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Abstract. In this paper, we obtain a necessary and sufficient condition

for a conformal mapping between two Weyl manifolds to preserve Ein-
stein tensor. Then we prove that some basic curvature tensors of Wn are
preserved by such a conformal mapping if and only if the covector field

of the mapping is locally a gradient. Also, we obtained the relation be-
tween the scalar curvatures of the Weyl manifolds related by a conformal
mapping preserving the Einstein tensor with a gradient covector field.
Then, we prove that a Weyl manifold Wn and a flat Weyl manifold W̃n,

which are in a conformal correspondence preserving the Einstein tensor
are Einstein-Weyl manifolds. Moreover, we show that an isotropic Weyl
manifold is an Einstein-Weyl manifold with zero scalar curvature and we
obtain that a Weyl manifold Wn and an isotropic Weyl manifold related

by the conformal mapping preserving the Einstein tensor are Einstein-
Weyl manifolds.
Keywords: Weyl manifold, Einstein tensor, conformal mapping, flat
Weyl manifold, isotropic Weyl manifold.
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1. Introduction

Conformal mappings of Riemannian manifolds were studied by many au-
thors [3, 11–13]. Weyl and Schouten studied conformal mappings of Riemann-
ian spaces onto a flat space [11, 13]. In [3], the authors obtained a necessary
and sufficient condition for a Riemannian space Vn to admit a conformal map-
ping preserving the Einstein tensor onto some Riemannian space Ṽn. In [4],
Gribacheva obtained necessary and sufficient conditions for a conformal flat
Weyl space to admit a conformal mapping onto a flat Weyl space and in [1],
the authors studied geodesic mappings preserving the Einstein tensor of Weyl
spaces.
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The purpose of the present paper is to consider the conformal mappings pre-
serving the Einstein tensor of Weyl manifolds. So, the results of the paper
generalize some of the results in [3].

2. Preliminaries

An n-dimensional manifold with a conformal metric g and a symmetric con-
nection ∇ satisfying the compatibility condition

∇ g − 2 g ⊗ T = 0(2.1)

or, in local coordinates

∇k gij − 2Tk gij = 0 ,(2.2)

is called a Weyl space, where T is a 1-form. Such a Weyl space will be
denoted by Wn(g, T ) [5, 7].

Under the renormalization

g̃ = λ2 g(2.3)

of the metric tensor g, T is transformed by the rule

T̃k = Tk + ∂k(lnλ),(2.4)

where ∂k =
∂

∂xk
and λ is a scalar function [5, 7].

If under the renormalization (2.3) of the metric tensor g, a quantity A is
changed according to the rule

Ã = λpA,(2.5)

then A is called a satellite of g of weight {p}.
The prolonged covariant derivative of the satellite A with respect to ∇ is

defined by

∇̇k A = ∇k A− p Tk A.(2.6)

By writting (2.2) and expanding it we find that

∂kgij − ghj Γ
h
ik − gih Γ

h
jk − 2Tk gij = 0,(2.7)

where Γi
jk are the connection coefficients of the form
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Γi
jk =

{
i

jk

}
− ( δij Tk + δik Tj − gjk g

ih Th ).(2.8)

R(X,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X,Y ] Z denotes the curvature tensor
associated with the connection ∇ and in local coordinates, the curvature tensor
Rh

ijk with weight {0} is defined by

(∇j ∇k −∇k ∇j) v
h = vi Rh

ijk,(2.9)

which implies that

Rh
ijk = ∂j Γ

h
ik − ∂k Γ

h
ij + Γh

mj Γ
m
ik − Γh

mk Γ
m
ij .(2.10)

The tensor defined by

Rijkl = gih R
h
jkl(2.11)

is called the covariant curvature tensor. It is clear Rijkl is of weight {2} .
The Ricci tensor of weight {0} and the scalar curvature tensor of weight {−2}
are defined, respectively, by

Rij = Rh
ijk, (Rij = gkl Rkijl)(2.12)

and

R = gih Rih.(2.13)

The tensor

Eij = R(ij) −
R

n
gij(2.14)

is defined as the Einstein tensor ofWn(g, T ), where R(ij) denotes the symmetric
part of the Ricci tensor.

