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1. Introduction

The Drazin inverse plays an important role in Markov chains, singular differ-
ential and difference equations, iterative methods in numerical linear algebra,
etc. Representations for the Drazin inverse of block matrices under certain
conditions where given in the literature [2-4,10-12,14,16,19]. Deng [7] investi-
gated necessary and sufficient conditions for a partitioned operator matrix on
a Hilbert space to have the Drazin inverse with the generalized Banachiewicz—
Schur form. In [8], a representation for the Drazin inverse of an anti-triangular
block matrix under some conditions was obtained, generalizing in different ways
results from [6,14]. Block anti-triangular matrices arise in many applications,
ranging from constrained optimization problems to solution of differential equa-
tions, etc. Deng [9] presented some formulas for the generalized Drazin inverse

A B
c 0
space, with the assumption that CA?B is invertible.
In this paper, we study the generalized Drazin inverse of anti-triangular
matrices in a Banach space, getting as particular cases recent results from [7-9].
Let A be a complex unital Banach algebra with unit 1. For a € A, we
use o(a), r(a) and p(a), respectively, to denote the spectrum, the spectral

of an anti-triangular operator matrix M = { }, acting on a Banach
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radius and the resolvent set of a. The sets of all invertible, nilpotent and
quasinilpotent elements (o(a) = {0}) of A will be denoted by A=, A" and
A7 respectively.

The generalized Drazin inverse of a € A (or Koliha-Drazin inverse of a) is
the element b € A which satisfies

bab = b, ab = ba, a—a’be A

If the generalized Drazin inverse of a exists, it is unique and is denoted by
a?, and a is generalized Drazin invertible. The set of all generalized Drazin
invertible elements of A is denoted by A?. The Drazin inverse is a special
case of the generalized Drazin inverse for which a — a?b € A™! insteed of
a—a?b € A1 ie., the Drazin inverse of a is the element b (denoted by a?)
which satisfies bab = b, ab = ba and a*T'b = a*, for some nonnegative integer
k. The least such k is called the Drazin index of a, and is denoted by i(a).
Obviously, if a is Drazin invertible, then it is generalized Drazin invertible. The
group inverse is the Drazin inverse for which the conditon a — a?b € A" is
replaced with a = aba. We use a# to denote the group inverse of a, and we
use A% and AP to denote the sets of all group invertible and Drazin invertible
elements of A, respectively.

Recall that a € A is generalized Drazin invertible if and only if there exists
an idempotent p = p? € A such that

ap = pa € A, at+pe AL

Then p = 1 — aa® is the spectral idempotent of a corresponding to the set
{0}, and it will be denoted by a™. The generalized Drazin inverse a® double
commutes with a, that is, az = xa implies a%x = za?.

Let p = p? € A be an idempotent. Then we can represent element a € A as
. [ ain an ] ’
Ga21 Q22
where a11 = pap, a12 = pa(l — p), az1 = (1 — p)ap, ass = (1 — p)a(l — p).
We use the following lemmas.

Lemma 1.1. [5, Lemma 2.4] Let b,q € A9 and let ¢gb = 0. Then q+b €
Aqm’l‘

Lemma 1.2. Let b€ A and a € AT,
(i) [5, Corollary 3.4] Ifab = 0, then a+b € A and (a+b)? = > (b%)"H1a™.

n=0
0o

(ii) Ifba =0, then a+b € A? and (a +b)? = > a”(b%)"*+1.
n=0
Specializing [5, Corollary 3.4] (with multiplication reversed) to bounded lin-
ear operators N. Castro Gonzalez and J. J. Koliha [5] recovered [13, Theorem
2.2] which is a spacial case of Lemma 1.2(ii).
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Lemma 1.3. Let A be a complex unital Banach algebra with unit 1, and let p
be an idempotent of A. If x € pAp, then opap(z) U{0} = oa(z), where o.4(x)
denotes the spectrum of x in the algebra A, and opap(x) denotes the spectrum
of x in the algebra pAp.

