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Abstract. We consider the semigroup S of highest weights appearing in
tensor powers V ⊗k of a finite dimensional representation V of a connected
reductive group. We describe the cone generated by S as the cone over the

weight polytope of V intersected with the positive Weyl chamber. From
this we get a description for the asymptotic of the number of highest
weights appearing in V ⊗k in terms of the volume of this polytope.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic 0, and let V be a finite dimensional G-module. We
consider the semigroup of dominant weights

S = S(V ) = {(k, λ) | Vλ appears in V ⊗k},
where Vλ is the irreducible representation with highest weight λ. In this note
we describe the cone C(S) of this semigroup, i.e., the smallest closed convex
cone (with apex at the origin) containing S (in other words, the closure of the
convex hull of S ∪ {0}). We use this to describe the asymptotic of the number
of highest weights λ appearing in V ⊗k.

This work is in the spirit of the general theory of semigroups of integral
points and Newton-Okounkov bodies developed in [6] and [4].

Let A denote the finite set of highest weights in V , i.e., the dominant weights
λ where Vλ appears in V . Consider the union of all the Weyl group orbits of
λ ∈ A and let P+(V ) be its convex hull intersected with the positive Weyl
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chamber. We show that the slice of the cone C(S) at k = 1 coincides with the
polytope P+(V ) (Theorem 3.2). The main tool in the proof will be the PRV
theorem on the tensor product of irreducible representations. Beside the PRV
theorem The rest of arguments are elementary in nature.

Let HV (k) denote the number of dominant weights λ where Vλ appears in
V ⊗k. From general statements about semigroups of integral points we then
conclude that HV (k) grows of degree q = dim(P+(V )), i.e., the limit

aq = lim
k→∞

HV (k)/k
q

exists and is non-zero. In addition aq is equal to the (properly normalized)
volume of the polytope P+(V ).

In the last section we discuss the connection between the semigroup S(V ),
its associated polytope P+(V ) and the moment polytope of G-varieties.

At the end, we would like to mention the related paper of Tate and Zeldtich
[11] in which the authors address the (more difficult and independent) question
of describing the asymptotic behavior of multiplicities of irreducible represen-
tations appearing in tensor powers of an irreducible representation. This note
is also related to [5] (we should point out that the first version of this note
appeared in arXiv before [5]).

To make this note accessible to a wider range of audience we have tried to
cover most of the background material.

Notation: Throughout the paper we will use the following notation. G denotes
a connected reductive algebraic group over an algebraically closed field k of
characteristic 0.

- We fix a Borel subgroup B and a maximal torus T in G. The Weyl
group of (G,T ) is denoted by W . It contains a unique longest element
denoted by w0.

- Λ denotes the weight lattice of G (that is, the character group of T ),
and Λ+ is the subset of dominant weights (for the choice of B). Put
ΛR = Λ ⊗Z R. Then the convex cone generated by Λ+ in ΛR is the
positive Weyl chamber Λ+

R .
- For a weight λ ∈ Λ, the irreducible G-module corresponding to λ will
be denoted by Vλ and a highest weight vector in Vλ will be denoted
by vλ. Finally for a dominant weight λ, we put λ∗ = −w0(λ) which is
again a dominant weight. One has Vλ∗ ∼= V ∗

λ as G-modules.

2. Semigroups of integral points and convex bodies

Let S ⊂ N × Zn be a semigroup of integral points (i.e., S is closed under
addition).

Let C(S) be the smallest closed convex cone (with apex at the origin) con-
taining S. Also let G(S) be the subgroup of Zn+1 generated by S and, L(S) the
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linear subspace of Rn+1 spanned by S. The sets C(S) and G(S) lie in L(S). To
S we associate its regularization which is the semigroup Reg(S) = C(S)∩G(S).
The regularization Reg(S) is a simpler semigroup with more points which con-
tains the semigroup S. In [6, Section 1.1] it is proved that the regularization
Reg(S) asymptotically approximates the semigroup S. More precisely:

Theorem 2.1 (Approximation Theorem). Let C ′ ⊂ C(S) be a strongly convex
cone which intersects the boundary (in the topology of the linear space L(S))
of the cone C(S) only at the origin. Then there exists a constant N > 0
(depending on C ′) such that each point in G(S) ∩ C ′ whose distance from the
origin is bigger than N belongs to S.