The conformal mapping of Weyl spaces satisfying the condition

Ẽij = Eij(2.15)

is said to be the conformal mapping preserving the Einstein tensor.
A Weyl manifold is an Einstein-Weyl manifold, when the symmetric part of

the Ricci tensor is proportional to the metric tensor. In this case, the Einstein
tensor vanishes. Hence, for an Einstein-Weyl manifold
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Eij = R(ij) −
R

n
gij = 0.(2.16)

3. Conformal mappings preserving the Einstein tensor of Weyl
spaces

Let τ be a conformal mapping of Weyl manifoldWn(g, T ) onto another Weyl

manifold W̃n(g̃, T̃ ). At corresponding points of the Weyl manifolds Wn(g, T )

and W̃n(g̃, T̃ ) it can be taken that [10],

g = g̃.(3.1)

Let∇ and ∇̄ be Weyl connections of Weyl manifoldsWn(g, T ) and W̃n(g̃, T̃ ),
respectively. Then, from (2.2), (2.8) and (3.1) we have

Γ̄i
jk = Γi

jk + δij Pk + δik Pj − gim gjk Pm,(3.2)

where

Pi = Ti − T̃i(3.3)

is the covector field of the conformal mapping of weight zero.
Suppose that Rh

ijk and R̃h
ijk are the mixed curvature tensors of the Weyl

connection coefficients Γh
ij and Γ̃h

ij , respectively. Then, from (2.10) and (3.2)
the equality

R̃h
ijk = Rh

ijk − 2 δhi ∇[j Pk] + δhk Pij − δhj Pik

+ghl gij Plk − ghl gik Plj(3.4)

holds, where

Pij = ∇j Pi − Pi Pj +
1

2
gmh Pm Ph gij(3.5)

and brackets indicate the antisymmetrization.
Contracting (3.4) with respect to h and k we get

R̃ij = Rij + 2∇[j Pi] + (n− 2)Pij + gij P
h
h ,(3.6)

where Ph
h = gijPij .

Transvecting (3.6) by gij and using (3.1) we obtain

R̃ = R+ 2 (n− 1)Ph
h ,(3.7)

which implies
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Ph
h =

R̃−R

2 (n− 1)
.(3.8)

On the other hand, it can be easily seen from (3.6) that the antisymmetric

parts of the Ricci tensors of Wn(g, T ) and W̃n(g̃, T̃ ) are related by

R̃[ij] = R[ij] + n∇[j Pi].(3.9)

By virtue of (3.8) and (3.9), (3.6) reduces to,

R̃ij = Rij +
2

n
(R̃[ij] −R[ij]) + (n− 2)Pij

+
1

2(n− 1)
(R̃−R) gij ,(3.10)

from which it follows that

Pij =
1

n(n− 2)
[(n− 1) (R̃ij −Rij) + (R̃ji −Rji)

− n

2(n− 1)
gij (R̃−R)].(3.11)

Substituting (3.9) and (3.11) into (3.4) we obtain an invariant tensor denoted
by

Ch
ijk = C̃h

ijk,(3.12)

where

Ch
ijk = Rh

ijk +
2

n
δhi R[jk] + δhk Lij − δhl Lik

+ghl gij Llk − ghl gij Lij(3.13)

and

Lij =
1

(n− 2)

[
−Rij +

2

n
R[ij] +

1

2(n− 1)
gij R

]
.(3.14)

The tensor denoted by Ch
ijk is analogous to the conformal curvature tensor

of Riemann manifolds and called the conformal curvature tensor of the Weyl
manifold Wn(g, T ) [4].
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If a conformal mapping from a Weyl manifold to another Weyl manifold
preserves the generalized circles then such a conformal mapping is said to be a
generalized concircular mapping [8].

A tensor denoted by Zh
ijk, which is an invariant with respect to the general-

ized concircular mapping of the Weyl manifold is defined by

Zh
ijk = Rh

ijk − R

n(n− 1)
(gijδ

h
k − gik δ

h
j )(3.15)

and it is called the concircular curvature tensor of the Weyl manifold.
Contraction on the indices h and k in (3.15) gives the tensor

Zij = Rij −
R

n
gij(3.16)

of weight {0}.
Besides the concircular curvature tensor, the other important curvature ten-

sor in differential geometry is the projective curvature tensor. It is defined
by

Wh
ijk = Rh

ijk +
2

(n+ 1)
δhi R[jk] +

1

(n− 1)
(δhj Rik − δhk Rij)

+
2

(n2 − 1)
(δhk R[ij] − δhj R[ik])(3.17)

and preserved by the projective transformation from a Weyl manifold onto
another Weyl manifold.

We now proceed to study the problem of the invariance of the Einstein tensor
and then, the concircular curvature tensor and finally the projective curvature
tensor under the conformal transformation of a Weyl manifold onto another
Weyl manifold.

Let τ : Wn(g, T ) → W̃n(g̃, T̃ ), (n > 2) be a conformal mapping. By

considering the symmetric part of the Ricci tensor of W̃n(g̃, T̃ ) and by using
(3.6),(3.7) and (3.8) we obtain

Eij = R(ij) −
R

n
gij

= Ẽij − (n− 2)P(ij) +
(n− 2)

n
gij P

h
h

= Ẽij − (n− 2)

[
P(ij) − gij

(R̃−R)

2n(n− 1)

]
.(3.18)

It can be easily seen that Eij = Ẽij for n = 2. Moreover, it is known that
any 2-dimensional Weyl manifold is an Einstein-Weyl manifold [10]. Since the
Einstein tensor of an Einstein-Weyl manifold vanishes, the conformal mapping
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between two Einstein-Weyl manifolds of 2-dimensional preserves the Einstein
tensor. So, in this section we assume that n > 2.