Let z = { ch Z ] € A relative to the idempotent p € A. It is well known
that if a € (pAp)~! and the Schur complement s = d — ca™1b € ((1 — p).A(1 —
p)) 1, then the inverse of x has Banachiewicz—Schur form

-1, —1 —1

R at+a tbs7tea™! —a7lbsT!
—s7"ca s

We investigate equivalent conditions under which ¢ has the generalized
Banachiewicz—Schur form in a Banach algebra. Also, we obtain several rep-
resentations for the generalized Drazin inverse of an anti-triangular matrix

b . - .
T = [ CCL 0 ] under different conditions. As particular cases, we get the corre-

sponding results for the Drazin inverse in a Banach algebra. Thus, we extend
some results from [7-9] to more general settings.

2. Results
In the following lemma, we present necessary and sufficient conditions for
an element z = [ CCL Z ] of Banach algebra to have the generalized Drazin

inverse with the generalized Banachiewicz—Schur form. We recover a new result
concerning the Drazin inverse of Hilbert space operators (see [7, Corollary 3]).

Lemma 2.1. Let x = { a b
c d

(pAp)#, and let s = d — cab € ((1 — p)A(1 — p))* be the generalized Schur
complement of a in x. Then the following statements are equivalent:

(i) z € A? and

} € A relative to the idempotent p € A, a €

# #bstca® —aFbsH
d_ | a” +a7bs"ca a*bs )
(2.1) T [ —s7ca” s } ’
(i) a™bs* = a®bs™, sTca? = s¥ca”™ and z= [ Cgﬁ bg € Ami;
(iii) a™b =bs", s"c=ca™ and z= [ 2 a”b ] € Ammil,
s"c 0

Proof. (i) < (ii): If the right hand side of (2.1) is denoted by y, then we obtain

o aa? — a"bs#ca® a"bs?
y= s"ca? ss# ’
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_ [ a”a — a*bs*ca™ a”bsT }
yr = s*ca™ sts
So, xy = yx if and only if a™bs* = a®bs™ and s"ca? = s ca”™, because these
equalities imply (a™bs?)ca” = a®b(s"ca™) = a*bs*ca™. Further, we can
verify that yzy = y. Using s = d — ca™b, a™bs? = a™bs™ and s"ca” = s#ca™,
we have

rTorYy= ca™ 0

From a#bs™ = a"bs* = (p — aa™)bs? = bs?” — aa™bs?, we obtain bs?# =
a”bs™ + aa®bs? which gives ca™bs? = 0 = bs*ca™bs* and

e [2 [ )

9 [ —bs#ca™  bs™ }

0 1-p 0 1-p

p bs? p —bs”
0 1—p:| {o l—p]z)
x — 2%y € AT is equivalent to z € AT

(ii) < (iii): We prove that a™bs# = a*bs™ is equivalent to a™b = bs™.
Indeed, multiplying a™bs* = a#bs™ from the right by s and from the left by
a, respectively, we obtain a"bs*s = 0 and aa?bs™ = 0. Therefore, bs*s =
aa®bs*s = aa™b and

a™b=b—aa”b=b—bs?s =bs".

On the other hand, if a™b = bs™, then (a™b)s# = bs™s# = 0 and a¥ (bs™) =
a#a™b =0, i.e. a"bs# = a#bs".

Similarly, we can verify that s™ca® = s#ca™ is equivalent to s"c = ca”.
Hence, the equivalence (ii) < (iii) holds. O

Since r(z — z%y) = r([ = r(z), we deduce that

Since the Drazin inverse is a particular but very important case of the gen-
eralized Drazin inverse, we give the next result which can be verified similar to
Lemma 2.1.

Corollary 2.2. Let x = [ CCL 2 } € A relative to the idempotent p € A,

a € (pAp)¥, and let s = d—ca™b € ((1—p)A(1—p))* be the generalized Schur
complement of a in x. Then the following statements are equivalent:

(i) z € AP and
LD { a®* + a*bs*ca® —a?bs? } )

—s#ca® 7
. bs™ ;
(ii) a™bs* = a¥bs™, sTca” =s*ca” and z= cg’r ?) ] € Anil;
(iii) a™b =bs", s"c=ca” and z= { SSC aO } € AML
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By Lemma 2.1, the following corollary recovers [1, Theorem 2].

