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Abstract. In this paper, we study some ring theoretic properties of the

amalgamated duplication ring R ▷◁ I of a commutative Noetherian ring
R along an ideal I of R which was introduced by D’Anna and Fontana.
Indeed, it is determined that when R ▷◁ I satisfies Serre’s conditions (Rn)

and (Sn), and when is a normal ring, a generalized Cohen-Macaulay ring
and finally a filter ring.
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1. Introduction

In [6], D’Anna and Fontana considered a construction obtained involving
a ring R and an ideal I ⊂ R that is denoted by R ▷◁ I, called amalgamated
duplication of R along I.

D’Anna in [5] studied that when R ▷◁ I is Cohen-Macaulay or a Gorenstein
ring. In [1], the authors determined when R ▷◁ I is a quasi-Gorenstein ring.
In Section 2 of this paper, we provide an answer to the question [1, Remark
3.7], asking that when the ring R ▷◁ I satisfies Serre’s conditions (Rn) (see
Theorem 2.3). Also we determine when R ▷◁ I satisfies Serre’s condition (Sn).
In particular, we show that if R is an integral domain then R ▷◁ I satisfies
(Sn) if and only if R and I satisfy (Sn) (see Theorem 2.5). Then, in Corollary
2.9, we determine when R ▷◁ I is a normal ring. In Section 3, we generalize
D’Anna’s result to generalized Cohen-Macaulay rings and filter rings (we recall
the definitions of generalized Cohen-Macaulay rings and filter rings in suitable
places).

Next, we deal with some applications of a general construction, introduced
in [6], called amalgamated duplication of a ring along an ideal.
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Amalgamated ring 750

Let R be a commutative ring with unit element 1 and let I be a proper ideal
of R. Set

R ▷◁ I = {(r, s)|r, s ∈ R, s− r ∈ I}.
It is easy to check that R ▷◁ I is a subring of R×R with unit element (1, 1) (with
the usual componentwise operations) and that R ▷◁ I = {(r, r+i)|r ∈ R, i ∈ I}.
In the following proposition, we collect some of the main properties of the ring
R ▷◁ I from [5,6].

Let (R,m) be a Noetherian local ring and M be a finitely generated R-
module. We will denote the common length of the maximal M -regular se-
quences in m by depthM . Also, we will denote the Krull dimension of M by
dimM .

Proposition 1.1. Let R be a ring and let I be an ideal of R. Then the following
statements hold.

(1) ( [5, Page 509]) By introducing a multiplicative structure in the R-
module direct sum R⊕ I by setting

(r, i)(s, j) = (rs, rj + si+ ij),

one can show that the map f : R ⊕ I → R ▷◁ I defined by f((r, i)) =
(r, r+ i) is a ring isomorphism and R-module isomorphism too. More-
over, there is a split exact sequence of R-modules

0 → R
φ→ R ▷◁ I

ψ→ I → 0

where φ(r) = (r, r) for all r ∈ R, and ψ((r, s)) = s− r, for all (r, s) ∈
R ▷◁ I.

(2) ( [5, Propositions 5 and 7]) Let p be a prime ideal of R and set:

p0 ={(p, p+ i)|p ∈ p, i ∈ I ∩ p},

p1 ={(p, p+ i)|p ∈ p, i ∈ I} and

p2 ={(p+ i, p)|p ∈ p, i ∈ I}.

(a) If I ⊆ p, then p0 = p1 = p2 is a prime ideal of R ▷◁ I and it is the
unique prime ideal of R ▷◁ I lying over p and (R ▷◁ I)p0

∼= Rp ▷◁
Ip.

(b) If I ⊈ p, then p1 ̸= p2, p0 = p1 ∩ p2 and p1 and p2 are the only
prime ideals of R ▷◁ I lying over p.
Moreover we have, in case (a), R/p ∼= (R ▷◁ I)/p0 and, in case
(b), R/p ∼= (R ▷◁ I)/pi ( for i = 1, 2) and (R ▷◁ I)p1

∼= Rp
∼= (R ▷◁

I)p2 .
(3) ( [5, Corollary 6] and [6, Corollary 2.11]) R and R ▷◁ I have the same

Krull dimension and if R is a local ring with maximal ideal m, then
R ▷◁ I is local with maximal ideal m0 = {(r, r + i)|r ∈ m, i ∈ I}. Also,
if R is a Noetherian ring, then R ▷◁ I is a finitely generated R-module.