Let π : R × Rn → R denote the projection on the first factor. We call
a semigroup S ⊂ N × Zn a non-negative semigroup if it is not contained in
the hyperplane π−1(0). If in addition the cone C(S) intersects the hyperplane
π−1(0) only at the origin, S is called a strongly non-negative semigroup.

Let Sk = S ∩ π−1(k) be the set of points in S at level k. For simplicity
throughout this section we assume that S1 ̸= ∅.

We denote the group G(S)∩π−1(0) by Λ(S) and call it the lattice associated
to the non-negative semigroup S. Finally, the number of points in Sk is denoted
by HS(k). HS is called the Hilbert function of the semigroup S.

Definition 2.2 (Newton-Okounkov convex set). We call the projection of the
convex set C(S) ∩ π−1(1) on Rn (under the projection on the second factor
(1, x) 7→ x), the Newton-Okounkov convex set of the semigroup S and denote
it by ∆(S). In other words,

∆(S) = conv(
∪
k>0

{x/k | (k, x) ∈ Sk}).

If S is strongly non-negative then ∆(S) is compact and hence a convex body.

Let Λ ⊂ Rn be a lattice of full rank n. Let E ⊂ Rn be a subspace of dimen-
sion q which is rational with respect to Λ. The Lebesgue measure normalized
with respect to the lattice Λ in E is the Lebesgue measure dγ in E normalized
such that the smallest measure of a q-dimensional parallelepiped with vertices
in E ∩ Λ is equal to 1. The measure of a subset A ⊂ E will be called its nor-
malized volume and denoted by Volq(A) (whenever the lattice Λ is clear from
the context).

Let HS and HReg(S) be the Hilbert functions of S and its regularization
respectively. From Theorem 2.1 it follows that HS(k) and HReg(S)(k) have the
same asymptotic as k goes to infinity. Thus the Newton-Okounkov convex set
∆(S) is responsible for the asymptotic behavior of the Hilbert function of S
( [6, Section 1.4]):
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Theorem 2.3. The function HS(k) grows like aqk
q where q is the dimension

of the convex body ∆(S). This means that the limit

aq = lim
k→∞

HS(k)/k
q

exists and is non-zero. Moreover, the q-th growth coefficient aq is equal to
Volq(∆(S)), where the volume is normalized with respect to the lattice Λ(S).

Finally we make an observation which will be used later in proof of the main
result (Theorem 3.2).

Proposition 2.4. Let S ⊂ N×Zn be a non-negative semigroup and C = C(S)
the cone associated to S. Let C ′ ⊂ C be a convex cone of full dimension
(centered at the origin) and S′ = S ∩C ′ the subsemigroup consisting of all the
points of S contained in C ′. Then the cone C(S′) associated to S′ coincides
with C ′.

Proof. Clearly C(S′) ⊂ C ′. By contradiction suppose C(S′) is not equal to C ′.

Then there is a convex cone C̃ ⊂ C ′ of full dimension which intersects C(S′)
and the boundary of C ′ (in the topology of the subspace L(S)) only at the

origin. Since C̃ has full dimension it contains a rational point (with respect
to the lattice Λ(S)) which then implis that it contains a point in Λ(S). Now

applying Theorem 2.1 we see that the convex cone C̃ should contain a point in
S′ which contradicts that C(S′) ∩ C̃ = ∅. □

In the rest of the paper we will deal with semigroups and convex polytopes
naturally associated to a reductive group G and its representations.

Remark 2.5. The proof of Theorem 2.1 relies on the proof of the special case
when S is a finitely generated semigroup. The semigroups appearing in this
note turn out to be in fact finitely generated, although we will not use this fact.

3. Main result

Let V be a finite dimensional G-module. Define the set S(V ) ⊂ N× Λ+ by

S(V ) = {(k, λ) | Vλ appears in V ⊗k}.

