ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 41 (2015), No. 3, pp. 749-757

Title:

Notes on amalgamated duplication of a ring along an ideal

Author(s):

P. Sahandi and N. Shirmohammadi

Published by Iranian Mathematical Society http://bims.irs.ir

NOTES ON AMALGAMATED DUPLICATION OF A RING ALONG AN IDEAL

P. SAHANDI AND N. SHIRMOHAMMADI*

(Communicated by Mohammad Taghi Dibaei)

ABSTRACT. In this paper, we study some ring theoretic properties of the amalgamated duplication ring $R\bowtie I$ of a commutative Noetherian ring R along an ideal I of R which was introduced by D'Anna and Fontana. Indeed, it is determined that when $R\bowtie I$ satisfies Serre's conditions (R_n) and (S_n) , and when is a normal ring, a generalized Cohen-Macaulay ring and finally a filter ring.

Keywords: Amalgamated ring, Cohen-Macaulay ring, Serre condition, normal ring, filter ring.

MSC(2010): Primary: 13A15; Secondary: 13C14, 13D45, 13E05.

1. Introduction

In [6], D'Anna and Fontana considered a construction obtained involving a ring R and an ideal $I \subset R$ that is denoted by $R \bowtie I$, called amalgamated duplication of R along I.

D'Anna in [5] studied that when $R \bowtie I$ is Cohen-Macaulay or a Gorenstein ring. In [1], the authors determined when $R \bowtie I$ is a quasi-Gorenstein ring. In Section 2 of this paper, we provide an answer to the question [1, Remark 3.7], asking that when the ring $R \bowtie I$ satisfies Serre's conditions (R_n) (see Theorem 2.3). Also we determine when $R \bowtie I$ satisfies Serre's condition (S_n) . In particular, we show that if R is an integral domain then $R \bowtie I$ satisfies (S_n) if and only if R and I satisfy (S_n) (see Theorem 2.5). Then, in Corollary 2.9, we determine when $R \bowtie I$ is a normal ring. In Section 3, we generalize D'Anna's result to generalized Cohen-Macaulay rings and filter rings (we recall the definitions of generalized Cohen-Macaulay rings and filter rings in suitable places).

Next, we deal with some applications of a general construction, introduced in [6], called amalgamated duplication of a ring along an ideal.

Article electronically published on June 15, 2015.

Received: 16 November 2013, Accepted: 19 April 2014.

^{*}Corresponding author.

Let R be a commutative ring with unit element 1 and let I be a proper ideal of R. Set

$$R \bowtie I = \{(r, s) | r, s \in R, s - r \in I\}.$$

It is easy to check that $R \bowtie I$ is a subring of $R \times R$ with unit element (1,1) (with the usual componentwise operations) and that $R \bowtie I = \{(r,r+i) | r \in R, i \in I\}$. In the following proposition, we collect some of the main properties of the ring $R \bowtie I$ from [5,6].

Let (R, \mathfrak{m}) be a Noetherian local ring and M be a finitely generated R-module. We will denote the common length of the maximal M-regular sequences in \mathfrak{m} by depth M. Also, we will denote the Krull dimension of M by $\dim M$.

Proposition 1.1. Let R be a ring and let I be an ideal of R. Then the following statements hold.

(1) ([5, Page 509]) By introducing a multiplicative structure in the R-module direct sum $R \oplus I$ by setting

$$(r,i)(s,j) = (rs,rj+si+ij),$$

one can show that the map $f: R \oplus I \to R \bowtie I$ defined by f((r,i)) = (r,r+i) is a ring isomorphism and R-module isomorphism too. Moreover, there is a split exact sequence of R-modules

$$0 \to R \xrightarrow{\varphi} R \bowtie I \xrightarrow{\psi} I \to 0$$

where $\varphi(r)=(r,r)$ for all $r\in R$, and $\psi((r,s))=s-r$, for all $(r,s)\in R\bowtie I$.