Corollary 2.3. Let x = { ch 2 } € A relative to the idempotent p € A,

a € (pAp)¥, and let s = d—ca™b € ((1—p)A(1—p))# be the generalized Schur
complement of a in x. Then x € A# and

o a? + a*bs*ca® —a¥bs?
N —stca st

if and only if

a"b=0=0bs", s"c=0=ca".

Now, we extend the well known result concerning the Drazin inverse of
complex matrices to the generalized Drazin inverse of elements of a Banach
algebra, see [8, Theorem 3.5].

Theorem 2.4. Let
(2.2) x = [

relative to the idempotent p € A, a € (pAp)? and let s = —ca®b € ((1—p).A(1—
p)?* If
(2.3) sstca™ =0, sstca™a =0, aabs™c = 0, bs™ca™ = 0,

then z € A% and

d = aa™  a"bs™ " 0 a"bss? nt2
(r * Zo { sTca”™ 0 ] { s"caal 0 "
n=

b
O}GA

(

8
Il

0 aa®bs™
24  x (HT{ e ])
where
a + a%bs?ca® —abs
(2.5) r= { _sdeqd sd } .

Proof. Applying aa® + a™ = p and ss® + s™ = 1 — p, we have

a?a?  aab aa™ a”™b
r= { sse 0 + s¢c 0 =t
The equalities a?a™ = 0 and (2.3) give uv = 0.
First, we show that u € A9, If we write
_ aZal aa®bss? 0 aabs™ — w4
| ss%caal 0 ssbea™ 0 - >

we can get usu; = 0 and u3 = 0. Let A,, = a%a?, B,, = aa%bss?, C,, =

sstcaa® and D,, = 0. Then u; = Au, B, and, by (a?2a®)# = a9,
Cu, Dy,
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Ay, € (pAp)*. Also, from s = —ca, Sy, = Dy, — Cy, A% By, = s*s? € ((1—
p)A(1 —p))# and (s?s?)# = s?. Consequently, AT B, S¥ =0= A7 B,,S]

u?
T T 0 Bu S;r ni
ST Cu A% = 0 = S¥ C,, AT and Co AT o } =0 € A™ By

Lemma 2.1, notice that u; € A% and

i _ | A+ AE B SECL AT, —AEBLSE ] _
! —5#C A, st

w1

Using Lemma 1.2(i), u € A? and u? = ué + (u{)?uz = r + r?us.
To prove that v € A9 observe that

aa™ a"bs™ 0 0 0 a™bss?
vz [0 0 }—i_{s”ca” 0}+[s”caad 0 }

= U1 +’U2 +1)3.

| m t | Ap—m —t
IfZ—|:0 n},then/\l—z—{ 0 )\(l_p)_n].Therefore,

A € ppap(m) N pa—pyaa-p (n) = A€ p(2),
ie.,
o(2) C opap(m) Uon—_pyaa—p)(n).
Notice that, by aa™ € (pAp)?i vy, € AT Tt can be verified that vive = 0
and v3 = 0, i.e., vo € A™!. Now, by Lemma 1.1, v; + vy € A9, Using Lemma

1.1 again, from v2 = 0 and v3(v; + v2) = 0, we conclude that v € A,
Applying Lemma 1.2(ii), we deduce that = € A4 and

x? = <1 +>° v”“(ud)“”) u = (1 +> v"“(ud)"”) (14 rug).
n=0

n=0

Since usr = uguf = (ugui)(uf)? = 0, then (u?)"*? = (r + r2uy)"*? =

d
2 _ | aa
" 2(1 4 rug). From r 0 ss

d
d}nweobtainvr:v aa Od}r:
{ 0 a™bss? ]

0 sS
s"caal 0
0 a™bss

n+l _ n n+1(, dyn+2 _ n
Bywv (v1+v2)™v, we have v (u?) (v1+v2) [ s eaad 0
rug). Applying usr = 0 again, we get (2.4). O

From Theorem 2.4, we get the following consequence.