751 Sahandi and Shirmohammadi

Hence the extension R → R ▷◁ I is integral. Moreover, if R is local,
then

depth(R ▷◁ I) = min{depthR,depthR I} ≤ depthR I.

Throughout R stands for a commutative Noetherian ring with identity and
I denotes a proper ideal of R. Also, in the course of the paper, we will denote
the height of I by ht I.

2. Serre’s conditions (Rn) and (Sn)

In this section, we describe when the amalgamated duplication of a ring along
an ideal satisfies the Serre’s conditions (Rn) and (Sn) for a non-negative integer
n. Also in [1, Remark 3.7], the authors asked that when R ▷◁ I satisfies Serre’s
condition (Rn). Recall that a Noetherian ring R satisfies Serre’s condition
(Rn) if, for all p ∈ Spec(R) such that ht p ≤ n, the local ring Rp is regular.
By a regular local ring we mean a local Noetherian ring (R,m) such that the
maximal ideal m can be generated by dimR elements.

Lemma 2.1. If R ▷◁ I is an integral domain, then I = 0.

Proof. By [6, Corollary 2.5], O1 := {(0, i)|i ∈ I} and O2 := {(i, 0)|i ∈ I} are
the only minimal prime ideals of R ▷◁ I. Then, by assumption, O1 = O2 = 0.
Therefore I = 0. □

The following corollary shows that R ▷◁ I can never be a regular ring except
in the trivial case that I = 0.

Corollary 2.2. Let R be a local ring. If R ▷◁ I is a regular local ring, then
I = 0.

Proof. It is well known that a regular local ring is an integral domain. So the
assertion is clear from Lemma 2.1. □

The above corollary enables us to determine when R ▷◁ I satisfies Serre’s
condition (Rn).

Theorem 2.3. The ring R ▷◁ I satisfies Serre’s condition (Rn) if and only if
R satisfies (Rn) and Ip = 0 for each p ⊇ I such that ht p ≤ n.

Proof. Assume that R ▷◁ I satisfies (Rn). Then, by [1, Proposition 3.7], R also
satisfies (Rn). Now let p ⊇ I be such that ht p ≤ n. Then, by Proposition 1.1,
q := p0 = p1 = p2 and ht q ≤ n. So that (R ▷◁ I)q ∼= Rp ▷◁ Ip is a regular local
ring. Therefore Corollary 2.2 shows that Ip = 0. Conversely assume that R
satisfies (Rn) and Ip = 0 for each p ⊇ I such that ht p ≤ n. In order to prove
the assertion, let q ∈ Spec(R ▷◁ I) be such that ht q ≤ n and set p := q ∩ R.
Hence ht p ≤ n. If I ⊆ p, then q = p0 = p1 = p2. Thus, by the hypothesis,
Ip = 0. So that (R ▷◁ I)q ∼= Rp is regular by assumption. Finally if I ⊈ p, then
q = p1 or p2 and we have (R ▷◁ I)q ∼= Rp which is regular by assumption. □
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Corollary 2.4. Suppose that ht I > n. Then R ▷◁ I satisfies Serre’s condition
(Rn) if and only if R satisfies (Rn).

A finitely generated module M over a Noetherian ring R satisfies Serre’s
condition (Sn) if depthMp ≥ min{n,dimMp}, for all p ∈ Spec(R). In the
following theorem, we determine when R ▷◁ I satisfies Serre’s condition (Sn),
which is also a generalization of [1, Theorem 3.1].

Theorem 2.5. If R ▷◁ I satisfies Serre’s condition (Sn), then so does R and I.
The converse holds if Ip is of maximal Krull dimension for all p ∈ Spec(R). In
particular, if Ann(I) = 0 (e.g. R is an integral domain), then R ▷◁ I satisfies
(Sn) if and only if R and I satisfy (Sn).

Proof. Suppose that R ▷◁ I satisfies (Sn). Then, by [1, Theorem 3.1(2)], R
satisfies (Sn). Now let p ∈ Spec(R). If I ⊈ p, then Ip = Rp. Hence, we have

depth Ip = depthRp ≥ min{n, dimRp} = min{n, dim Ip}.

If I ⊆ p, then (R ▷◁ I)p0
∼= Rp ▷◁ Ip. Thus, by assumption, we have

depth Ip ≥ depth(R ▷◁ I)p0

≥min{n, dim(R ▷◁ I)p0}

=min{n, dim Ip}.

