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Abstract. After the classification of the flag-transitive linear spaces, the
attention has been turned to line-transitive linear spaces. In this article,

we present a partial classification of the finite linear spaces S on which
an almost simple group G with the socle G2(q) acts line-transitively.
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1. Introduction

A linear space S is an incidence structure consisting of a set of points P and
a set of lines L such that any two points are incident with exactly one line.
The linear space is called non-trivial if every line contains at least three points
and there are at least two lines. Write v = |P| and b = |L|.

The classification of the finite linear spaces admitting a line-transitive au-
tomorphism group has been already investigated by Camina, et al, (see [5]
and [7]). We continue this investigation by considering the case where the so-
cle of a line-transitive automorphism group is G2(q). The statement of our
theorem is as follows:

Theorem A Let G be an almost simple group and let S be a finite linear
space on which G acts as a line-transitive automorphism group. Suppose that
T = Soc(G) is isomorphic to G2(q), where q = pa and a ̸≡ 0 (mod 6). Then
either

(a) T is line-transitive; or
(b) TL is isomorphic to one subgroup of (SL2(q) ◦ SL2(q)) · 2, where TL is

the line-stabilizer of T .
In the case (b) of the theorem it has not been made further progress without

adding an extra hypothesis and a complete classification seems to be out of
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reach with our present methods. The restriction a ̸≡ 0 (mod 6) will play a role
in our proof of the theorem and it can’t be removed with our present methods.

If a linear space S is line-transitive, then every line has the same number of
points and every point lies on the same number of lines. We call such a linear
space a regular linear space. Let G be a group acting on a linear space S. We
will write α to be a point of S and Gα to be the stabilizer of α under the action
of G. Similarly L is a line of S and GL is the corresponding line-stabilizer.

2. Preliminary results

Let F = GF (q) be a finite field of order q = pa (p a characteristic). Let T
be the Chevalley group of type G2 over F. Then the order of T is

q6(q2 − 1)(q6 − 1) = q6(q − 1)2(q + 1)2(q2 + q + 1)(q2 − q + 1).

We know that no prime greater than three divides more than one of these
factors. Let V and F be as defined in [1]. We define Γ(V ) to be the group of
all semilinear maps on V . Write Γ(V,F) to be the subgroup of Γ(V ) preserving
F . Then Γ(V,F) is an extension of T by a field automorphism of order a, and
Aut(T ) = Γ(V,F) unless p = 3. Let H1 = Γ(V,F) and H0 = G2(q). If p = 3,
then |Aut(H0) : H1| = 2, and if p ≥ 5, we have H1 = Aut(H0).

We need some information about the subgroup of G2(q).

Lemma 2.1. ( [11])) Assume that H0 ≤ H ≤ H1, where H0
∼= G2(q) (q = pn

is odd) and H1 are as above. Let M be a maximal subgroup of H not containing
H0. Then M0 = M ∩H0 is H0-conjugate to one of the following groups:

Structure Order Remarks
[q5] : GL2(q) q6(q − 1)2(q + 1) parabolic
(SL2(q) ◦ SL2(q)) · 2 2q2(q2 − 1)2 involution centralizer
SLϵ

3(q) : 2 2q3(q3 − ϵ1)(q2 − 1) ϵ = ±
G2(q0) q60(q

2
0 − 1)(q60 − 1) q = qm0 , m prime

2G2(q) q3(q3 + 1)(q − 1) p = 3, n odd
PGL2(q) q(q2 − 1) p ≥ 7, q ≥ 11
23·L3(2) 26 · 3 · 7 q = p
L2(8) 23 · 32 · 7 p ≥ 5,F = Fp[ω]

ω3 − 3ω + 1 = 0

L2(13) 22 · 3 · 7 · 13 p ̸= 13,F = Fp[
√
13]

G2(2) 26 · 33 · 7 q = p ≥ 5
J1 23 · 3 · 5 · 7 · 11 · 19 q = 11

Conversely, if K ≤ H0 is H0-conjugate to one of these groups, then NG(K) is
maximal in H.

