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Abstract. Let R = ⊕n∈N0
Rn be a Noetherian homogeneous ring with

local base ring (R0,m0), M and N two finitely generated graded R-
modules. Let t be the least integer such that Ht

R+
(M,N) is not min-

imax. We prove that Hj
m0R

(Ht
R+

(M,N)) is Artinian for j = 0, 1. Also,

we show that if cd(R+,M,N) = 2 and t ∈ N0, then Ht
m0R

(H2
R+

(M,N))

is Artinian if and only if Ht+2
m0R

(H1
R+

(M,N)) is Artinian.
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1. Introduction

Throughout this paper, let R = ⊕n∈N0Rn be a Noetherian homogeneous ring
with local base ring (R0,m0). So R0 is a Noetherian ring and there are finitely
many elements l1, l2, . . . , lr ∈ R1 such that R = R0[l1, l2, . . . , lr]. We denote
R+ = ⊕n∈NRn the irrelevant ideal of R and that m = m0 ⊕ R+ the graded
maximal ideal of R. Assume that M = ⊕n∈ZMn and N = ⊕n∈ZNn are finitely
generated graded R-modules.(Here, N0, N denotes the set of non-negative and
positive integers respectively; Z will denote the set of all integers.)

Let Hi
R+

(M,N) be the i-th graded generalized local cohomology module of

M and N with respect to R+. As it has been shown in [12], for each i ∈ N0,
Hi

R+
(M,N) has a natural graded structure. For each n ∈ Z, we denote the

n-th homogeneous component of Hi
R+

(M,N) by Hi
R+

(M,N)n. Assume that

pdM < ∞. Then the R0-modules Hi
R+

(M,N)n are finitely generated for all

n ∈ Z and they are zero for n ≫ 0.
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In this article, we are interested in the Artinian property of the graded
generalized local cohomology modules Hi

R+
(M,N).

The minimax modules were introduced by Zöschinger [13]. A graded R-
module L is said to be minimax if there is a finitely generated graded sub-
module K such that L/K is Artinian. The class of minimax modules includes
all finitely generated modules and all Artinian modules.

Recall that a graded R-module T = ⊕n∈ZTn is said to be tame if there
exists an integer n0 such that either Tn = 0 for all n < n0 or Tn ̸= 0 for all
n < n0. Brodmann and Hellus in [2] proved that all finitely generated modules
and Artinian modules are tame.

Mafi and Saremi in [8] proved that Hj
m0R

(Ht
R+

(M)) is Artinian for j = 0, 1,

where t = inf{i ∈ N0|Hi
R+

(M) is not finitely generated}.
Here, we get a generalization of the above result.

Theorem 1.1. Hj
m0R

(Ht
R+

(M,N)) is Artinian for j = 0, 1, where t = inf{i ∈
N0|Hi

R+
(M,N) is not minimax}.

In [11] Sazeedeh showed that if H2
m0R(H

1
R+

(M)) is Artinian, then Γm0R(H
2
R+

(M))

is Artinian. By Theorem 1.1, we establish a similar result for graded generalized
local cohomology modules.

In [10] Sazeedeh proved that if ara(R+) = 2, then Ht
m0R

(H2
R+

(M)) is Ar-

tinian if and only if Ht+2
m0R

(H1
R+

(M)) is Artinian for each t ∈ N0. Mafi and

Saremi [8] also proved that if cd(R+,M) = 2, then Ht
m0R

(H2
R+

(M)) is Ar-

tinian if and only if Ht+2
m0R

(H1
R+

(M)) is Artinian for each t ∈ N0.

In this paper, we get the following result.

Theorem 1.2. Let cd(R+,M,N) = 2 and t ∈ N0. Then Ht
m0R

(H2
R+

(M,N))

is Artinian if and only if Ht+2
m0R

(H1
R+

(M,N)) is Artinian.

In addition, we show that Ht
R+

(M,N) is tame, where t is the least integer i

such that Hi
R+

(M,N) is not Artinian. This result extends [7, Theorem 2.1].

For notations and terminologies not explained in this paper, the reader is
referred to [3] and [4] if necessary.

2. The results

Definition 2.1. We denote by c := cd(R+,M,N) the cohomological di-
mension of M and N with respect to R+ which is

c := cd(R+,M,N) = sup{i ∈ N0|Hi
R+

(M,N) ̸= 0}.

One can easily see that cd(R+,M,N) = cd(R+, N) if M = R.

Theorem 2.2. Hj
m0R

(Ht
R+

(M,N)) is Artinian for j = 0, 1, where t = inf{i ∈
N0|Hi

R+
(M,N) is not minimax}.
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Proof. By [9, Theorem 11.38], we consider the Grothendieck spectral sequence

Ep,q
2 := Hp

m0R
(Hq

R+
(M,N)) =⇒

p
Hp+q

m (M,N).