Suppose that the Einstein tensor of the Weyl manifold Wn(g, T )(n > 2) is
preserved by τ . Then we have

Ẽij = Eij(3.19)

from which it follows that

P(ij) =
gij (R̃−R)

2n(n− 1)
.(3.20)

Conversely, suppose that condition (3.20) is valid. By (3.18) it is clear that

Ẽij = Eij(3.21)

Thus, we proved that

Theorem 3.1. The conformal mapping of Wn(g, T ) onto W̃n(g̃, T̃ ) (n > 2)
preserves the Einstein tensor, if and only if the condition

P(ij) =
1

2n(n− 1)
gij (R̃−R)(3.22)

holds.

Substituting (3.4), (3.7) into (3.15) we obtain

Z̃h
ijk = Zh

ijk +Xh
ijk,(3.23)

where

Xh
ijk = 2 δhi P[kj] + δhk Pij − δhj Pik

−gik g
hm Pmj + gij g

hm Pmk

− 2

n
Ph
h (δhk gij − δhj gik) = 0.(3.24)

Let Z̃h
ijk = Zh

ijk. Then we have Xh
ijk = 0. By contracting h and i in (3.24)

we get

P[kj] = 0,(3.25)

which implies that Pk is a gradient.
By similar calculations, and by using (3.4), (3.6), (3.9) and (3.17) we obtain
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W̃h
ijk = Wh

ijk + Ph
ijk,(3.26)

where

Ph
ijk =

2

(n+ 1)
δhi P[kj] +

1

(n− 1)
δhk

[
Pij −

2

(n+ 1)
P[ij] − gij P

h
h

]
− 1

(n− 1)
δhj

[
Pik − 2

(n+ 1)
P[ik] − gik P

h
h

]
− gik g

hl Plj + gij g
hl Plk.(3.27)

Suppose that W̃h
ijk = Wh

ijk. Then we have Ph
ijk = 0. Contraction on h and

i in (3.27) gives that

P[kj] = 0,(3.28)

or Pk is a gradient. Then we have

Theorem 3.2. Let τ : Wn(g, T ) → W̃n(g̃, T̃ ) be a conformal mapping preserv-
ing the concircular curvature tensor or the projective curvature tensor of the
Weyl manifold Wn(g, T ) then the covector field P is a gradient.

Assume that τ be a conformal mapping preserving the Einstein tensor. Then
we have

P(ij) =
gij (R̃−R)

2n(n− 1)
.(3.29)

Under this condition Xh
ijk and Ph

ijk reduce to

Xh
ijk = 2 δhi P[kj] + δhk P[ij] − δhj P[ik]

−gik g
hm P[mj] + gij g

hm P[mk]

− 2

n
gmh P[mh] (δ

h
k gij − δhj gik)(3.30)

and

Ph
ijk =

2

(n+ 1)
δhi P[kj] +

1

(n− 1)

[
δhk P[ij] − δhj P[ik]

]
−gik g

hl P[lj] + gij g
hl Plk,(3.31)

respectively.
It can be easily seen that, condition (3.28) implies that
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Xh
ijk = 0 and Ph

ijk = 0(3.32)

or, we have

Z̃h
ijk = Zh

ijk and W̃h
ijk = Wh

ijk(3.33)

Then, we can state the following theorem

Theorem 3.3. Let τ : Wn(g, T ) → W̃n(g̃, T̃ ) be a conformal transformation
preserving the Einstein tensor. Then the following cases are equivalent:

(1) The concircular curvature tensor is an invariant.
(2) The covector field of the mapping is a locally gradient.
(3) The projective curvature tensor is an invariant.

Corollary 3.4. Let τ : Wn(g, T ) → W̃n(g̃, T̃ ), be a conformal mapping pre-
serving the Einstein tensor of the Weyl manifold Wn(g, T ). If the concircular
or the projective curvature tensors are preserved by τ , then the scalar curvatures
R and R̃ of the Weyl manifolds Wn(g, T ) and W̃n(g̃, T̃ ) are related by

R̃ = R + 2(n− 1)[∆ f +
(n− 2)

2
(|∇ f |2

−2 g(T,∇ f))], (n > 2)(3.34)

where f ∈ C2 (Wn) and |∇ f | denotes the length of ∇ f and ∆ f is the
Laplacian of f .