Lemma 2.2. ( [11])) Assume that H0 ≤ H ≤ H1, where H0
∼= G2(q) (q = 3n)

and H contains a graph automorphism of H0. Let M be a maximal subgroup
of H not containing H0. Then M0 = M ∩ H0 is H0-conjugate to one of the
following groups:
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Structure Order Remarks
[q5] : GL2(q) q6(q − 1)2(q + 1) parabolic
(SL2(q) ◦ SL2(q)) · 2 2q2(q2 − 1)2 involution centralizer
23 · L3(20) 26 · 3 · 7 q=3
(Zq2−ϵ1)

2 ·D12 12(q2 − 1)2 p ⩾ 9, ϵ = ±1
(Zq2+ϵq+1)

2 · Z6 6(q2 + ϵq + 1) p ⩾ 9, ϵ = ±1
G2(q0) q60(q

2
0 − 1)(q60 − 1) q = qm0 , m prime

2G2(q) q3(q3 + 1)(q − 1) p = 3, n odd
PGL2(q) q(q2 − 1) p ≥ 7, q ≥ 11

L2(13) 22 · 3 · 7 · 13 p ̸= 13, F = Fp[
√
13]

Conversely, if K ≤ H0 is H0-conjugate to one of these groups, then NG(K)
is maximal in H.

Lemma 2.3. ( [8]) Let G = G2(q), where q = 2a with a > 2. The maximal
subgroups of G are listed as follows:

Structure Order Remarks
[q5] : GL2(q) q6(q − 1)2(q + 1) parabolic
((SL2(q) ◦ SL2(q)) · 2 2q2(q2 − 1)2 reducible
SLϵ

3(q) : 2 2q3(q3 − ϵ1)(q2 − 1) ϵ = ±, the normalizer of
subgroup of order 3

SLϵ
3(q) : 2 2q3(q3 − ϵ1)(q2 − 1) ϵ = ±, irreducible

G2(q0) q60(q
2
0 − 1)(q60 − 1) q = qm0 , m prime

Lemma 2.4. ( [8] and [11])
(i) If q is even, then G2(q) has exactly two conjugacy class of involutions,

and the order of the centralizer of a non-central involution is q4(q2 − 1).
(ii) If q is odd, then G2(q) has a unique conjugacy class of involutions, and

the order of the centralizer of an involution is q2(q2 − 1)2.

Lemma 2.5. (Lemma 3.3 of [13]) Some subgroups of G = G2(q) are being
shown in the following:

(1) T1 = Zq−1 × Zq−1 and NG(T1) = T1 ·D12;
(2) T2 = Zq+1 × Zq+1 and NG(T2) = T2 ·D12;
(3) T3 = Zq2+q+1 and NG(T3) = T3 : Z6;
(4) T4 = Zq2−q+1 and NG(T4) = T4 : Z6;
(5) T5 = Zq2−1 and NG(T5) = T5 · (Z2 × Z2).

Lemma 2.6. (Lemma 3.5 of [13]) Let q = qm0 , where m is an odd prime and
let ϵ = ±. Then the following hold:

(1) (q − ϵ1)2 does not divide |G2(q0)|;
(2) (q2 + ϵq + 1) does not divide |G2(q0)|.

Lemma 2.7. Let q = qm0 , where m is a positive integer with m ⩾ 4 and let
ϵ = ±. Then the following hold:

(1) (q − ϵ1)2 does not divide |G2(q0)|;
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(2) (q2 + ϵq + 1) does not divide |G2(q0)|.
(3) (q2 − 1) does not divide |G2(q0)|.

Proof. (1) If m > 6, then there exists a p-primitive divisor of pm − 1, denoted
by t. Hence t ∤ q60 and (q − ϵ1)2 does not divide |G2(q0)|; if m = 4 or 6, then
(q − ϵ1)2 ∤ |G2(q0)|. The proof is finished.