Therefore I satisfies (Sn).
Conversely suppose that R and I satisfy (Sn) and Ip is of maximal Krull

dimension for all p ∈ Spec(R). Let q ∈ Spec(R ▷◁ I) and put p := q ∩ R. If
I ⊈ p, then q = p1 or p2 and (R ▷◁ I)q ∼= Rp. Thus

depth(R ▷◁ I)q = depthRp ≥ min{n, dimRp} = min{n, dim(R ▷◁ I)q}.

If I ⊆ p, then (R ▷◁ I)q ∼= Rp ▷◁ Ip. Thus

depth(R ▷◁ I)q =depth(Rp ▷◁ Ip)

=min{depthRp,depth Ip}

≥min{n,dimRp, dim Ip}

=min{n,dimRp}

=min{n,dim(R ▷◁ I)q}.

Therefore R ▷◁ I satisfies (Sn).
For the in particular case, note that if Ann(I) = 0, then dim I = dim(R/Ann(I)) =

dimR. That is I is of maximal Krull dimension. □

Corollary 2.6. Let x ∈ R be a regular element. Then R ▷◁ Rx satisfies (Sn)
if and only if R satisfies (Sn).
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Note that if the ring R is Cohen-Macaulay, then R satisfies Serre’s condition
(Sn) for any integer n. Also, when dimR = d and R satisfies Serre’s condition
(Sd), then R is Cohen-Macaulay. Thus we obtain D’Anna’s result [5, Page 512].

Corollary 2.7. Let (R,m) be a local ring. Then R ▷◁ I is Cohen-Macaulay if
and only if R is Cohen-Macaulay and I is maximal Cohen-Macaulay.

Recall that a ring R is called normal if all its localizations are integrally
closed domains (see [3]). In [7] (see also [3, Theorem 2.2.22]) Serre characterized
normal Noetherian rings: a Noetherian ring is normal if and only if it satisfies
conditions (R1) and (S2). The next theorem describes the behavior of normality
under amalgamated duplication.

Lemma 2.8. Let I be an ideal of R such that ht I ≤ 1 and R ▷◁ I is normal.
Then I = 0.

Proof. Using Serre’s characterization of normality for R ▷◁ I in conjunction
with Theorems 2.3 and 2.5, one can deduce that R is normal and Ip = 0 for
each p ⊇ I such that ht p ≤ 1. Then R ∼= R1 × · · · × Rn for integrally closed
integral domains Ri by [3, Page 71]; so that one can write I ∼= I1 × · · · × In
for some ideals Ii of Ri such that ht Ii ≤ 1 for all i = 1, . . . , n. Now for each
1 ≤ i ≤ n, choose pi ⊇ Ii such that ht pi ≤ 1 and set p ∼= R1×· · ·×pi×· · ·×Rn.
Then p ⊇ I and ht p ≤ 1. Thus 0 = Ip ∼= (Ii)pi and since Ri is an integral
domain, we see that Ii = 0 for all i = 1, . . . , n. Therefore I = 0. □

Theorem 2.9. Let I be a nontrivial ideal of R. If R ▷◁ I is normal, then R is
normal, ht I ≥ 2 and I satisfies (S2). The converse holds if Ip is of maximal
Krull dimension for all p ∈ Spec(R). In particular, if Ann(I) = 0 (e.g. R is
an integral domain), then R ▷◁ I is normal if and only if R is normal, ht I ≥ 2
and I satisfies (S2).

Proof. Suppose that R ▷◁ I is normal. Then, one can use Serre’s characteri-
zation of normality together with Theorems 2.3 and 2.5 to deduce that R is
normal and that I satisfies (S2). Now if ht I ≤ 1, then, by Lemma 2.8, we have
I = 0 which is a contradiction. Conversely, again, Theorems 2.3 and 2.5 imply
that R ▷◁ I satisfies (R1) and (S2). Thus R ▷◁ I is a normal ring. □

3. Cohen-Macaulay rings

In [5], D’Anna showed that R ▷◁ I is Cohen-Macaulay if and only if R is
Cohen-Macaulay and I is maximal Cohen-Macaulay. In this section, we are
interested in establishing a similar result for generalized Cohen-Macaulay rings
and filter rings.