Thus, for each n ≥ 0, there is a finite filtration of the module Hn = Hn
m(M,N)

0 = ϕn+1Hn ⊆ ϕnHn ⊆ · · · ⊆ ϕ1Hn ⊆ ϕ0Hn = Hn

such that Ei,n−i
∞

∼= ϕiHn/ϕi+1Hn for all 0 ≤ i ≤ n.
For each i ≥ 2 and p, q ≥ 0, we consider the following exact sequence

0 −→ Kerdp,qi −→ Ep,q
i

dp,q
i−→ Ep+i,q−i+1

i .

(Note that Ep,q
i+1

∼= Kerdp,qi /Imdp−i,q+i−1
i and Ep,q

i = 0 for all q < 0.)

For each i ≥ 2 and j = 0, 1, we have Ej,t
i+1

∼= Kerdj,ti and Ej,t
t+2

∼= Ej,t
t+3

∼=
· · · ∼= Ej,t

∞ . As a subquotient of Hj+t
m (M,N), Ej,t

∞ is Artinian for j = 0, 1.

So Ej,t
t+2 and Kerdj,tt+1 are Artinian for j = 0, 1. By the above exact sequence,

we can deduce that Kerdj,tt is Artinian for j = 0, 1. By applying the above

argument for finite steps, we get that Kerdj,t2 is Artinian for j = 0, 1. Since

Ej+2,t−1
2 is Artinian by [11, Lemma 3.2], it follows that Ej,t

2 is Artinian for
j = 0, 1 by the above exact sequence. □

The next corollary is a generalization of the main result in [10].

Corollary 2.3. Γm0R(H
1
R+

(M,N)) and H1
m0R

(H1
R+

(M,N)) are Artinian.

Proof. IfH1
R+

(M,N) is minimax, then Γm0R(H
1
R+

(M,N)) andH1
m0R

(H1
R+

(M,N))

are Artinian by [11, Lemma 3.2]. If H1
R+

(M,N) is not minimax, then we get

the result by Theorem 2.2. □

The following example which has been presented in [10, Example 2.9] shows
that Γm0R(H

2
R+

(M,N)) and H2
m0R

(H1
R+

(M,N)) are not Artinian even if R0 is

a regular local ring.

Example 2.4. [10, Example 2.9] LetK be a field, let x, y, t be indeterminates,
let R0 = K[x, y](x,y) and m0 = (x, y)R0. Moreover, let R = R0[m0t] be the
Rees ring of m0. One can easily see that R+ = (xt, yt)R, hence ara(R+) = 2. It
follows from [1, Example 4.2] that Γm0R(H

2
R+

(R)) is not Artinian. We deduce

that H2
m0R

(H1
R+

(R)) is not Artinian from [10, Corollary 2.4].

Next, we shall prove that Γm0R(H
2
R+

(M,N)) is Artinian in some cases. For

that, we need the following lemma.

Lemma 2.5. Hi
m0R

(Hj
R+

(M,N)) is Artinian if and only if Hi
m0R

(Hj
R+

(M,

N/ΓR+(N))) is Artinian for all i, j ∈ N0.
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Proof.
0 −→ ΓR+(N) −→ N −→ N/ΓR+(N) −→ 0,

we get the following long exact sequence

Hj
R+

(M,ΓR+(N))
f−→ Hj

R+
(M,N)

g−→ Hj
R+

(M,N/ΓR+(N))

h−→ Hj+1
R+

(M,ΓR+(N))

which deduce two short exact sequences

0 −→ Imf −→ Hj
R+

(M,N) −→ Img −→ 0

and
0 −→ Img −→ Hj

R+
(M,N/ΓR+

(N)) −→ Imh −→ 0.

For all j ≥ 0, Hj
R+

(M,ΓR+
(N)) ∼= ExtjR(M,ΓR+

(N)) is finitely generated, it

follows that Imf and Imh are finitely generated. Application of the functor
Hi

m0R
(−) to the above two short exact sequences induce the following exact

sequences

Hi
m0R(Imf) −→ Hi

m0R(H
j
R+

(M,N)) −→ Hi
m0R(Img) −→ Hi+1

m0R
(Imf)

and

Hi−1
m0R

(Imh) −→ Hi
m0R(Img) −→ Hi

m0R(H
j
R+

(M,N/ΓR+(N))) −→ Hi
m0R(Imh).

ThenHi
m0R

(Hj
R+

(M,N)) is Artinian if and only ifHi
m0R

(Hj
R+

(M,N/ΓR+(N)))

is Artinian. □

Theorem 2.6. Let H2
m0R

(H1
R+

(M,N)) is Artinian. Then Γm0R(H
2
R+

(M,N))
is Artinian.

Proof. If dim(N/m0N) ≤ 0, thenN = ΓR+(N). ThusH2
R+

(M,N) ∼= Ext2R(M,N)

is finitely generated, and Γm0R(H
2
R+

(M,N)) is Artinian by [11, Lemma 3.2].