Similarly we can prove that the assertions (2) and (3) are true. □

We assume that G is a automorphism group acting line-transitively on a
linear space S with parameters b, v, k, r, where b is the number of lines, v is the
number of points, r is the number of lines through a point and k is the number
of points on a line. Recall the basic counting lemmas for regular linear spaces.

v = r(k − 1) + 1,(2.1)

v(v − 1) = bk(k − 1).(2.2)

Let b1 = (b, v), b2 = (b, v − 1), k1 = (k, v), and k2 = (k, v − 1). Then
k = k1k2, b = b1b2, r = b2k2, and v = b1k1.

In [5], the authors defined a significant prime which divides b but not v.
Observe that every prime divisor of b2 is a significant prime. It is well-known
that a linear space is a projective plane if and only if b = v, namely, b2 = 1.
Thus every linear space other than the projective plane has significant primes.

There is a fact that we shall use throughout this article. Observe that if
an involution in G does not fix a point then G acts flag-transitively (see [6]).
But the flag-transitive linear spaces are classified by Buekenhout, Delandtsheer,
Doyen et al (see [4] and [3]), and so we assume that every involution fixes at
least a point.

We state here a number of basic results which will be used repeatedly
throughout the paper.

Lemma 2.8. Let G act line-transitively on a linear space S, and b2 be defined
as above. Then the followings hold:

(1) (b2, v) = 1;
(2) b2 divides |Gα|.

Proof. (1) Note that b2 = (b, v − 1), it is clear that (b2, v) = 1.
(2) Since G is line-transitive, by the theorem of R. E. Block in [2] we have

G is point-transitive. Hence b = |G : GL| and v = |G : Gα|, where L ∈ L and
α ∈ P. Since rv = bk, it follows that b2|GL| = k1|Gα|. Note that (b2, k1) = 1
and hence b2 divides |Gα|. □

Lemma 2.9. (Zhou, Li and Liu [18]) Let G act line-transitively on a linear
space S. Let K be a subgroup of G. If K ̸≤ GL for any line L ∈ L, and
K ≤ Gα for some point α ∈ P, then NG(K) ≤ Gα.
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Lemma 2.10. (Lemma 2.8 of [16]) Let G act line-transitively on a linear
space S. If there exists a prime p such that p|b but p ∤ v, then for some α ∈ P,
NG(P ) ≤ Gα, where P is a Sylow p-subgroup of G.

Lemma 2.11. (Liu [12] and [13]) Let G act line-transitively on a linear space
S. Assume that P is a Sylow p-subgroup of Gα for some α ∈ P. If P is not a
Sylow p-subgroup of G, then there exists a line L through α such that P ≤ GL.

Lemma 2.12. ( [14] and [15]) Let G be a transitive group on Ω, and K be a
conjugacy class of an element of G. Let x ∈ K and FixΩ(⟨x⟩) denote the fixed
points set of ⟨x⟩ acting on Ω. Then

|FixΩ(⟨x⟩)| = |GαK| · |Ω|/|K|,

where α ∈ Ω. In particular, if G has a unique conjugacy class of involutions,
then

|FixΩ(⟨i⟩)| =
e(Gα) · |Ω|

e(G)
,

where i is an involution of G and e(G) denotes the number of involutions of G.

Lemma 2.13. ( [14] and [15]) Let G act line-transitively on a linear space S.
Let i be an involution of GL, where L is a line of S. Set f1 = |FixP(⟨i⟩)| and
f2 = |FixL(⟨i⟩)|. If S is not a projective plane and f1 ≥ 2, then v ≤ f2

2 .

In order to do our work, we need to introduce the concept of exceptional
triple. Let G and H be finite groups acting transitively on a finite set Ω; with
H a normal subgroup of G. Then the triple (G,H,Ω) is called exceptional if
the only common orbit of G and H on Ω×Ω is the diagonal. This definition is
equivalent to the following: Let α ∈ Ω, then every Gα-orbit except {α} breaks
up into strictly smaller Hα-orbits.