If vλ and vµ are highest weight vectors in V ⊗k and V ⊗ℓ with weights λ and
µ respectively, then vλ⊗vµ is a highest weight vector in V ⊗k+ℓ of weight λ+µ.
It follows that S(V ) is a semigroup with respect to addition. Let ∆(V ) denote
the Newton-Okounkov body of the semigroup S(V ). In other words,

∆(V ) = conv(
∪
k>0

{λ/k | Vλ appears in V ⊗k}).

Also let A be the collection of γ’s where Vγ appears in V .
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Definition 3.1. The weight polytope of V is defined by P (V ) = conv{w(γ)| w ∈
W,γ ∈ A}, i.e., the convex hull of the union of Weyl orbits of γ ∈ A. We will
denote the intersection of P (V ) with the positive Weyl chamber Λ+

R by P+(V )
and call it the moment polytope of V .

Theorem 3.2. ∆(V ) coincides with the moment polytope P+(V ).

We will need the following well-known fact:

Lemma 3.3. Let λ1, λ2 be dominant weights and let Vγ appear in Vλ1 ⊗ Vλ2 .
Then γ = λ1 + λ2 −

∑
α∈R+ cαα where cα ≥ 0 (R+ denotes the set of positive

roots). From this it follows that γ belongs to the convex hull of the Weyl orbit
of λ1 + λ2.

Our tool to prove Theorem 3.2 is the well-known PRV-Kumar theorem re-
garding the tensor product of two irreducible representations. It was conjec-
tured by Parthasarathy, Ranga Rao and Varadarajan in [10]. Later it was
proved by Kumar in [9]. We briefly recall its statement.

Theorem 3.4 (PRV-Kumar theorem). Let λ1, λ2 ∈ Λ+ be two dominant
weights. Suppose for two Weyl group elements w1, w2 ∈ W we have γ =
w1(λ1) + w2(λ2) is a dominant weight. Then Vγ appears in the decomposi-
tion of the tensor product Vλ1 ⊗ Vλ2 into irreducible representations.

Define the set S̃(V ) ⊂ N× Λ by:

S̃(V ) = {(k,w(λ)) | w ∈ W, Vλ appears in V ⊗k}.
Roughly, speaking S̃(V ) is the union of W -otbits of λ for which Vλ appears in

some tensor power V ⊗k. Notice that S(V ) = S̃(V ) ∩ (N× Λ+). The following
is a straight forward corollary of Theorem 3.4

Corollary 3.5. 1) S̃(V ) is a semigroup. 2) The convex body ∆(S̃(V )) associ-
ated to this semigroup coincides with P (V ).

Proof. 1) Let (k,w1(λ1)), (ℓ, w2(λ2)) be two elements in S̃(V ). We can write
w1(λ1)+w2(λ2) as w(λ) for some λ ∈ Λ+, w ∈ W . By Theorem 3.4, Vλ appears
in Vλ1 ⊗ Vλ2 and hence it appears in V ⊗ℓ+k. This shows that (ℓ+ k,w1(λ1) +

w2(λ2)) = (ℓ + k,w(λ)) belongs to S̃(V ) which proves 1). 2) Since S̃(V ) is a

semigroup and P (V ) is by definition the convex hull of S̃(V )1, it follows that

kP (V ) is contained in the convex hull of S̃(V )k. On the other hand, by Lemma

3.3, for any integer k > 0, the convex hull of S̃(V )k is contained in kP (V ) and

hence ∆(S̃(V )) coincides with P (V ). □
Proof of Theorem 3.2. From Proposition 2.4, the convex body ∆(V ) associated

to the semigroup S(V ) ⊂ S̃(V ) is just the intersection of ∆(S̃(V )) with Λ+
R .

By Corollary 3.5(2) we know that ∆(S̃(V )) is the weight polytope P (V ) which
finishes the proof. □
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Corollary 3.6. Let HV (k) be the number of λ such that Vλ appears in V ⊗k.
Then HV (k) grows of degree q = dimP+(V ). That is, the limit

aq = lim
k→∞

HV (k)/k
q

exists and is non-zero. Moreover, aq is equal to Volq(P
+(V )), where volume is

the Lebesgue measure in ΛR normalized with respect to the lattice Λ(S(V )) ⊂ Λ.