Corollary 2.5. Let x be defined as in (2.2), a € (pAp)? and let r be defined
as in (2.5).
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(1) If ca™ = 0 and generalized Schur complement s = —ca®b is invertible,
then x € A? and

d_ ~[aa™ 01" 0 a™b n+2
x —7’+Z { 0 0 } [ 0 0 }r .
n=0

ca” = a = and the generalize chur complement s = —ca
(2) If ca™ = 0, a™b = 0 and the generalized Sch pl dyy

is invertible, then © € A% and
d a® + a%s lca? —a%bs!
= —1,..d —1
—s"tea s

(3) Ifca™b =0, ca™a = 0 and the generalized Schur complement s = —ca®b
is invertible, then x € A% and

q_ [0 a”a™ ] .o 0 0
x —(7‘—1—2{0 0 T 1+7r ™ 0 .
n=0

The next result is a special case of Theorem 2.4.

Corollary 2.6. Let x be defined as in (2.2), a € (pAp)P, i(a) = m, and let
s=—caPb e ((1-p)A1 —p))P. If ssPca™ =0, ssPca™a = 0, aaPbs™c = 0
and bs"ca™ = 0, then x € AP and

m+1
D n Z aa™  a"bs™ " 0 a™bssP nt2
z© = |r r
1 . s™ca™ 0 s"caa? 0 1
e

« 14 0 aaPbs™
L ssPea™ 0 ’
aP + aPbsPca® —aPbsP
where 1 = _¢DogD <D .

Proof. Using the same notation as in the proof of Theorem 2.4, from i(a) = m,
we have v = 0, (v; 4+ v2)™+? = 0 and v 3 = (v1 + v9)™ 20 = 0. Since v
is nilpotent and u is Drazin invertible, we conclude that = € AP (see [15,18]).

n+1(,, D\n+2 n 0 a”bss” n+1 :
By vt (u”) = (v1+wv2) . D r7 T (14+r1ug), we obtain
s™caa 0
the representation for z. O
In the following theorems, we assume that s = —ca®b is the generalized

Drazin invertible, and we prove representations of the generalized Drazin in-
verse of anti-triangular block matrices. Several results from [9] are extended.

Theorem 2.7. Let x be defined as in (2.2), a € (pAp)? and let s = —cab €
(1 =p)AQ1 —p)2. If bea™ = 0 and aa®bs™ =0, then x € A¢ and

i ~=[aa™ amb 1" 0 0 nt1
(2.6) x —Z{Caﬂ 0 } (1+[s“c 0}r>r ,

n=0
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where r is defined as in (2.5).

Proof. We can write

v a?a?  aadb aa™ a"b | +
“ | caa® 0 cam 0 |TYTE
Now, we get yq = 0, by the assumption bca™ = 0.
In order to prove that y € A%, note that

_ a’a  aalbss? 0 aadbs™

vy = ssteaa® 0 s"caa® 0
_ a’a®  aalbss? 0 0 n
- ssteaa® 0 sTcaad 0 | T YT Y

y1y2 = 0 and y3 = 0. Using Lemma 2.1, we have y; € A? and 3¢ = r. By
Lemma 1.2(ii), y € A% and y? = y{ + y2(y$)? = r + yor?.
Further, we verify that ¢ € A%, Let

B aa™ a™b n 0 0] n
¢ = 0 0 ca™ 0 | T DT

Thus, we deduce that ¢; € A" and ¢, € A™, because aa™ € (pAp)?™ and
g3 = 0. Since q1¢2 = 0, by Lemma 1.1, ¢ € A,
By Lemma 1.2(ii), » € A% and

oo oo
=" ) =D (L yar)r
n=0

n=0

d

aa 0 .
0 ssd } T gives yor = [

0

The equality r = [ T 0

5 } r, implying (2.6). O

Replacing the hypothesis aa?bs™ = 0 with s"caa® = 0 in Theorem 2.7, we
get the following theorem.

