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Abstract. The aim of this paper is to study the behaviour of certain

sequence of nonlinear Durrmeyer operators NDnf of the form

(NDnf)(x) =

1∫
0

Kn (x, t, f (t)) dt, 0 ≤ x ≤ 1, n ∈ N,

acting on bounded functions on an interval [0, 1] , where Kn (x, t, u) sat-
isfies some suitable assumptions. Here we estimate the rate of convergence

at a point x, which is a Lebesgue point of f ∈ L1 ([0, 1]) be such that
ψo |f | ∈ BV ([0, 1]), where ψo |f | denotes the composition of the functions

ψ and |f |. The function ψ : R+
0 → R+

0 is continuous and concave with
ψ(0) = 0, ψ(u) > 0 for u > 0, which appears from the (L− ψ) Lipschitz

conditions.
Keywords: Nonlinear Durrmeyer operators, bounded variation, Lips-
chitz condition, pointwise convergence.
MSC(2010): Primary: 41A35; Secondary: 41A25, 47G10.

1. Introduction

Let f be a Lebesgue integrable function defined on [0, 1] and let N :=
{1, 2, ...} . The classical Durrmeyer operators Dnf applied to f are defined
as

(1.1) (Dnf)(x) =

1∫
0

f(t)Kn(x, t) dt, 0 ≤ x ≤ 1

where

Kn(x, t) = (n+ 1)
n∑

k=0

pn,k (x) pn,k (t) ,
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Convergence of nonlinear Durrmeyer operators 700

and pn,k (x) =
(
n
k

)
xk(1 − x)n−k is the Bernstein basis. These operators were

introduced by Durrmeyer [16] and independently by Lupas [29].
These operators are the integral modification of Bernstein polynomials [9]

so as to approximate Lebesgue integrable functions defined on the interval
[0,1]. Some remarkable approximation properties of these operators (1.1) are
presented in [15,17,32] and [18].

The present paper concerns with pointwise convergence of certain sequence of
nonlinear Durrmeyer operators NDnf of the form

(1.2) (NDnf)(x) =

1∫
0

Kn (x, t, f (t)) dt , 0 ≤ x ≤ 1 , n ∈ N,

acting on Lebesgue integrable functions on the interval [0, 1] , where Kn (x, t, u)
satisfies some suitable assumptions. In particular, we obtain some pointwise
convergence for a sequence of nonlinear Durrmeyer operators (1.2) to the point
x, at the Lebesgue points of f, as n→ ∞.

We note that the approximation theory with nonlinear integral operators
of convolution type was introduced by J. Musielak in [30] and widely devel-
oped in [4]. To the best of our knowledge, the approximation problem was
limited to linear operators because the notion of singularity of an integral op-
erator was closely connected with its linearity until the fundamental paper of
Musielak [30]. In [30], the assumption of linearity of the singular integral op-
erators was replaced by an assumption of a Lipschitz condition for the kernel
function Kλ(t, u) with respect to the second variable. After this approach, sev-
eral mathematicians have undertaken the program of extending approximation
by nonlinear operators in many ways, including pointwise and uniform conver-
gence, Korovkin type theorems in abstract function spaces, sampling series and
so on. Especially, nonlinear integral operators of type

(Tλf) (x) =

b∫
a

Kλ(t− x, f(t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro, Karsli and Vinti [6, 7], Karsli
[21, 22]- [25] and Karsli-Ibikli [24] in some Lebesgue spaces.

Such developments delineated a theory which is nowadays referred to as the
theory of approximation by nonlinear integral operators.

For further reading, we also refer the reader to [1, 2], [5–8] as well as the
monographs [13] and [4] where other kinds of convergence results of linear
and nonlinear singular integral operators in the Lebesgue and Musielak-Orlicz
spaces have been considered. Finally in the very recent paper due to Angeloni
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and Vinti [3], some approximation properties with respect to the multidimen-
sional φ− variation for the linear cases of the operators of type (1.1) have been
studied.

An outline of the paper is as follows: The next section contains basic defini-
tions and notations. In Section 3 the main approximation result of this study
are given. In Section 4 we give some certain results which are necessary to
prove the main result. The final section, that is Section 5, deals with the proof
of the main result presented in Section 3.

2. Preliminaries

In this section, we assemble the main definitions and notations which will
be used throughout the paper.