We call the triple (G,H,Ω) arithmetically exceptional, if there is a subgroup
B of G which contains H, such that (B,H,Ω) is exceptional, and B/H is cyclic.
When G is a primitive permutation group of almost simple type, Guralnick,
Muller and Saxl have obtained their classification (see [10]). In particular, when
Soc(G) = G2(q), there is the following lemma:

Lemma 2.14. ([10, Theorem 1.5 (g)] Let G be a primitive permutation group
of almost simple type, so L ⊴ G ≤ Aut(L) with L a simple nonabelian group.
Suppose that there are subgroups B and H of G with H ⊴ G and B/H cyclic,
such that (B,H) is exceptional. Let M be a point stabilizer in G. Suppose
that L has Lie rank ≥ 2, L ̸= Sp4(2)

′ ∼= PSL2(9). Then M ∩ L is a subfield
subgroup, the centralizer in L of a field automorphism of odd prime order r.
Moreover,

(i) r ̸= p (with p the defining characteristic of L),
(ii) if r = 3, then L is of type Sp4(q) with q even, and
(iii) there are no Aut(L)-stable L-conjugacy classes of r-elements.
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Lemma 2.15. ([10, Lemma 3.3]) Let H be a normal subgroup of the finite group
G with G/H cyclic generated by xH. Let Ω be a transitive G-set. Assume that
H is also transitive on Ω. Let χ(g) be the number of fixed points of g ∈ G on
Ω. The following are equivalent:

(1) (G,H,Ω) is exceptional;
(2) χ(xh) ≤ 1 for all h ∈ H;
(2) χ(xh) = 1 for all h ∈ H;
(2) χ(xh) ≥ 1 for all h ∈ H.

Lemma 2.16. ( [9]) Let G act line-transitively on a linear space S. Let H
be a subgroup of G such that H ⊴ G and |G : H| = s, a prime. If H is line-
intransitive and S is not a projective plane, then (G,H,P) is an exceptional
triple.

3. The proof of Theorem

Since T = G2(q) ⊴ G ≤ Aut(T ) with q = pa, we have |Out(T )| = 2a
or a according as p = 3 or not, and G = T : ⟨x⟩, where x ∈ Out(T ). Let
o(x) = m. Then we have when p = 3, m|2a; when p ̸= 3, m|a. Moreover,
|G| = q6(q2 − 1)(q6 − 1)m.

By [9], we know that almost simple groups cannot act line-transitively on
non-Desarguesian projective planes. Hence we can assume that S is not a
projective plane. Suppose that T is not line-transitive on S.

Let s be a prime divisor of m. There exists a normal subgroup H in G such
that |G/H| = s and H is not line-transitive(otherwise replacing G by H). By
Lemma 2.16 we have that the triple (G,H,P) is exceptional. Let χ(g) be the
number of fixed points of g ∈ G on P and y = xm/s. Then G/H = ⟨yH⟩. We
show that H is point-transitive. In fact, if H is not point-transitive, by the
proof of Lemma 2.16 (see [9, Lemma 26]) we have S is a projective plane, a
contradiction. Now appealing to Lemma 2.15 we have χ(yh) = 1 for all h ∈ H.
It follows that y has a unique fixed point of P, says α. Considering the cycle
decomposition of x acting on P, we find that x fixes no other points of P than
α. Hence x ∈ Gα and G = TGα. Then T acts transitively on P.