Theorem 2.8. Let x be defined as in (2.2), a € (pAp)? and let s = —cab €
(1 =p)A(1 —p)L. Ifbea™ =0 and s"caa® = 0, then x € A¢ and

d_ [ aa™ a™b " ntl 0 bs™

(2.7) x Z[ca” 0 } r <1—|—7’{0 0 ,
n=0

where 1 is defined in the same way as in (2.5).

Proof. Similar to the proof of Theorem 2.7, by using

Y= { a’a®  aa’bss? ] [ 0 aa®bs™

ssteaa® 0 0 0 } =Yty

and yoy1 = 0, we check this theorem. O
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If s = —ca% € (1 —p)A(1 —p))~! and s’ = —s, then s™ =0 and (s')"! =
—s~1. As a special case of Theorem 2.7 (or Theorem 2.8), we obtain the
following result which recovers [9, Theorem 3.1] for bounded linear operators
on a Banach space.

Corollary 2.9. Let x be defined as in (2.2), a € (pAp)? and let s' = cab €
(1 =p)AQ —p))~L. If bea™ =0, then z € A? and

o0 n
d_ aa™ a™b ntl
= Z [ ca™ 0 e

n=0
d _ db NnN—1,.d db n—1
where t = | ¢ a, _(f ) d caa (f )_1
(s')"ea —(s)
Sufficient conditions under which the generalized Drazin inverse z¢ is repre-

sented by (2.6) or (2.7) are investigated in the following result.
Theorem 2.10. Let x be defined as in (2.2), a € (pAp)? and let s = —ca’b €
(1 — p)A(1 — p))?. Suppose that aa®bca™ =0 and ca™b = 0.
(1) If aabs™ = 0 and (aa™b = 0 or caa™ = 0), then x € A? and (2.6) is
satisfied.
(2) If s"caa® = 0 and (aa™b = 0 or caa™ = 0), then x € A% and (2.7) is
satisfied.

Proof. This result can be proved similarly as Theorem 2.7 and Theorem 2.8,
applying g2q1 = 0 when caa™ = 0, and the decomposition

aa™ 0 0 a™b
q{ca” 0}*{0 0]
when aa™b = 0. g
Remark 2.11. In the preceding theorem, if cab € ((1 — p)A(1 — p))~1, then

we obtain as a particular case [9, Theorem 3.2] for Banach space operator.

We can easily show the next special cases of Theorems 2.7-2.10 for the Drazin
inverse of .

Corollary 2.12. Let x be defined as in (2.2), a € (pAp)?, i(a) = m, s =
—caPb e (1 —p)A(1 —p))P, and let v be defined as in Corollary 2.6.
(i) If bea™ =0 and aa®bs™ =0, then x € AP and

sy aa™ a™b " 0 0
D __ n+1
(28) T = Z;J I ca™ 0 | (1 + |: "¢ 0 :| 7’1) LS )
(ii) If bca™ = 0 and s™caa” =0, then x € AP and
m+1 ¢ an
D _ aa™ a”b n+t1 0 bs™
(2.9) " = Z a0 | ] (1 +rq { 0 0 ,

n=0 *-
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(iii) If aaPbca™ = 0, ca™ = 0, aa”bs™ = 0 and (aa™b = 0 or caa™ = 0),
then x € AP and (2.8) is satisfied.

(iv) If aaPbca™ = 0, ca™ = 0, s"caa®” = 0 and (aa™b = 0 or caa™ = 0),
then x € AP and (2.9) is satisfied.

The following result is well-known for complex matrices (see [17]).