Let X be the set of all Lebesgue measurable functions f : [0, 1] → R.
Let Ψ be the class of all functions ψ : R+

0 → R+
0 such that the function ψ is

continuous and concave with ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let {Kn (x, t, u)}n∈N be a sequence
of functions Kn : [0, 1] x [0, 1] x R→ R defined by

(2.1) Kn (x, t, u) = (n+ 1)
n∑

k=0

pn,k (x) pn,k (t)Hn(u),

where Hn : R → R is a function such that Hn(0) = 0 and pn,k(x) is the Bern-
stein basis.

Throughout the paper we assume that µ : N → R+ is an increasing and con-
tinuous function such that lim

n→∞
µ(n) = ∞.

First of all we assume that the following conditions hold:

a ) Hn : R → R is such that

|Hn(u)−Hn(v)| ≤ ψ (|u− v|) , ψ ∈ Ψ,

holds for every u, v ∈ R and for every n ∈ N. That is, Hn satisfies a (L− ψ)
Lipschitz condition.

b ) We now set

(2.2) Fn(x, t) := (n+ 1)
n∑

k=0

pn,k (x) pn,k(t).

and

An(x) :=

x+(1−x)/nγ/β∫
x−x/nγ/β

Fn(x, t)dt for any fixed x ∈ (0, 1)

where β > 0, γ ≥ 1.



Convergence of nonlinear Durrmeyer operators 702

c) denoting by rn(u) := Hn(u)− u, u ∈ R and n ∈ N, such that

lim
n→∞

|rn(u)| = 0

uniformly with respect to u.

We note that the use of the function An(x) concerns the behavior of the ap-
proximation near the point x. Similar approach and some particular examples
can be found in [8], [25], [20], [23] and [31].

Example 2.1. Here we give a concrete example of the nonlinear function
Hn(u) to show the validity of the definition of the operators. Let us consider
the function Hn : R → R defined as

Hn(u) =
nu |u|
n |u|+ 1

.

Some other examples can be found in [8]. The symbol [a] will denote the
greatest integer not exceeding a.

3. Convergence results

We take into consideration the following type nonlinear Durrmeyer opera-
tors, given by

(NDnf) (x) =

1∫
0

Kn (x, t, f (t)) dt ,

with

Kn (x, t, f (t)) = (n+ 1)
n∑

k=0

pn,k (x) pn,k(t)Hn(f (t))

= Fn(x, t)Hn(f (t)).

We assume that this operator defined for every f ∈ Dom NDnf, where Dom
NDnf is the subset of X on which NDnf is well-defined.

We have the following.

Theorem 3.1. Let the kernel function Kn (x, t, u) satisfies a). If f ∈ L1[0, 1],
then NDnf ∈ L1[0, 1] and

∥NDnf∥L1[0,1]
≤ ψ

(
∥f∥L1[0,1]

)
for every n ∈ N.
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Proof. From the assumptions on Kn, we have

1∫
0

|(NDnf) (x)| dx =

1∫
0

∣∣∣∣∣∣
1∫

0

Fn(x, t)Hn(f (t))dt

∣∣∣∣∣∣ dx ≤
1∫

0

1∫
0

Fn(x, t) |Hn(f (t))| dtdx

≤
1∫

0

1∫
0

Fn(x, t) |Hn(f (t))| dxdt

≤
1∫

0

ψ (|f (t)|)
1∫

0

Fn(x, t)dxdt.

Since
1∫

0

Fn(x, t)dt =

1∫
0

Fn(x, t)dx,

one has
1∫

0

|(NDnf) (x)| dx ≤
1∫

0

ψ (|f (t)|) dt.

Using concavity of ψ, we obtain

1∫
0

|(NDnf) (x)| dx ≤ ψ

 1∫
0

|f (t)| dt

 = ψ
(
∥f∥L1[0,1]

)
.

As a result, the nonlinear Durrmeyer operators acting on L1[0, 1] into itself.
This completes the proof. □

We let

(3.1) fx(t) =

 f(t)− f(x+) , x < t ≤ 1
0 , t = x

f(t)− f(x−) , 0 ≤ t < x
,

and
1∨
0
ψ(|fx|) be the total variation of ψ(|fx|) on [0, 1].

