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ABSTRACT. Let R = ®yenyRn be a Noetherian homogeneous ring with
local base ring (Ro,mp), M and N two finitely generated graded R-
modules. Let ¢t be the least integer such that H§3+ (M, N) is not min-
imax. We prove that HiOR(H%Jr (M, N)) is Artinian for j = 0,1. Also,
we show that if cd(R4, M, N) = 2 and t € Ng, then H;[)R(HIZ%+ (M, N))
is Artinian if and only if H;t?%(HIl%Jr (M, N)) is Artinian.
Keywords: Graded local cohomology modules, Artinian modules, min-
imax.
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1. Introduction

Throughout this paper, let R = @,¢en, R be a Noetherian homogeneous ring
with local base ring (Rp,mg). So Rg is a Noetherian ring and there are finitely
many elements ly,ls,...,l. € Ry such that R = Rglly,ls,...,1,]. We denote
R, = ®nenR, the irrelevant ideal of R and that m = my & R, the graded
maximal ideal of R. Assume that M = &,cz M, and N = &,z N,, are finitely
generated graded R-modules.(Here, Ny, N denotes the set of non-negative and
positive integers respectively; Z will denote the set of all integers.)

Let H}ih (M, N) be the i-th graded generalized local cohomology module of
M and N with respect to Ry. As it has been shown in [12], for each i € Ny,
H}}{+(M, N) has a natural graded structure. For each n € Z, we denote the
n-th homogeneous component of H}‘%+ (M,N) by Hf;ur (M,N),,. Assume that

pdM < co. Then the Rp-modules H}é+ (M, N),, are finitely generated for all
n € Z and they are zero for n > 0.
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In this article, we are interested in the Artinian property of the graded
generalized local cohomology modules H §%+ (M,N).

The minimax modules were introduced by Zoschinger [13]. A graded R-
module L is said to be minimax if there is a finitely generated graded sub-
module K such that L/K is Artinian. The class of minimax modules includes
all finitely generated modules and all Artinian modules.

Recall that a graded R-module T = @®,,¢c77,, is said to be tame if there
exists an integer ng such that either T,, = 0 for all n < ng or T, # 0 for all
n < ng. Brodmann and Hellus in [2] proved that all finitely generated modules
and Artinian modules are tame. A

Mafi and Saremi in [8] proved that Hl{mR(H}f;br (M)) is Artinian for j =0, 1,
where ¢ = inf{i € No[Hp, (M) is not finitely generated}.

Here, we get a generalization of the above result.

Theorem 1.1. H]Z;OR(H;%+ (M, N)) is Artinian for j = 0,1, where t = inf{i €
N0|H}§+ (M, N) is not minimaz}.

In [11] Sazeedeh showed that if Hy g(Hg, (M)) is Artinian, then T'm,r(Hz, (M))
is Artinian. By Theorem 1.1, we establish a similar result for graded generalized

local cohomology modules.

In [10] Sazeedeh proved that if ara(Ry) = 2, then HEOR(H?%@ (M)) is Ar-
tinian if and only if H;Jg?{(H}{Jr(M)) is Artinian for each t € Ny. Mafi and
Saremi [8] also proved that if cd(R4, M) = 2, then H;OR(H%{Jr(M)) is Ar-

tinian if and only if H' 2 (Hll%+ (M)) is Artinian for each ¢ € Ny.

moR

In this paper, we get the following result.

Theorem 1.2. Let cd(Ry,M,N) =2 and t € Ng. Then H;OR(HJQh (M, N))
is Artinian if and only if H&—E%(H}h (M, N)) is Artinian.

In addition, we show that H It%+ (M, N) is tame, where ¢ is the least integer i
such that Hf;ur (M, N) is not Artinian. This result extends [7, Theorem 2.1].

For notations and terminologies not explained in this paper, the reader is
referred to [3] and [4] if necessary.

2. The results

Definition 2.1. We denote by ¢ := cd(R4, M, N) the cohomological di-
mension of M and N with respect to R, which is

¢:=cd(Ry, M, N) = sup{i € No|Hy, (M, N) # 0}.
One can easily see that cd(Ry, M,N) = cd(R4, N) if M = R.