Now we may assume that dim(N/m0N) > 0 and that ΓR+(N) = 0 by Lemma
2.5, and so there exists a homogeneous element a ∈ R+ which is non-zero
divisor on N . Let deg(a) = t. From the short exact sequence

0 −→ N(−t)
a−→ N −→ N/aN −→ 0,

we get the following long exact sequence

0 −→ ΓR+(M,N/aN) −→ H1
R+

(M,N)(−t)
f−→ H1

R+
(M,N)

g−→ H1
R+

(M,N/aN)
h−→ H2

R+
(M,N)(−t) −→ H2

R+
(M,N) −→ · · · .

Set X1 = Imh, X2 = Img and X3 = Imf . Next, we will prove that Γm0R(X1)
is Artinian. Since Γm0R(H

1
R+

(M,N/aN)) is Artinian by Corollary 2.3, it is

enough to show that H1
m0R

(X2) is Artinian. From the exact sequence

· · · −→ H1
m0R(H

1
R+

(M,N)) −→ H1
m0R(X2) −→ H2

m0R(X3) −→ · · · ,
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and by Corollary 2.3, it suffices to show that H2
m0R

(X3) is Artinian. The short
exact sequence

0 −→ ΓR+(M,N/aN) −→ H1
R+

(M,N)(−t) −→ X3 −→ 0

yields the following exact sequence

H2
m0R(H

1
R+

(M,N))(−t) −→ H2
m0R(X3) −→ H3

m0R(ΓR+(M,N/aN)),

it follows that H2
m0R

(X3) is Artinian. Hence

Γm0R(X1) = Γm0R(0 :H2
R+

(M,N) a)(−t)) = (0 :Γm0R(H2
R+

(M,N)) a)(−t)

is Artinian. In virtue of Γm0R(H
2
R+

(M,N)) being a-torsion, then the result

follows by [3, Theorem 7.1.2]. □

Next we give another main result of this paper.

Theorem 2.7. Let cd(R+,M,N) = 2 and t ∈ N0. Then Ht
m0R

(H2
R+

(M,N))

is Artinian if and only if Ht+2
m0R

(H1
R+

(M,N)) is Artinian.

Proof. By [9, Theorem 11.38], we consider the Grothendieck spectral sequence

Ep,q
2 := Hp

m0R
(Hq

R+
(M,N)) =⇒

p
Hp+q

m (M,N).

Since Ep,q
2 = 0 for q > 2, we have the following exact sequence

0 −→ Et,2
3 −→ Et,2

2

dt,2
2−→ Et+2,1

2 −→ G −→ 0,

where G = Et+2,1
2 /Imdt,22 . We need just show that Et,2

3 and G are Artinian for

all t ≥ 0. Note that Et+3,0
3 is a subquotient of Et+3,0

2 , and thus is Artinian. So

Et,2
3 /kerdt,23 is Artinian. Considering that Et,2

4
∼= Et,2

5
∼= · · · ∼= Et,2

∞ and Et,2
∞ is

isomorphic to a subquotient of Ht+2
m (M,N), then Et,2

4 is Artinian. Hence Et,2
3

is Artinian.
From the complex

Et,2
2

dt,2
2−→ Et+2,1

2

dt+2,1
2−→ Et+4,0

2 ,

we know that Et+2,1
2 /kerdt+2,1

2 is Artinian. Since Et+2,1
3

∼= Et+2,1
4

∼= · · · ∼=
Et+2,1

∞ , it follows that Et+2,1
3 is Artinian. Then Kerdt+2,1

2 /Imdt,22 is Artinian.
Hence G is Artinian, as required. □

We get the following result which has been proved in [8, Theorem 2.7].

Corollary 2.8. Let cd(R+,M) = 2 and i ∈ N0. Then Hi
m0R

(H2
R+

(M)) is

Artinian if and only if Hi+2
m0R

(H1
R+

(M)) is Artinian.

The next corollary provides a condition under which H2
m0R

(H1
R+

(M,N)) is

Artinian if Γm0R(H
2
R+

(M,N)) is Artinian.
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Corollary 2.9. Let cd(R+,M,N) = 2. Then Γm0R(H
2
R+

(M,N)) is Artinian

if and only if H2
m0R

(H1
R+

(M,N)) is Artinian.

Proposition 2.10. Let t = inf{i|Hi
R+

(M,N) is not Artinian}. Then Ht
R+

(M,N)

is tame.

Proof. For all i < t, Hi
R+

(M,N) is Artinian. Then HomR(R/R+,H
t
R+

(M,N))

is finitely generated by [5, Theorem 2.5]. So Ht
R+

(M,N) is tame by [6, Lemma

4.2]. □
Corollary 2.11. ( [7, Theorem 2.1]) Let t = inf{i|Hi

R+
(M) is not Artinian}.

Then Ht
R+

(M) is tame.
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