Definition 3.2. A point x0 ∈ R is called a Lebesgue point of the function f,
if

(3.2) lim
h→0+

1

h

h∫
0

|f(x0 + t)− f(x0)| dt = 0,

holds. (Butzer and Nessel [13]).
We are now ready to establish the main results of this study:
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Theorem 3.3. Let ψ ∈ Ψ and f ∈ L1 ([0, 1]) be such that ψo |f | ∈ BV ([0, 1]) .
Suppose that Kn (x, t, u) satisfies conditions a) − c). Then at each point x ∈
(0, 1) for which (3.2) holds we have for each ε > 0 and for sufficiently large
n ∈ N,

|(NDnf) (x)− f(x)| ≤ εB∗
n(x)µ

β−1(n)

+
B∗

n(x)

µβ(n)

 1∨
0

ψ(|fx|) +
[µβ(n)]∑
k=1

x+(1−x)/k1/β∨
x−x/k1/β

ψ(|fx|)

+
1

µ(n)
,

where B∗
n(x) = Bn(x)max{x−β , (1− x)−β}, (β > 0) .

Now we are ready to establish a convergence result.

Theorem 3.4. Let ψ ∈ Ψ and f ∈ L1 ([0, 1]) be such that ψo |f | ∈ BV ([0, 1]) .
Suppose that the kernel function Kn (x, t, u) satisfies conditions a)− c). Then
at each point x ∈ (0, 1) for which (3.2) holds we have

lim
n→∞

|(NDnf) (x)− f(x)| = 0.

Proof. From Theorem 3.3 and c) we reach the result, by the arbitrariness of
ε > 0. □
Corollary 3.5. Let ψ ∈ Ψ and f ∈ L1 ([0, 1]) be such that ψ◦|f | ∈ BV ([0, 1]) .
Suppose that the function Kn (x, t, u) satisfies conditions a)− c). Then

lim
n→∞

|(NDnf) (x)− f(x)| = 0

holds almost everywhere in (0, 1).

Since almost all x ∈ (0, 1) are Lebesgue points of the function f, then the
assertion follows by Theorem 3.4.

4. Auxiliary result

In this section we give certain results, which are necessary to prove our
theorems.

Lemma 4.1. For (Dnt
s)(x), s = 0, 1, 2, one has

(Dn1)(x) = 1

(Dnt)(x) = x+
1− 2x

n+ 2

(Dnt
2)(x) = x2 +

[4n− 6(n+ 1)x]

(n+ 1) (n+ 2)
x+

2

(n+ 2) (n+ 3)
.

For proof of this Lemma see [28].
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By direct calculation, we find the following equalities:

(Dn (t− x)
2
)(x) ≤ 2nx(1− x) + 2

n2
, (Dn (t− x))(x) =

1− 2x

n+ 2
.

Lemma 4.2. For all x ∈ (0, 1) and for each n ∈ N, let

(4.1) Dn((t− x)β ;x) =

1∫
0

Fn(x, u)(u− x)βdu ≤ Bn(x)

nγ/β
, (β > 0)

where Fn(x, u) is defined as in Section 2. Then one has

(4.2) λn(x, z) =:

z∫
0

Fn(x, u)du ≤ Bn(x)

(x− z)βnγ/β
, 0 ≤ z < x,

and

(4.3) 1− λn(x, z) =

1∫
z

Fn(x, u)du ≤ Bn(x)

(z − x)βnγ/β
, x < z < 1.

Proof. We have

λn(x, z) = :

z∫
0

Fn(x, u)du ≤
z∫

0

Fn(x, u)

(
x− u

x− z

)β

du

≤ 1

(x− z)β

1∫
0

Fn(x, u) |u− x|β du.

According to (4.1), we have

λn(x, z) ≤
Bn(x)

(x− z)βnγ/β
.

Proof of (4.3) is analogous. □

Lemma 4.3. [32, Theorem 1] For all x ∈ (0, 1) and for all n > 256
25x(1−x) , we

have

pn,k (x) ≤
1√

2enx(1− x)
,

where e = 2.71... is the Napierian constant.