Let us recall that a finitely generated module M over a Noetherian local
ring (R,m) is said to be a generalized Cohen-Macaulay R-module if Hi

m(M),
the i-th local cohomology module of M with respect to m, is of finite length
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for all i < dimM . A local ring is called generalized Cohen-Macaulay if it is a
generalized Cohen-Macaulay module over itself. It is known that over a local
ring (R,m), a finitely generated R-module M is Cohen-Macaulay if and only
if Hi

m(M) = 0 for all i < dimM (see [2, Corollary 6.2.8]). Therefore every
Cohen-Macaulay module is a generalized Cohen-Macaulay module.

Remark 3.1. Let (R,m) be a local ring and I be a nontrivial ideal of R.
Consider the local ring homomorphism φ : R→ R ▷◁ I, where φ(r) = (r, r). By

[6, Theorem 3.5(a)(v)], we have m0 =
√
m(R ▷◁ I). Thus, by the Independence

Theorem of local cohomology [2, Theorem 4.2.1], we have

Hi
m0

(R ▷◁ I) ∼=Hi
m(R ▷◁ I)

∼=Hi
m(R⊕ I)

∼=Hi
m(R)⊕Hi

m(I)

as R-modules; so that R ▷◁ I is Cohen-Macaulay if and only if Hi
m0

(R ▷◁ I) = 0

for all i < dimR ▷◁ I if and only if Hi
m(R) = 0 = Hi

m(I) for all i < dimR
if and only if R is Cohen-Macaulay and I is maximal Cohen-Macaulay. Thus,
we obtain a second alternate proof of D’Anna’s result.

Next we generalize D’Anna’s result to generalized Cohen-Macaulay rings.
To this end, we need an auxiliary lemma.

In the course of next lemma and its proof, for a finite length R-module M ,
we use ℓR(M) to denote the length of M over R.

Lemma 3.2. Let (R,m) be a local ring and M be an R ▷◁ I-module. If
ℓR▷◁I(M) <∞, then, ℓR(M) <∞ and ℓR▷◁I(M) = ℓR(M). Here M is consid-
ered as an R-module via φ : R→ R ▷◁ I.

Proof. Let n := ℓR▷◁I(M). Then, there is a composition series 0 =M0 ⊂M1 ⊂
· · · ⊂ Mn = M of R ▷◁ I-modules such that Mi/Mi−1

∼= R ▷◁ I/m0 for all
i = 1, . . . , n. On the other hand, R ▷◁ I/m0

∼= R/m as R-modules. Thus,
we have a composition series of R-modules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M
such that Mi/Mi−1

∼= R/m for all i = 1, . . . , n. Therefore ℓR(M) < ∞ and
ℓR(M) = n. □

Theorem 3.3. Let (R,m) be a local ring and I be a nontrivial ideal of R. Then
R ▷◁ I is generalized Cohen-Macaulay if and only if R and I are generalized
Cohen-Macaulay and dim I ∈ {0,dimR}.

Proof. Suppose that R ▷◁ I is generalized Cohen-Macaulay. Then the local
cohomology module Hi

m0
(R ▷◁ I) is of finite length over R ▷◁ I for all i <

dim(R ▷◁ I). Thus, by the previous lemma, Hi
m0

(R ▷◁ I) has finite length

over R for i < dimR. Notice that we have the R-isomorphism Hi
m0

(R ▷◁

I) ∼= Hi
m(R) ⊕ Hi

m(I). Hence Hi
m(R) and Hi

m(I) have finite length over R
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for all i < dimR. Therefore R and I are generalized Cohen-Macaulay and
dim I = dimR or 0 by [2, Corollary 7.3.3]. Conversely suppose that R and I
are generalized Cohen-Macaulay and dim I = dimR or 0. Thus, there exists a
positive integer t such that mtHi

m(R) = 0 = mtHi
m(I) for all i < dimR. Hence

mtHi
m0

(R ▷◁ I) = 0 for all i < dim(R ▷◁ I). On the other hand, by [6, Theorem

3.5(a)(v)], we know m0 =
√

m(R ▷◁ I); so that there exists a positive integer
s such that ms0 ⊆ m(R ▷◁ I). Consequently mst0 H

i
m0

(R ▷◁ I) = 0 for all
i < dim(R ▷◁ I). Therefore R ▷◁ I is generalized Cohen-Macaulay. □

In [4], Cuong, Schenzel, and Trung introduced the notion of filter regular
sequence as an extension of the more known concept of regular sequences. By
using this notion they defined the filter modules.