Since T is not line-transitive, it follows that x /∈ GL for any L ∈ L. Note
that x ∈ Gα and we appeal to Lemma 2.9 to conclude that NG(⟨x⟩) ≤ Gα. By
Lemmas 2.1 and 2.2 and 2.3, we find that the overgroup of G2(p) is only the
subfield subgroup. Since CT (x) ≤ NG(⟨x⟩) and G2(p) ≤ CT (x), we may assume
that Gα ∩ T = Tα

∼= G2(q0) for q = qc0 with a positive integer c. If c is prime,
thenGα is a maximal subgroup ofG and henceG is primitive on P. Thus by the
proof of Lemma 2.14 (see [10, Theorem 1.5 (g)])we have c ∤ |2G2(3)| for p = 3
and c ∤ |G2(p)| for p ̸= 3, and hence 1) if p = 2, then c ∤ |G2(2)| = 26 ·33 ·7, and
hence c ̸= 2, 3, 7; 2) if p = 3, then c ∤ |2G2(3)| = 23 · 33 · 7 and hence c ̸= 2, 3, 7;
3) if p ≥ 5, then c ∤ |G2(p)| = p6(p6 − 1)(p2 − 1), it follows that c ̸= p, 2 and
c ∤ (p− 1)2, (p+ 1)2, p2 + p+ 1 and p2 − p+ 1.
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Let i be an involution of T and K be a conjugate class of i in G. If q is
even, then we let i be a non-central involution. Thus by Lemma 2.4 we have
|CG(i)| ≤ q4(q2 − 1)m. If q is even, then v is even and so f1 is even. Note that
i fixes at least a point, hence f1 ≥ 2. If q is odd, then by Lemma 2.12 we have

f1 = |FixP(⟨i⟩)| =
v · |Gα ∩K|

|K|
=

|CG(i)|
|CGα(i)|

≥ q2(q2 − 1)2

q40(q
2
0 − 1)

≥ 2.

Since

f2 = |FixL(⟨i⟩)| =
b · |GL ∩K|

|K|
< |CG(i)|,

by Lemma 2.13 we can get the following inequality

v= q6(q6−1)(q2−1)
q60(q

6
0−1)(q20−1)

< (|CG(i)|)2 = q8(q2 − 1)2m2.

This implies that

q6(q6 − 1)(q2 − 1) < q8(q2 − 1)2m2q140 .

It follows that

q2 <
q4 + q2 + 1

q2
=

q6(q6 − 1)(q2 − 1)

q8(q2 − 1)2
< q140 m2.

Let q0 = pλ. Then a = λc for a positive integer λ and q = pλc. We can get

(3.1) pλ(c−7) < m.

Recall that m|2a for p = 3 and m|a for p ̸= 3, so we have
1) if p = 3, then m|2a and it follows from (3) that

(3.2) 3λ(c−7) < 2λc,

which forces that c ≤ 9.
2) if p = 2, then m|a and hence

(3.3) 2λ(c−7) < λc,

which forces that c ≤ 10.
3) if p ≥ 5, then m|a and it follows that

(3.4) 5λ(c−7) ≤ pλ(c−7) < λc,

which forces that c ≤ 8.
1. If p = 2, c = 9, then it follows from (5) that 4λ < 9λ. Hence λ = 1, a = 9

or λ = 2, a = 18.
2. If p = 2, c = 10, then again by (5) we have 8λ < 10λ, and hence λ =

1, a = 10.
3. If p = 3, c = 9, then it follows from (4) that 9λ < 18λ. We have λ =

1, a = 9.
Recall that a ̸≡ 0 (mod 6). Hence the cases we should examine are in the

following table.
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c a p
3 3λ, where λ is is a positive integer p ≥ 5 is a prime
7 7λ, where λ is is a positive integer p ≥ 5 is a prime

4, 5, 8 λc, where λ is is a positive integer p is a prime
9 9 2
9 9 3
10 10 2

It is clear that Gα contains no Sylow p-subgroups of G. Let Q0 be a Sylow
p-subgroup of G2(q0). It follows by Lemma 2.11 that Q0 ≤ GL. Then Q0 ≤
T ∩ GL = TL. Examining the subgroup of G2(q) in Lemmas 2.1 and 2.2 and
2.3, we find that GL∩T is isomorphic to G2(q2) or a subgroup of some maximal
subgroup of T , where q is a power of q2 and q0|q2.