Lemma 4.4. Let ψ ∈ Ψ. Then if x0 ∈ R is a Lebesgue point of the function
f , we have

(4.4)

∣∣∣∣∣∣
h∫

0

ψ (|f(x0 + t)− f(x0)|) dt

∣∣∣∣∣∣ = o(|h|) as h→ 0.
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Proof. In order to prove our Lemma we will show the following two statements:∣∣∣∣∣∣
h∫

0

ψ (|f(x0 + t)− f(x0)|) dt

∣∣∣∣∣∣ = o(h) as h→ 0+,

∣∣∣∣∣∣
0∫

h

ψ (|f(x0 + t)− f(x0)|) dt

∣∣∣∣∣∣ = o(−h) as h→ 0−.

Since ψ is concave, one has for h < 0 and h > 0, respectively,

1

−h

0∫
h

ψ (|f(x0 + t)− f(x0)|) dt ≤ ψ

 1

−h

0∫
h

|f(x0 + t)− f(x0)| dt


and

1

h

h∫
0

ψ (|f(x0 + t)− f(x0)|) dt ≤ ψ

 1

h

h∫
0

|f(x0 + t)− f(x0)| dt

 .

Hence, by continuity of ψ and ψ (0) = 0, we reach the desired result. □

5. Proof of the theorems

Proof. Proof of Theorem 3.3. Suppose that

(5.1) x+ δ < 1, x− δ > 0,

for any sufficiently small 0 < δ.

Let

|In(x)| =

∣∣∣∣∣∣
1∫

0

Kn (x, t, f (t)) dt− f(x)

∣∣∣∣∣∣ .
From (1.2) and c), we can rewrite |In(x)| as follows:

|In(x)|≤

∣∣∣∣∣∣
1∫

0

Kn (x, t, f (t)) dt−
1∫

0

Kn (x, t, f (x)) dt

∣∣∣∣∣∣+
∣∣∣∣∣∣

1∫
0

Kn (x, t, f (x)) dt− f(x)

∣∣∣∣∣∣
: = In,1(x) + In,2(x)
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From conditions b) and c) it is easy to see that the second term of the right-
hand-side of the above inequality is less than or equal to 1/µ(n). Indeed;

In,2(x) =

∣∣∣∣∣∣
1∫

0

Kn (x, t, f (x)) dt− f(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣[Hn(f (x))− f(x)]

1∫
0

Fn (x, t) dt

∣∣∣∣∣∣
= |Hn (f (x))− f(x)|

1∫
0

Fn (x, t) dt

≤ 1

µ(n)

holds for n sufficiently large.

As to the first term, by a), we have the following inequality,

|In,1(x)| ≤
1∫

0

Fn (x, t)ψ (|f (t)− f(x)|) dt.

According to b), we can split the last integral in three terms as follows:

|In,1(x)| ≤

 x−x/µ(n)∫
0

+

x+(1−x)/µ(n)∫
x−x/µ(n)

+

1∫
x+(1−x)/µ(n)

ψ (|f(t)− f(x)|) dt (λn(x, t))

: = I1(n, x) + I2(n, x) + I3(n, x)

We estimate I2(n, x). We have for t ∈ [x− x/µ(n), x+ (1− x) /µ(n)]

|I2(n, x)| =
x+(1−x)/µ(n)∫
x−x/µ(n)

ψ (|f(t)− f(x)|) dt (λn(x, t))

≤
x∫

x−x/µ(n)

ψ (|f(t)− f(x)|) dt (λn(x, t)) +

x+(1−x)/µ(n)∫
x

ψ (|f(t)− f(x)|) dt (λn(x, t))

= I2,1(n, x) + I2,2(n, x).

Setting

G(t) :=

x∫
t

ψ (|f(y)− f(x)|) dy,

then, according to (4.4), to each ε > 0 there exists a δ > 0 such that

(5.2) G(t) ≤ ε (x− t)

for all 0 < x− t ≤ δ.

We now fix this δ and estimate I2,1(n, x) and I2,2(n, x) respectively.
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Now, we recall the Lebesgue-Stieltjes integral representation, so we can write
I2,1(n, x) as

(5.3) I2,1(n, x) =

x∫
x−x/µ(n)

dt (λn(x, t)) d (G(t)) .

Applying partial Lebesgue-Stieltjes integration (5.3) and using (5.2) we obtain,

I2,1(n, x) = −G(x− x/µ(n)) dt (λn(x, x− x/µ(n))) +

x∫
x−x/µ(n)

G(t)
∂

∂t
dt (λn(x, t)) dt

≤ −G(x− x/µ(n)) dt (λn(x, x− x/µ(n))) +

x∫
x−x/µ(n)

G(t)
∂

∂t
dt (λn(x, t)) dt

≤ ε x/µ(n) dt (λn(x, x− x/µ(n))) + ε

x∫
x−x/µ(n)

(x− t)
∂

∂t
dt (λn(x, t)) dt.