Let (R,m) be a local ring and M be a finitely generated R-module. Recall
from [4] that a sequence x1, . . . , xn of elements in m is an M -filter regular
sequence if xi /∈ p for all p ∈ Ass(M/(x1, . . . , xi−1)M)\{m} and for all i =
1, . . . , n. M is called a filter module if every system of parameters of M is an
M -filter regular sequence. A ring is called filter ring if it is a filter module over
itself.

In general, every generalized Cohen-Macaulay module is a filter module.

Proposition 3.4. ( [4, Satz 2.5]) Let (R,m) be a local ring and M be a finitely
generated R-module such that dimM > 0. Then the following are equivalent:

(1) M is a filter module.
(2) depthMp = dimM − dimR/p, for all p ∈ Supp(M)\{m}.
(3) Mp is Cohen-Macaulay, for all p ∈ Supp(M)\{m}, and Supp(M) is

catenary and equidimensional.
(4) Mp is Cohen-Macaulay, of dimension dimMp = dimM −dimR/p, for

all p ∈ Supp(M)\{m}.

Finally, using above proposition, we obtain the following generalization of
D’Anna’s result to filter rings.

Theorem 3.5. Let (R,m) be a local ring and I be a nontrivial ideal of R.
Then R ▷◁ I is a filter ring if and only if R is a filter ring and Ip is maximal
Cohen-Macaulay for all p ∈ Spec(R)\{m}.

Proof. First suppose thatR ▷◁ I is a filter ring. Let p ∈ Spec(R)\{m}. Consider
the following two cases.
Case 1. If I ⊆ p, then p0 is the only prime ideal of R ▷◁ I lying over p, and
we have the isomorphisms (R ▷◁ I)p0

∼= Rp ▷◁ Ip and (R ▷◁ I)/p0 ∼= R/p. Note
that in this case p0 ̸= m0. Since R ▷◁ I is a filter ring, then, by Proposition 3.4,
(R ▷◁ I)p0 is Cohen-Macaulay and

dim(R ▷◁ I)p0 = dim(R ▷◁ I)− dim(R ▷◁ I)/p0.
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Therefore, the Cohen-Macaulayness of Rp ▷◁ Ip in conjunction with Proposition
2.7 implies that Rp is Cohen-Macaulay and Ip is maximal Cohen-Macaulay.
Also one has

dimRp =dim(Rp ▷◁ Ip)

=dim(R ▷◁ I)p0

=dim(R ▷◁ I)− dim(R ▷◁ I)/p0

=dimR− dimR/p.

Case 2. If I ⊈ p, then p1 and p2 are the only prime ideals of R ▷◁ I lying
over p, and we have the isomorphisms (R ▷◁ I)pi

∼= Rp and (R ▷◁ I)/pi ∼= R/p
for i = 1, 2. Again note that pi ̸= m0 for i = 1, 2. Thus, (R ▷◁ I)pi

∼= Rp is
Cohen-Macaulay and

dim(R ▷◁ I)pi = dim(R ▷◁ I)− dim(R ▷◁ I)/pi.

Note also that Ip = Rp is maximal Cohen-Macaulay. Hence, we obtain that

dimRp = dimR− dimR/p.

Therefore R is a filter ring by Proposition 3.4.
Conversely assume that R is a filter ring and Ip is maximal Cohen-Macaulay

for all p ∈ Spec(R)\{m}. Let q ∈ Spec(R ▷◁ I)\{m0} and set p = q ∩ R.
Consider the following two cases.
Case 1. If I ⊆ p, then we have (R ▷◁ I)q ∼= Rp ▷◁ Ip and (R ▷◁ I)/q ∼= R/p.
Since p ̸= m, by assumption, we have that Rp is Cohen-Macaulay and Ip is
maximal Cohen-Macaulay. Consequently (R ▷◁ I)q is Cohen-Macaulay and we
have the following equalities

dim(R ▷◁ I)q =dim(Rp ▷◁ Ip)

=dimRp

=dimR− dimR/p

=dim(R ▷◁ I)− dim(R ▷◁ I)/q.

Case 2. If I ⊈ p, then q = p1 or p2 and we have the isomorphisms (R ▷◁ I)q ∼=
Rp and (R ▷◁ I)/q ∼= R/p. Since p ̸= m, by assumption, we have that Rp is
Cohen-Macaulay. Consequently (R ▷◁ I)q is Cohen-Macaulay and we have the
following equality

dim(R ▷◁ I)q = dim(R ▷◁ I)− dim(R ▷◁ I)/q.

Therefore R ▷◁ I is a filter ring. □
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