3.1 Case: TL
∼= G2(q2).

By Lemma 2.4 we have |CGL
(i)| ≥ q22(q

4
2 − 1) ≥ q20(q

4
0 − 1) and hence

|FixL(⟨i⟩)| =
|GL ∩K|

|GL|
=

|CG(i)|
|CGL(i)|

≤ q4(q2 − 1)m

q20(q
4
0 − 1)

.

Appealing to Lemma 2.13, we have

v = q6(q6−1)(q2−1)
q60(q

6
0−1)(q20−1)

< ( q
4(q2−1)m
q20(q

4
0−1)

)2.

Since q6(q6 − 1)(q2 − 1) > q2(q4(q2 − 1))2 and q0 ≥ 2, we have

q2 <
q60(q

6
0 − 1)(q20 − 1)

(q20(q
4
0 − 1))2

=
q20(1 + q20 + q40)

(1 + q20)
2

<
21

16
q20m

2.

It follows that

q <

√
21

16
q0m <

8

5
q0m.

Thus

pa <
8

5
pa/c ·m.

Recall that q0 = pλ and a = λc. Then we have

pλ(c−1) <
8

5
·m.

• if p = 2, then 2λ(c−1) ≤ 8
5λc, which is a contradiction for c ≥ 4.

• if p = 3, then 3λ(c−1) ≤ 16
5 λc. This is impossible for c ≥ 4.

• if p ≥ 5, then 5λ(c−1) ≤ 8
5λc. This is a contradiction.

Hence the case where TL
∼= G2(q2) is excluded.

3.2 Case: GL ∩T is conjugate to a subgroup of some maximal subgroup of
T .
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Let M be a maximal subgroup of T such that TL ≤ M . Let b = |G : GL| =
|T |m

|TL|m1
(where m1|m) and a1 = |M |/|TL| and let b′ = |T |/|M |, then we have

b = b′a1
m
m1

. Thus if a prime divides b′, it also divides b. We can assume that

TL is not isomorphic to one subgroup of (SL2(q) ◦ SL2(q)) · 2. If G contains
a graph automorphism of G2(q), then M lies inside [q5] : GL2(q), or

2G2(q)
or PGL2(q). Otherwise, M lies in [q5] : GL2(q), or SLϵ

3(q) : 2, or
2G2(q), or

PGL2(q), where ϵ = ±.
3.2.1 Case: c = 9, p = 2
In this case we have v = 248 · 3 · 7 · 3249 · 5329 · 261633 · 262657 and q = 29.

Hence b2 divides 26(22−1)(26−1) ·9 by Lemma 2.8. Since (b2, v) = 1, we have
b2 = 1. This implies that S is a projective plane which is a contradiction.

3.2.2 Case: c = 10, p = 2
We have v = 254 · 52 · 112 · 13 · 312 · 2052 · 151 · 331 · 80581 and q = 210. Let

S be a Sylow 7 -subgroup of T . Since (7, a) = 1 and hence S is also the Sylow
7-subgroup of G. Note that 7 ∤ v, and so we may split the proof into 2 or 3
cases. ¿.

If 7|b, it follows from Lemmas 2.10 and 2.5 that Zq2+q+1 ≤ Gα, which is
impossible by Lemma 2.7.

If 7 ∤ b, this implies that 7 ∤ b2 and GL contains a Sylow 7-subgroup of
G. Hence the only case to occur is that M = SLϵ

3(q) : 2 and ϵ = +. It
follows from Lemma 2.8 that b2|27 · 33 · 5 · 7. Note that (b2, v) = 1 and hence
b2|33. Since v is even, then k1 is even. If b2 = 3, then k1 = 2 and hence
|GL| = 2

3 |Gα| = 28 · 32 · 5 · 7. There is no such group. Thus 32|b. Note that

33|||T | and hence Z3×Z3 ⊈ TL. Applying Lemma 2.9 and 2.5 it yields the fact
that NG(Z3 × Z3) ≤ Gα, which implies Zq−1 × Zq−1 ≤ Gα, a contradiction.