Integration by parts again gives

I2,1(n, x) ≤ ε x/µ(n) dt (λn(x, x− x/µ(n)))

+ ε

−x/µ(n)dt (λn(x, x− x/µ(n))) +

x∫
x−x/µ(n)

dt (λn(x, t))


= ε

x∫
x−x/µ(n)

dt (λn(x, t)) .

Setting

I2,1,1(n, x) :=

0∫
−x/µ(n)

dt (λn(x, t+ x)) ,

according to (4.2) we can now obtain the following estimate:

I2,1(n, x) = εI2,1,1(n, x) = ε

(
λn

(
x, x− x

µ(n)

)) 0∫
−x/µ(n)

dt

= εBn(x)x
−βµβ−1(n).

We can use a similar method for I2,2(n, x). Then, in view of (4.3) we find the
following inequality,

I2,2(n, x) ≤ εBn(x) (1− x)
−β

µβ−1(n).
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Next, we estimate I1(n, x). Using partial Lebesgue-Stieltjes integration, we
obtain

|I1(n, x)| =
x−x/µ(n)∫

0

ψ (|fx(t)|) dt (λn(x, t))

= ψ

(∣∣∣∣fx (x− x

µ(n)

)∣∣∣∣)λn (x, x− x

µ(n)

)
−

x−x/µ(n)∫
0

λn(x, t)dt (ψ (|fx(t)|)) .

Let y = x− x/µ(n). By (4.2), it is clear that

(5.4) λn(x, y) ≤ Bn(x)x
−βµβ−1(n).

Here we note that

ψ

(∣∣∣∣fx (x− x

µ(n)

)∣∣∣∣) =

∣∣∣∣ψ(∣∣∣∣fx (x− x

µ(n)

)∣∣∣∣)− ψ (|fx(x)|)
∣∣∣∣ ≤ x∨

x−x/µ(n)

ψ(|fx|).

Using partial integration and applying (5.4), we obtain

|I1(n, x)| ≤
x∨

x−x/µ(n)

ψ(|fx|)
∣∣∣∣λn

(
x, x− x

µ(n)

)∣∣∣∣+
x−x/µ(n)∫

0

λn(x, t)dt

(
−

x∨
t

ψ(|fx|)

)

≤
x∨

x−x/µ(n)

ψ(|fx|)Bn(x)x
−βµβ−1(n) +

Bn(x)

µ(n)

x−x/µ(n)∫
0

(x− t)−βdt

(
−

x∨
t

ψ(fx)

)

=

x∨
x−x/µ(n)

ψ(fx)Bn(x)x
−βµβ−1(n) +

Bn(x)

µ(n)

−x−βµβ(n)

x∨
x−x/µ(n)

ψ(|fx|)

+x−β
x∨
0

ψ(|fx|) +
x−x/µ(n)∫

0

x∨
t

ψ(|fx|)
β

(x− t)β+1
dt


=

Bn(x)

µβ(n)

x−β
x∨
0

ψ(|fx|) +
x−x/µ(n)∫

0

x∨
t

ψ(|fx|)
β

(x− t)β+1
dt

 .
Changing the variable t by x− x/u1/β in the last integral, we have

x−x/µ(n)∫
0

x∨
t

ψ(|fx|)
β

(x− t)β+1
dt =

1

xβ

µβ(n)∫
1

x∨
x−x/u1/β

ψ(|fx|) du

≤ 1

xβ

[µβ(n)]∑
k=1

x∨
x−x/k1/β

ψ(|fx|).
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Consequently, we obtain

|I1(n, x)| ≤
Bn(x)

µβ(n)
x−β

 x∨
0

ψ(|fx|) +
[µβ(n)]∑
k=1

x∨
x−x/k1/β

ψ(|fx|)

 .
Using a similar method, we can find

|I3(n, x)| ≤
Bn(x)

µβ(n)
(1− x)−β

 1∨
x

ψ(|fx|) +
[µβ(n)]∑
k=1

x+(1−x)/k1/β∨
x

ψ(|fx|)

 .
Collecting the above estimates we get the required result. □
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