Proof. Follows directly from Theorem 3.2 and Theorem 2.3. □

Example 3.7. Perhaps the simplest case of Theorem 3.2 and Corollary 3.6 is
G = SL(2,C). One knows that the irreducible representations of SL(2,C) are
enumerated by n ∈ Z≥0 as Vn = Symn(C2), where SL(2,C) acts on C2 in the
usual way. It is well-known that for n,m ≥ 0:

(1) Vn ⊗ Vm = V|n−m| ⊕ V|n−m+2| ⊕ · · · ⊕ Vn+m.

Let V = m1Vn1⊕· · ·⊕mrVnr be the decomposition of a finite dimensional repre-
sentation of SL(2,C) into irreducible representations where 0 ≤ n1 < · · · < nr.
From (1) we see that ∆(V ) = [0, nr]. Corollary 3.6 then states that the num-
ber of irreducible representations appearing in V ⊗k is asymptotically equal to
knr. For G = SL(n,C) the decomposition of tensor product of two irreducible
representations Vλ ⊗ Vγ into irreducible representations is more complicated.
Exactly what irreducible representations appear in Vλ ⊗ Vγ is related to the
so-called Horn’s conjecture/theorem (see for example [2, Section 3]).

4. Relation with moment polytope of group actions

In this section we see how the moment polytope P+(V ) appears as a moment
polytope for the action of G×G on G.

Let V be a finite dimensional G-module, and X ⊂ P(V ) an irreducible closed
G-invariant subvariety. Let R =

⊕
k≥0 Rk denote the homogeneous coordinate

ring of X. It is a graded G-algebra. Following Brion, one defines the moment
polytope ∆(X) to be:

∆(X) = conv(
∪
k>0

{λ/k | Vλ appears in Rk}).

One shows that ∆(X) ⊂ Λ+
R is a polytope (see [1]). Moreover, when k = C and

X is smooth, the polytope ∆(X) can be identified with the moment polytope
of X regarded as a Hamiltonian space for the action of a maximal compact
subgroup K of G and the symplectic structure induced from the projective
space (see for example [3]).

LetG×G act onG via multiplication from left and right. Let k[G] denote the
algebra of regular functions on the variety G. It is a rational (G×G)-module. It
is well-known that for each dominant weight λ, the (λ∗, λ)-isotypic component
k[G](λ∗,λ) is isomorphic to Vλ∗ ⊗Vλ. Moreover, any isotypic component of k[G]



645 Kaveh

is of this form for some λ. In fact any (G×G)-isotypic component k[G](λ∗,λ) in
k[G] is the linear span of the matrix entries corresponding to the representation
of G in Vλ (see [8]). Now if λ1, λ2 ∈ Λ+ are two dominant weights, the product
k[G](λ∗

1 ,λ1)k[G](λ∗
2 ,λ2) is the linear span of the matrix entries corresponding to

Vλ1⊗Vλ2 . This shows that we have the following decomposition for the product
of isotypic components in the algebra k[G]:

(2) k[G](λ∗
1 ,λ1)k[G](λ∗

2 ,λ2) =
⊕

γ∈χ(λ1,λ2)

Vγ∗ ⊗ Vγ ,

where χ(λ1, λ2) denotes the collection of all γ ∈ Λ+ for which Vγ appears in
Vλ1 ⊗ Vλ2 .

Now let π : G → GL(V ) be a finite dimensional representation. Then
End(V ) is naturally a (G×G)-module where G×G acts via π by multiplication
from left and right. Let π̃ : G → P(End(V )) be the induced map to projective
space and let X be the closure of the image of G in P(End(V )). It is a (G×G)-
invariant closed irreducible subvariety.

From (2) one can see the following:

Proposition 4.1. Let R =
⊕

k Rk denote the homogeneous coordinate ring of
X in P(End(V )). Then for k > 0 we have: V(λ∗,λ) appears in Rk if and only if

Vλ appears in V ⊗k. It follows that, under the projection on the second factor,
∆(X) ⊂ Λ+

R × Λ+
R is identified by P+(V ).

Remark 4.2. The relation between the moment polytope of X (i.e., a group
compactification) and the polytope P+(V ) has also been shown in [7] using
methods from symplectic geometry.
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