3.2.3 Case: c = 9, p = 3
We have v = 348 · 7 · 13 · 7032 · 7572 · 387400807 · 387440173 and q = 39. By

Lemma 2.4 we have that |CG(i)| ≤ q2(q2 − 1)2m. Note that |CGL(i)| ≥ 2 and

hence it follows from Lemma 2.13 that v ≤ |CGL
(i)|2

|CG(i)|2 ≤ 1
4 |CG(i)|2. This implies

that 348 ·7 ·13 ·7032 ·7572 ·387400807 ·387440173 ≤ 210 ·340 ·74 ·134 ·7034 ·7574,
which is a contradiction.

3.2.4 Case: c = 3, p ≥ 5
In this case we have Zq0+1 × Zq0+1 ≤ Gα. We may consider two cases.
If Zq0+1 × Zq0+1 ≤ GL, it follows by Lemmas 2.1 that M = SLϵ

3(q) : 2
where ϵ = −. Then Zq0−1 × Zq0−1 ̸≤ GL. It follows from Lemma 2.9 that
NG(Zq0−1 × Zq0−1) ≤ Gα, which implies that Zq−1 × Zq−1 ≤ Gα. This is a
contradiction.

If Zq0+1×Zq0+1 ̸≤ GL, it follows from Lemma 2.9 that NG(Zq0+1×Zq0+1) ≤
Gα. This implies that Zq+1 × Zq+1 ≤ Gα which is a contradiction.

3.2.5 Case: c = 7, p ≥ 5
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In this case we can find a prime t greater than 5 such that t divides q20+ϵq0+1.
Let U ϵ be a cyclic subgroup of G2(q0) of order q

2
0 + ϵq0+1, where ϵ = ±. Then

U ϵ ≤ Zq2+ϵq+1. If U
− ≤ GL, by Lemmas 2.1 and 2.3 we find that the possibility

for M is the case M = SLϵ
3(q) : 2 or 2G2(q) where ϵ = −. Hence U+ ̸≤ M .

It follows by Lemmas 2.9 and 2.5 that Zq2+q+1 : Z6 ≤ Gα, which gives a
contradiction. If U− ̸≤ GL, then by Lemma 2.9 we have NG(Zq2−q+1) ≤ Gα

and hence Zq2−q+1 : Z6 ≤ Gα. This is a contradiction.
3.2.6 Case: c = 4 or 8
We have v = q180 (q20 + 1)2(q40 + 1)2(q40 − q20 + 1)(q80 − q40 + 1) for c = 4 and

q420 (q20 + 1)2(q40 + 1)2(q80 + 1)2(q40 − q20 + 1)(q80 − q40 + 1)(q160 − q80 + 1) for c = 8.
First suppose that G contains a graph automorphism of G2(q). Then M

lies inside [q5] : (Zq−1)
2, or 2G2(q) or PGL2(q). Hence Zq20+q0+1 ̸≤ M and

Zq20+q0+1 ̸≤ GL. Note that Zq20+q0+1 ≤ Zq2+q+1. It follows by Lemma 2.9 that

NG(Zq20+q0+1) ≤ Gα, which implies Zq2+q+1 ≤ Gα. Thus Zq2+q+1 ≤ T ∩Gα =
Tα. This contradicts Lemma 2.7.

Now assume that G contains no graph automorphism of G2(q). We consider
several cases.

Suppose first that q0 = 2. We have v = 218 · 52 · 13 · 172 · 241 and q = 24 for
c = 4 and v = 242 · 52 · 13 · 172 · 241 · 2572 · 65281 and q = 28 for c = 8. Hence
the Sylow 7-subgroup of T is also of G. Note that 7 ∤ v and so we may split
the proof into 2 or 3 cases .

If 7|b, it follows from Lemmas 2.9 and 2.5 that Zq2+q+1 ≤ Gα, which is
impossible by Lemma 2.7.