(2) ([5, Propositions 5 and 7]) Let \mathfrak{p} be a prime ideal of R and set:

$$\begin{aligned} &\mathfrak{p}_0 = \{(p, p+i) | p \in \mathfrak{p}, i \in I \cap \mathfrak{p} \}, \\ &\mathfrak{p}_1 = \{(p, p+i) | p \in \mathfrak{p}, i \in I \} \ and \\ &\mathfrak{p}_2 = \{(p+i, p) | p \in \mathfrak{p}, i \in I \}. \end{aligned}$$

- (a) If $I \subseteq \mathfrak{p}$, then $\mathfrak{p}_0 = \mathfrak{p}_1 = \mathfrak{p}_2$ is a prime ideal of $R \bowtie I$ and it is the unique prime ideal of $R \bowtie I$ lying over \mathfrak{p} and $(R \bowtie I)_{\mathfrak{p}_0} \cong R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}$.
- (b) If $I \nsubseteq \mathfrak{p}$, then $\mathfrak{p}_1 \neq \mathfrak{p}_2$, $\mathfrak{p}_0 = \mathfrak{p}_1 \cap \mathfrak{p}_2$ and \mathfrak{p}_1 and \mathfrak{p}_2 are the only prime ideals of $R \bowtie I$ lying over \mathfrak{p} .

 Moreover we have, in case (a), $R/\mathfrak{p} \cong (R \bowtie I)/\mathfrak{p}_0$ and, in case (b), $R/\mathfrak{p} \cong (R \bowtie I)/\mathfrak{p}_i$ (for i = 1, 2) and $(R \bowtie I)_{\mathfrak{p}_1} \cong R_{\mathfrak{p}} \cong (R \bowtie I)_{\mathfrak{p}_2}$.
- (3) ([5, Corollary 6] and [6, Corollary 2.11]) R and $R \bowtie I$ have the same Krull dimension and if R is a local ring with maximal ideal \mathfrak{m} , then $R\bowtie I$ is local with maximal ideal $\mathfrak{m}_0=\{(r,r+i)|r\in\mathfrak{m},i\in I\}$. Also, if R is a Noetherian ring, then $R\bowtie I$ is a finitely generated R-module.

Hence the extension $R \to R \bowtie I$ is integral. Moreover, if R is local, then

$$\operatorname{depth}(R \bowtie I) = \min\{\operatorname{depth} R, \operatorname{depth}_R I\} \leq \operatorname{depth}_R I.$$

Throughout R stands for a commutative Noetherian ring with identity and I denotes a proper ideal of R. Also, in the course of the paper, we will denote the height of I by ht I.

2. Serre's conditions (R_n) and (S_n)

In this section, we describe when the amalgamated duplication of a ring along an ideal satisfies the Serre's conditions (R_n) and (S_n) for a non-negative integer n. Also in [1, Remark 3.7], the authors asked that when $R \bowtie I$ satisfies Serre's condition (R_n) . Recall that a Noetherian ring R satisfies Serre's condition (R_n) if, for all $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\operatorname{ht} \mathfrak{p} \leq n$, the local ring $R_{\mathfrak{p}}$ is regular. By a regular local ring we mean a local Noetherian ring (R,\mathfrak{m}) such that the maximal ideal \mathfrak{m} can be generated by dim R elements.

Lemma 2.1. If $R \bowtie I$ is an integral domain, then I = 0.

Proof. By [6, Corollary 2.5], $O_1 := \{(0,i)|i \in I\}$ and $O_2 := \{(i,0)|i \in I\}$ are the only minimal prime ideals of $R \bowtie I$. Then, by assumption, $O_1 = O_2 = 0$. Therefore I = 0.

The following corollary shows that $R \bowtie I$ can never be a regular ring except in the trivial case that I = 0.

Corollary 2.2. Let R be a local ring. If $R \bowtie I$ is a regular local ring, then I = 0.

Proof. It is well known that a regular local ring is an integral domain. So the assertion is clear from Lemma 2.1. $\hfill\Box$

The above corollary enables us to determine when $R \bowtie I$ satisfies Serre's condition (R_n) .

Theorem 2.3. The ring $R \bowtie I$ satisfies Serre's condition (R_n) if and only if R satisfies (R_n) and $I_{\mathfrak{p}} = 0$ for each $\mathfrak{p} \supseteq I$ such that $\operatorname{ht} \mathfrak{p} \leq n$.