Lemma 2.13. Let x = { i Z € A relative to the idempotent p € A,

a € (pAp)? and let w = aa® + a%bca® be such that aw € (pAp)?. If ca™ = 0,
a™ = 0 and the generalized Schur complement s = d — ca®b is equal to 0, then

N R

Proof. Denote by y the right hand side of (2.10). Then we obtain
_ { (a + bead)[(aw)¥?a  (a + bea?)[(aw)?)?b ]
(¢ + deca®)[(aw)¥]?a  (c+ dca?)[(aw)?])?b |’
Y = { [(aw)?]*(a® + be) [(aw)?]?(ab + bd) }
ca®[(aw)??(a® 4+ be)  ca|(aw)?)?(ab + bd) |-

By ca™ = 0 and a™b = 0, we can conclude that a + bca® commutes with aw.
Indeed,

(a + bea®)(aw) = (a* + beaa)(aa® + a®bea?) = (a* + aa’de)a’(a + bea®)
= (aw)(a + bea?).
Since a + bea commutes with aw, it also commutes with (aw)? and we have
(a + bea®)[(aw)a = [(aw)?]?(a + bea®)a = [(aw)?]? (a® + be).
From s = 0, we get ¢ + dca® = caa + cabea? = ca®(a + bea?). Thus,
(c+ dea®)[(aw)?a = ca®(a + bea®)[(aw)?a = ca®[(aw)?)*(a® + be).
Also, ab + bd = ab + bca®b = (a + bca®)b and we obtain
(a + bea®)[(aw)??b = [(aw)?]?(ab + bd)
(¢ + dea®)[(aw)??b = ca®[(aw)?)*(ab + bd).
So, we proved that

o [(aw)?)?(a + bca)a [(aw)?)?(a + bea®)b
Y=Y | (w2 (a + beal)a  cat](aw)]2(a+ bea®)b
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Further, we can verify that yry = y. Indeed, we have
T l@)Pa ()
b = cal[(aw)?)?a  ca?[(aw)?]?b
[(aw)?)?(a + bea?)a [(aw)?)?(a + bead)b ]
ca®[(aw)?)?(a + bca®)a  ca?|(aw)?)?(a + bea)b
[(aw)?])*(a + beat)?a [(aw)?])*(a + beat)? ]
Y4 (a + bea®)?a  ca®[(aw)?)*(a + bea?)?b |

The equalities a+bca = a—a?a®+a?a?+bea® = aa™ +aw and a"w = 0 = wa™
give (a + bca?)? = a?a™ + (aw)?. Therefore,
(aw)¥(a +bca?)? = (aw)¥(a®a™ + (aw)?)

= [(aw)"*(aw)a™a® + (aw)*(aw)* = (aw)(aw)?

and [(aw)?]*(a + bca?)? = [(aw)¥*(aw)? = [(aw

| (@)
awd2a awd2
[ Juore - L

yry =
‘We now obtain

ca® 0

(aw)™a  (aw)™d }_[ P oH(aw)m (aw)™ |

. 2 e
Tory {cad(aw)”a ca®(aw)™b d 0 0

Notice that, by a+bca® = aa™ +aw, (aw)™(a+bca?) = aa™ + (aw)(aw)™. Since
aa™, (aw)(aw)™ € (pAp)?™! and aa™(aw)(aw)™ = 0, by Lemma 1.1, we have
that aa™ + (aw)(aw)™ € (pAp)?™ and 7,4, ((aw)™ (a + bca)) = 0. From

(o —2%y) = (aua)”a (aué)”bH P 8])

ca
aw)™(a + bea?) 0 W
(@0 ) = @) (a + beat) =0,
we deduce that x — 2%y € A9 which proves that 2% = y. O

The following result is a special case of Lemma 2.13 holding for Drazin
inverse.

Corollary 2.14. Let x = [ g Z

a € (pAp)P and let w = aa® + aPbca® be such that aw € (pAp)P. If ca™ = 0,
a™b = 0 and the generalized Schur complement s = d — ca®b is equal to 0, then

(2.11) 2D = { p 0 } [ [(aw)PT?a 0 ] [p aPb } .