Theorem 2.2. Hﬁ;OR(HIt%+ (M, N)) is Artinian for j = 0,1, where t = inf{i €
N0|H}2+(M, N) is not minimaz}.
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Proof. By [9, Theorem 11.38], we consider the Grothendieck spectral sequence
EP? .= HY (H%+(M, N)) = HEY9(M, N).
p

moR
Thus, for each n > 0, there is a finite filtration of the module H" = H (M, N)

such that B4 =2 ¢t H™ /¢! T H™ for all 0 < i < n.
For each i > 2 and p, ¢ > 0, we consider the following exact sequence

dP —_
0 — Kerd?? — BP9 = prHHa L,

(Note that E?% 2 Kerd??/Imd? """ and EP*? = 0 for all ¢ < 0.)

For each i > 2 and 57 = 0,1, we have Effl = Kerd{’t and Eg_f2 = Eg_f?) =

.= EX'. As a subquotient of HLT (M, N), EZ! is Artinian for j = 0, 1.
So Eg_fQ and Kerd{i1 are Artinian for j = 0,1. By the above exact sequence,
we can deduce that Kerd{’t is Artinian for j = 0,1. By applying the above
argument for finite steps, we get that Kerdg’t is Artinian for j = 0,1. Since
Eg+2’t_1 is Artinian by [11, Lemma 3.2], it follows that Eg’t is Artinian for
j = 0,1 by the above exact sequence. |

The next corollary is a generalization of the main result in [10].
Corollary 2.3. FmoR(Hzler (M, N)) and H§10R(H112+ (M, N)) are Artinian.

Proof. If H};€+ (M, N) is minimax, then FmoR(Hzl?,Jr (M, N)) and HI}R]R(H}%+ (M,N))
are Artinian by [11, Lemma 3.2]. If H}:‘#(M7 N) is not minimax, then we get
the result by Theorem 2.2. O

The following example which has been presented in [10, Example 2.9] shows
that T, r(Hp, (M, N)) and Hg, p(Hp, (M, N)) are not Artinian even if Ry is
a regular local ring.

Example 2.4. [10, Example 2.9] Let K be a field, let z, y, ¢ be indeterminates,
let Ry = K[z,y](z,) and mg = (2,y)Ro. Moreover, let R = Rg[mgt] be the
Rees ring of mg. One can easily see that R, = («t,yt)R, hence ara(R4) = 2. It
follows from [1, Example 4.2] that Ty, R(H12{+ (R)) is not Artinian. We deduce
that H?2 (H}%+ (R)) is not Artinian from [10, Corollary 2.4].

ng

Next, we shall prove that T'm,g(Hp, (M, N)) is Artinian in some cases. For
that, we need the following lemma.

Lemma 2.5. HéloR(Hf‘Lr(M7 N)) is Artinian if and only if H};.tOR(Hi-i+ (M,

N/T'r, (N))) is Artinian for alli,j € No.
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Proof.

0—TIg (N)— N — N/I'r (N) — 0,
we get the following long exact sequence

Y, (M,Tg, (N)) =5 H}, (M,N) % H}, (M,N/Tg, (N)
A .
— Hi (M, Tr, (N))
which deduce two short exact sequences
0 — Imf — H} (M,N) — Img — 0
and ‘
0 — Img — Hp, (M,N/Tg, (N)) — Imh — 0.

For all j > 0, H{2+ (M,T'r, (N)) = Extg%(M, I'r, (N)) is finitely generated, it
follows that Imf and Imh are finitely generated. Application of the functor

H}, r(—) to the above two short exact sequences induce the following exact

sequences

Hi

moR

(Imf) — Hyog(Hp, (M, N)) — Hy p(Img) — Ht L (Tmf)
and
Hl %(Imh) — H}, p(Img) — H R(H{;\,/+ (M,N/Tr,(N))) — Hpy r(Imh).

moR
Then H, (H}, (M, N))is Artinian if and only if Hi, ,(HY, (M,N/Tg, (N)))
is Artinian. O
Theorem 2.6. Let Hy, p(Hp, (M, N)) is Artinian. Then Uw,r(Hg, (M, N))
is Artinian.
Proof. If dim(N/moN) < 0, then N = I'g, (V). Thus H12~2+ (M, N) = Ext% (M, N)
is finitely generated, and I'm,r(Hz, (M, N)) is Artinian by [11, Lemma 3.2].
Now we may assume that dim(N/moN) > 0 and that I'r, (V) = 0 by Lemma
2.5, and so there exists a homogeneous element ¢ € R, which is non-zero
divisor on N. Let deg(a) = ¢. From the short exact sequence