Proof. Assume that $R \bowtie I$ satisfies (R_n) . Then, by [1, Proposition 3.7], R also satisfies (R_n) . Now let $\mathfrak{p} \supseteq I$ be such that $\mathfrak{ht} \mathfrak{p} \le n$. Then, by Proposition 1.1, $\mathfrak{q} := \mathfrak{p}_0 = \mathfrak{p}_1 = \mathfrak{p}_2$ and $\mathfrak{ht} \mathfrak{q} \le n$. So that $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}$ is a regular local ring. Therefore Corollary 2.2 shows that $I_{\mathfrak{p}} = 0$. Conversely assume that R satisfies (R_n) and $I_{\mathfrak{p}} = 0$ for each $\mathfrak{p} \supseteq I$ such that $\mathfrak{ht} \mathfrak{p} \le n$. In order to prove the assertion, let $\mathfrak{q} \in \operatorname{Spec}(R \bowtie I)$ be such that $\mathfrak{ht} \mathfrak{q} \le n$ and set $\mathfrak{p} := \mathfrak{q} \cap R$. Hence $\mathfrak{ht} \mathfrak{p} \le n$. If $I \subseteq \mathfrak{p}$, then $\mathfrak{q} = \mathfrak{p}_0 = \mathfrak{p}_1 = \mathfrak{p}_2$. Thus, by the hypothesis, $I_{\mathfrak{p}} = 0$. So that $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}}$ is regular by assumption. Finally if $I \nsubseteq \mathfrak{p}$, then $\mathfrak{q} = \mathfrak{p}_1$ or \mathfrak{p}_2 and we have $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}}$ which is regular by assumption. \square

Corollary 2.4. Suppose that $\operatorname{ht} I > n$. Then $R \bowtie I$ satisfies Serre's condition (R_n) if and only if R satisfies (R_n) .

A finitely generated module M over a Noetherian ring R satisfies Serre's condition (S_n) if depth $M_{\mathfrak{p}} \geq \min\{n, \dim M_{\mathfrak{p}}\}$, for all $\mathfrak{p} \in \operatorname{Spec}(R)$. In the following theorem, we determine when $R \bowtie I$ satisfies Serre's condition (S_n) , which is also a generalization of [1, Theorem 3.1].

Theorem 2.5. If $R \bowtie I$ satisfies Serre's condition (S_n) , then so does R and I. The converse holds if $I_{\mathfrak{p}}$ is of maximal Krull dimension for all $\mathfrak{p} \in \operatorname{Spec}(R)$. In particular, if $\operatorname{Ann}(I) = 0$ (e.g. R is an integral domain), then $R \bowtie I$ satisfies (S_n) if and only if R and I satisfy (S_n) .

Proof. Suppose that $R \bowtie I$ satisfies (S_n) . Then, by [1, Theorem 3.1(2)], R satisfies (S_n) . Now let $\mathfrak{p} \in \operatorname{Spec}(R)$. If $I \nsubseteq \mathfrak{p}$, then $I_{\mathfrak{p}} = R_{\mathfrak{p}}$. Hence, we have

$$\operatorname{depth} I_{\mathfrak{p}} = \operatorname{depth} R_{\mathfrak{p}} \ge \min\{n, \dim R_{\mathfrak{p}}\} = \min\{n, \dim I_{\mathfrak{p}}\}.$$

If $I \subseteq \mathfrak{p}$, then $(R \bowtie I)_{\mathfrak{p}_0} \cong R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}$. Thus, by assumption, we have

$$\begin{aligned} \operatorname{depth} I_{\mathfrak{p}} &\geq \operatorname{depth}(R \bowtie I)_{\mathfrak{p}_0} \\ &\geq \min\{n, \dim(R \bowtie I)_{\mathfrak{p}_0}\} \\ &= \min\{n, \dim I_{\mathfrak{p}}\}. \end{aligned}$$

Therefore I satisfies (S_n) .