} € A relative to the idempotent p € A,

ca® 0 0 0 0 0
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Proof. Using the notations as in the proof of Lemma 2.13, we prove in the same
way the equations zy = yx and yzy = y. The proof of nilpotency of z — 2%y
follows.

Let z = ¢ — 2%y. It holds

2 pD 0 (aw)™a  (aw)™b pD 0 } { (aw)™a  (aw)™b }
ca 0 0 0 ca 0 0 0
_ pD 0 (aw)”(a—‘rbCaD) 0 :| |: (aw)”a (aw)”b :|
ca” 0 0 0 0 0

By induction, we have

o { ch 8 ] [ (aw)“(aOJr beaP) 8 ]"‘1 { (aaé))“a (aa(;))“b ]
:[65,3 gH(<aw>ﬂ<a+0bcaD>)”‘ 8H<awﬂ>ﬂa <aa6>ﬂb]

Since a + bea? = aa™ + aw, we get (aw)™(a + bea?) = + (aw)(aw)™.
Also, aa™ and (aw)(aw)™ commute and aa” (aw)(aw)™ = (a )( w)Taa™ = 0.
So, we have ((aw)™(a + bcaD))n = (aa™)" + ((aw)(aw)™)", for all n € N. Let
k = max{i(a),i(aw)} + 1. Since a and (aw) are Drazin 1nvert1ble it holds that
(aa’r)k*1 = ((aw)(aw)™)* ! = 0. Now, it follows that

o =[C§’D 8}[<aa”>’“‘1+<<gw><aw>ﬂ>k—l 8H<aagﬂa (aw)s

To o0

10 0|
which proves z = x — 2%y € A™. Therefore, z € AP and 2P is equal to the
right hand side of f (2.11). O

In the following theorem, we extend [9, Theorem 3.3 and Theorem 3.4] for
Banach space operators to elements of a Banach algebra.

Theorem 2.15. Let = be defined as in (2.2), a € (pAp)? and let k = a*a® +
aabea® € (pAp)?. If ca® = 0 and if one of the following conditions holds:
(1) bea™ =0;
(2) aabea™ =0, aa™b =0 and ca™b = 0;
(3) aalbea™ =0, caa™ =0 and ca™b = 0;
then x € A and

(2.12) xd:i[w” a”bHc(Wa iy 1

— ca™ 0 al(k)2a  cat(k?)b

Proof. To prove (1) suppose that © = y+ ¢, where s and y are defined as in the
proof of Theorem 2.7. It follows that yg = 0 and ¢ € A", Applying Lemma
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2.13, we conclude that y € A% and

a_| p 0 (k"2a2a? 0 p a%
Y ca® 0 0 ojlo o |
Since kaa? = k, then k%aa® = k% and

I G e A (g
y' = [ ca®(k)2a  cat(k?)b ] '

Using Lemma 1.2(ii), we conclude that = € A? and 2% = Y ¢"(y?)"*!. Thus,
n=0

(2.12) holds.
Parts (2) and (3) can be checked similar to part (1) and the proof of Theorem
2.10. (]

If c =0 or b= 0 in Theorem 2.15, we have k = a%a? € (pAp)? and k¢ = a.
As a consequence of Theorem 2.15, we obtain the following result.
Corollary 2.16. Let x be defined as in (2.2) and let a € (pAp)?.
(1) Ifc=0, then x € A% and

o[ )

(2) If b=0, then x € A% and

o= { C(Zi)z 8]'

The next corollary can be proved similar to Theorem 2.15.

Corollary 2.17. Let x be defined as in (2.2), a € (pAp)?, i(a) = m, and
let k = a%a” + aaPbca® € (pAp)P. If caPb = 0 and if one of the following
conditions holds:

(1) bea™ =0;

(2) aaPbca™ =0, aa™b =0 and ca™b = 0;

(3) aaPbca™ =0, caa™ =0 and ca™b = 0;

then z € AP and

(2.13) D _ mZH [ aa™ a™b r [ (kP)%a (kD)2I)) n+1.

= ca™ 0 caP (kP)%a  ca®(kP)%b
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