0 — N(-t) % N — N/aN — 0,

we get the following long exact sequence

0 — T, (M,N/aN) — Hk_(M,N)(-t) 15 H} (M, N)

25 Hb (M,N/aN) s H} (M,N)(—t) — H} (M,N) —> --- .

Set X1 = Imh, X5 = Img and X3 = Imf. Next, we will prove that I'n,r(X1)
is Artinian. Since FmOR(H}%+ (M,N/aN)) is Artinian by Corollary 2.3, it is
enough to show that H&m r(X2) is Artinian. From the exact sequence

OR(Hlle+(Ma N)) — Ht}mR(X2) — H,

_>H1

m

0R(X3) —_—
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and by Corollary 2.3, it suffices to show that HZ, »(X3) is Artinian. The short
exact sequence

0 — g, (M,N/aN) — Hp, (M,N)(—t) — X3 — 0
yields the following exact sequence

Hy m(Hp (M, N))(=t) — Hg p(X3) — Hy g (Tr, (M, N/aN)),

m m m

it follows that H? p(X3) is Artinian. Hence
Pingr(X1) = Limgr(0 “H3 (M,N) a)(=t)) = (0 Tumgr(H3, (MN)) a)(—t)

is Artinian. In virtue of FmOR(HI%+ (M, N)) being a-torsion, then the result
follows by [3, Theorem 7.1.2]. O

Next we give another main result of this paper.

Theorem 2.7. Let cd(R+,M,N) =2 and t € Ng. Then H;OR(HJ?%Jr(M, N))
is Artinian if and only if H.™2 (H}Lr(M7 N)) is Artinian.

moR
Proof. By [9, Theorem 11.38], we consider the Grothendieck spectral sequence
EP? .= HY (H%+(M, N)) = HEY9(M, N).
p

moR

Since EY? =0 for ¢ > 2, we have the following exact sequence

dt?
0— EY* — BV 25 BIP? —G— 0,

where G = E™! /Imdy?. We need just show that E5* and G are Artinian for
all t > 0. Note that E§+3’O is a subquotient of E§+3’O, and thus is Artinian. So
E;”Q/kerdg’2 is Artinian. Considering that EZ’Q = Eé’Q ...~ b2 and E%2 is
isomorphic to a subquotient of H52(M, N), then EY? is Artinian. Hence E4?
is Artinian.
From the complex
E;,Q ﬁ E§+2’1 dgl E5+4,0

)

we know that E5t>'/kerd;™" is Artinian. Since Ei™>' = pIT?! >~ .~
E'F21 it follows that E5 " is Artinian. Then Kerdy™ ' /Imdy? is Artinian.
Hence G is Artinian, as required. O

We get the following result which has been proved in [8, Theorem 2.7].
Corollary 2.8. Let cd(Ry,M) = 2 and i € Ng. Then H! (H123+(M)) is

moR
Artinian if and only if Hr’n‘t'j?/(H}j2+ (M)) is Artinian.

The next corollary provides a condition under which Hg p(Hp, (M, N)) is
Artinian if FmOR(HIZ%+ (M, N)) is Artinian.
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Corollary 2.9. Let cd(R4, M,N) = 2. Then FmOR(H}%+ (M, N)) is Artinian
if and only if H‘iOR(H}ﬁ(M, N)) is Artinian.

Proposition 2.10. Lett = inf{i|H}§+ (M, N) is not Artinian}. Then Hg (M, N)
15 tame.

Proof. For all i < t, H%Jr(M7 N) is Artinian. Then Hornjzg(lf{/]ﬁ_,H}%+ (M,N))

is finitely generated by [5, Theorem 2.5]. So H,t2+ (M, N) is tame by [6, Lemma
4.2]. O

Corollary 2.11. ([7, Theorem 2.1]) Let t = inf{i|H}, (M) is not Artinian}.
Then Hp, (M) is tame.
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