Proof. Suppose that (3.33) holds. According to Theorems 3.2 and 3.3, P is a
gradient. Then we have

P = ∇ f(3.35)

for any scalar f ∈ C2 (Wn).
Transvection (3.5) with gij gives

Pij g
ij = (∇̇j Pi) g

ij − Pi Pj g
ij +

n

2
gmh Pm Ph.(3.36)

By using (3.20) and setting

gij ∇̇j Pi = ∇̇j P
j

= ∇j P
j + 2Tj P

j

= P j
j + (2− n)Tk P

k

= ∇ f − (n− 2) g(T,∇ f)(3.37)

we obtain
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R̃−R

2(n− 1)
=∇ f +

(n− 2)

2
[|∇ f |2 − 2 g(T,∇ f)],(3.38)

where |∇ f | = gij Pi Pj and ∇̇j P
j denote the length of P and the generalized

divergence of P j , respectively. □

Suppose that the Weyl space Wn(g, T ) and the flat Weyl space W̃n(g̃, T̃ ) are
related by a conformal mapping preserving the Einstein tensor. Then, we have

R̃h
ijk = 0,(3.39)

which implies that

R̃ij = 0, R̃ = 0, Ẽij = 0.(3.40)

Since Eij = Ẽij ,

Eij = 0.(3.41)

Similarly, if the flat Weyl spaceWn(g, T ) changes to the Weyl space W̃n(g̃, T̃ )

by a conformal mapping preserving the Einstein tensor, Ẽij becomes zero.
Thus, we get that a Weyl manifold and a flat Weyl manifold, which are con-

formal correspondent preserving the Einstein tensor are Einstein-Weyl mani-
fold. So, we proved that

Theorem 3.5. If the conformal mapping of the Weyl manifold Wn(g, T ) onto

a flat Weyl manifold W̃n(g̃, T̃ ) preserves the Einstein tensor. Then both Weyl
manifolds are Einstein-Weyl manifolds.

4. Isotropic Weyl manifolds

Let p be any point of Wn(g, T ) and Tp(Wn) be the tangent space of Wn.
The scalar defined by [6]

K(Π) =
RijklX

iY jXkY l

(gikgjl − gilgjk)XiY jXkY l
,(4.1)

is called the sectional curvature of Wn(g, T ) at p with respect to the plane
spanned by two linearly independent vectors X,Y ∈ Tp(Wn), where X

i and Y i

are the components of X and Y [9].
If at each point, the sectional curvature K of Wn(g, T ) is independent of the

2-plane chosen, then, Wn(g, T ) is named as an isotropic manifold respectively
[6].
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Lemma 4.1. Suppose that S is any 4-covariant tensor and that X and Y are
two arbitrary linearly independent vectors. If, for all X and Y

SijlkX
iY jXkY l = 0,(4.2)

then

Sijkl + Sklij + Silkj + Skjil = 0,(4.3)

where Xi and Y j are respectively the components of X and Y [2, 6].

Lemma 4.2. An isotropic Weyl manifold is an Einstein-Weyl manifold with
zero scalar curvature.

Proof. Suppose that Wn(g, T ) is an isotropic Weyl manifold, then Sijkl can be
defined as,

Sijkl = Rijkl −R(gikgjk − gilgjk).(4.4)

By considering Sijkl, Sklij , Silkj and Skjil and using Lemma 4.1, we get

Rijkl +Rklij +Rilkj +Rkjil

R(4gikglj − 2gilgjk − 2gijglk) = 0.(4.5)

Transvecting (4.5) by gik and then using the property Rijkl = −Rijlk of
Rijkl we obtain

2(Rjl +Rlj) + 4(n− 1)gjlR = 0,(4.6)

which implies that

R(jl) = λ gjl,(4.7)

where λ = (1− n)R.
Hence the symmetric part of the Ricci tensor is proportional to the conformal

metric tensor g, Wn(g, T ) is an Einstein-Weyl manifold and by virtue of (4.7),
we have

R = 0(4.8)

which completes the proof.
□
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From Lemma 4.2 it is clear that, for an isotropic Weyl manifold the Einstein
tensor

Eij = 0.(4.9)

Thus, we have

Theorem 4.3. If the Weyl manifold Wn(g, T ) is locally conformal to the

isotropic Weyl manifold W̃n(g̃, T̃ ) under the mapping preserving the Einstein
tensor, then both manifolds are Einstein-Weyl manifolds.

Combining Corollary 3.4 and Theorem 4.3 we can state the following corol-
lary.

Corollary 4.4. Let τ : Wn(g, T ) → W̃n(g̃, T̃ ), be a conformal mapping pre-
serving the Einstein tensor of the Weyl manifold Wn(g, T ). If the concircular
or the projective curvature tensors are preserved by τ then the covector field
P of the mapping satisfies the following differential equation for any scalar
function f ∈ C2(Wn)

∇ f +
(n− 2)

2

[
|∇ f |2 − 2 g(T,∇ f)

]
= 0.(4.10)
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