If 7 ∤ b, this implies that 7 ∤ b2 and GL contains a Sylow 7-subgroup of G.
Hence the only case to occur is that M = SL3(q) : 2. It follows from Lemma
2.8 that b2|28 · 33 · 7 for c = 4 and b2|29 · 33 · 7 for c = 8. Note that (b2, v) = 1
and hence b2|33. Since v is even, then k1 is even. If b2 = 3, then k1 = 2 and
hence |GL| = 2

3 |Gα| = 29 · 32 · 5 · 7 for c = 4 and |GL| = 2
3 |Gα| = 210 · 32 · 5 · 7

for c = 8. There are no subgroups of such orders. Thus 32|b. Note that 33|||T |
and hence Z3 × Z3 ⊈ TL. Applying Lemma 2.9 and 2.5 it yields the fact that
NG(Z3 × Z3) ≤ Gα, which implies Zq−1 × Zq−1 ≤ Gα, a contradiction.

Suppose next that q0 ̸= 2. Then we calculate that there exists a prime
divisor s greater than 3 of q20 + ϵq0 + 1. It follows that s|b′ and hence s|b. We
may have

(q20 + ϵq0 + 1, q20 + 1) = 1, (q20 + ϵq0 + 1, q40 + 1) = 1

(q20 + ϵq0 + 1, q80 + 1) = 1, (q20 + ϵq0 + 1, q40 − q20 + 1) = 1

(q20 + ϵq0 + 1, q80 − q40 + 1) = 1, (q20 + ϵq0 + 1, q160 − q80 + 1) = 1

Then it follows that (q20 + ϵq0 + 1, v) = 1 and hence s ∤ v.
Let S be a Sylow s-subgroup of T . Then S is also a s-subgroup of Tα. We

have S ⊈ TL (In fact, if S ≤ TL, then S ≤ M and hence s ∤ b′ = |T |
|M | , a
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contradiction.) It follows from Lemma 2.10 that NG(S) ≤ Gα, which implies
that Zq2+q+1 ≤ Gα. This is impossible.

3.2.7 Case: c = 5
Suppose first that q0 = 2. Then v = 224 · 112 · 312 · 151 · 331 and q = 25.

The Sylow 7−subgroups of T are also those of G. We may split the proof into
2 cases

If 7 divides b, it follows from Lemmas 2.10 and 2.5 that Zq2+q+1 : Z6 ≤ Gα.
This contradicts Lemma 2.7.

If 7 does not divide b, then GL contains a Sylow 7-subgroup of G. Thus the
only case to occur is that M = SL3(q) : 2. We may get b′ = q3(q3 + 1)/2 =
214(215+1) and hence 9|b. Since 27|||T |, it follows that Z3×Z3 ̸≤ TL. Applying
Lemmas 2.9 and 2.5 it yields the fact that NG(Z3 × Z3) ≤ Gα, and hence
(Zq+1 × Zq+1) ·D12 ≤ Gα, which is a contradiction.

Now we can assume that q0 ̸= 2. Then there exists a prime divisor t greater
than 3 of q20 + ϵq0 + 1 by a direct calculation. Let U ϵ be a cyclic subgroup of
G2(q0) of order q

2
0 + ϵq0 + 1, where ϵ = ±. Then U ϵ ≤ Zq2+ϵq+1. If U

− ≤ GL,
by Lemmas 2.1 and 2.2 and 2.3 we find that M = SLϵ

3(q) : 2 or 2G2(q),
where ϵ = −. Hence U+ ̸≤ M . It follows from Lemmas 2.9 and 2.5 that
Zq2+q+1 : Z6 ≤ Gα. This is a contradiction. If U− ̸≤ GL, then by Lemma
2.9 we have NG(Zq2−q+1) ≤ Gα and hence Zq2−q+1 : Z6 ≤ Gα. This is a
contradiction.

Thus we have that T is line-transitive on S. The proof of the Theorem is
complete.
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