ‖v = supv∈IM‖Ȧ‖v .

5.2. Application of Berwald-type connections. In this subsection
we are going to use two special cases of Berwald-type connections intro-
duced in Section 3. A useful property of this connection is its adaptive
form for different applications. In fact, one can use a suitable special
case of this connection to find a geometric interpretation for solutions of
some differential equations formed by Cartan tensor and its derivatives
in Finsler spaces. For example, we prove the following theorem.

Theorem 5.1. Let (M,F) be a complete Finsler manifold with bounded
Landsberg tensor. Then, F is a Landsberg metric if and only if Pjkl = 0.

proof. To prove the theorem, we introduce a connection for which we
have put k1 = k3 = · · · = km = 0 and k2 6= 0 in (4.27). Let F be a
Landsberg metric, then from (4.27) we find that Pjkl = 0. Conversely,
if Pjkl = 0, then we have following differential equation:

(5.1) kmA
(m)

+ · · ·+ k2A
(2)

+ (k1 − 1)Ȧ = 0.

If k1 = k3 = · · · = km = 0 and k2 6= 0, then we find an special Berwald-
type connection for which we have,

(5.2) k2Ä− Ȧ = 0.

On the other hand,

(5.3)
dȦ

dt
= Ä.

We have Ȧ = ek2 tȦ(0). Using ‖Ȧ‖ < ∞ , and letting t → +∞, we then
have Ȧ(0) = Ȧ(X, Y, Z) = 0, or Ȧ = 0, i.e., F is a Landsberg metric. �

By means of the Theorem 5.1, every compact Finsler manifold is a
Landsberg space if and only if Pjkl vanishes. Next, we consider an spe-
cial Berwald-type connection and give another proof for the following
well-known result.
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Corollary 5.1. Let (M,F) be a complete Finsler manifold with a neg-
ative constant flag curvature and a bounded Cartan tensor. Then, F is
Riemannian.

proof. Let (M,F ) be a complete Finsler manifold with the constant
flag curvature λ. If λ 6= 0 then we put in (4.27) k2 = k4 = · · · = km = 0
, k1 = 2 and k3 = 1

λ 6= 0. We obtain a connection for which the hv-
curvature P becomes:

Pijkl = −{2Ȧijk.l +
1
λ

...
Aijk.l} − (Aijl|k + Ajkl|i −Akil|j)

+AkisP
s

n jl −AjksP
s

n il −AijsP
s

n kl,(5.4)

and

(5.5) Pnjkl =
1
λ

...
A + Ȧ.

As M has a constant flag curvature, we have,

(5.6) Ä + λA = 0,

From which we have Pnjkl = 1
λ

...
A + Ȧ = 0. By solving this differential

equation, we find,

(5.7) A(t) = c1 + c2e
√
−λt + c3e

−
√
−λt.

By the assumption that the Cartan tensor is bounded, and letting t →∞
and t → −∞, we see that c2 = c3 = 0. Then, A = c1, and therefore
Ȧ = 0 and F is a Landsberg metric. From (5.6), it is easy to see that
A = 0. �
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