Conversely suppose that R and I satisfy (S_n) and $I_{\mathfrak{p}}$ is of maximal Krull dimension for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Let $\mathfrak{q} \in \operatorname{Spec}(R \bowtie I)$ and put $\mathfrak{p} := \mathfrak{q} \cap R$. If $I \nsubseteq \mathfrak{p}$, then $\mathfrak{q} = \mathfrak{p}_1$ or \mathfrak{p}_2 and $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}}$. Thus

$$\operatorname{depth}(R \bowtie I)_{\mathfrak{q}} = \operatorname{depth} R_{\mathfrak{p}} \ge \min\{n, \dim R_{\mathfrak{p}}\} = \min\{n, \dim(R \bowtie I)_{\mathfrak{q}}\}.$$

If $I \subseteq \mathfrak{p}$, then $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}$. Thus

$$\begin{aligned} \operatorname{depth}(R \bowtie I)_{\mathfrak{q}} &= \operatorname{depth}(R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}) \\ &= \min \{ \operatorname{depth} R_{\mathfrak{p}}, \operatorname{depth} I_{\mathfrak{p}} \} \\ &\geq \min \{ n, \dim R_{\mathfrak{p}}, \dim I_{\mathfrak{p}} \} \\ &= \min \{ n, \dim R_{\mathfrak{p}} \} \\ &= \min \{ n, \dim(R \bowtie I)_{\mathfrak{q}} \}. \end{aligned}$$

Therefore $R \bowtie I$ satisfies (S_n) .

For the in particular case, note that if $\operatorname{Ann}(I) = 0$, then $\dim I = \dim(R/\operatorname{Ann}(I)) = \dim R$. That is I is of maximal Krull dimension.

Corollary 2.6. Let $x \in R$ be a regular element. Then $R \bowtie Rx$ satisfies (S_n) if and only if R satisfies (S_n) .

Note that if the ring R is Cohen-Macaulay, then R satisfies Serre's condition (S_n) for any integer n. Also, when dim R = d and R satisfies Serre's condition (S_d) , then R is Cohen-Macaulay. Thus we obtain D'Anna's result [5, Page 512].

Corollary 2.7. Let (R, \mathfrak{m}) be a local ring. Then $R \bowtie I$ is Cohen-Macaulay if and only if R is Cohen-Macaulay and I is maximal Cohen-Macaulay.

Recall that a ring R is called *normal* if all its localizations are integrally closed domains (see [3]). In [7] (see also [3, Theorem 2.2.22]) Serre characterized normal Noetherian rings: a Noetherian ring is normal if and only if it satisfies conditions (R_1) and (S_2) . The next theorem describes the behavior of normality under amalgamated duplication.

Lemma 2.8. Let I be an ideal of R such that $\operatorname{ht} I \leq 1$ and $R \bowtie I$ is normal. Then I = 0.

Proof. Using Serre's characterization of normality for $R \bowtie I$ in conjunction with Theorems 2.3 and 2.5, one can deduce that R is normal and $I_{\mathfrak{p}} = 0$ for each $\mathfrak{p} \supseteq I$ such that ht $\mathfrak{p} \le 1$. Then $R \cong R_1 \times \cdots \times R_n$ for integrally closed integral domains R_i by [3, Page 71]; so that one can write $I \cong I_1 \times \cdots \times I_n$ for some ideals I_i of R_i such that ht $I_i \le 1$ for all $i = 1, \ldots, n$. Now for each $1 \le i \le n$, choose $\mathfrak{p}_i \supseteq I_i$ such that ht $\mathfrak{p}_i \le 1$ and set $\mathfrak{p} \cong R_1 \times \cdots \times \mathfrak{p}_i \times \cdots \times R_n$. Then $\mathfrak{p} \supseteq I$ and ht $\mathfrak{p} \le 1$. Thus $0 = I_{\mathfrak{p}} \cong (I_i)_{\mathfrak{p}_i}$ and since R_i is an integral domain, we see that $I_i = 0$ for all $i = 1, \ldots, n$. Therefore I = 0.

Theorem 2.9. Let I be a nontrivial ideal of R. If $R \bowtie I$ is normal, then R is normal, ht $I \geq 2$ and I satisfies (S_2) . The converse holds if $I_{\mathfrak{p}}$ is of maximal Krull dimension for all $\mathfrak{p} \in \operatorname{Spec}(R)$. In particular, if $\operatorname{Ann}(I) = 0$ (e.g. R is an integral domain), then $R \bowtie I$ is normal if and only if R is normal, ht $I \geq 2$ and I satisfies (S_2) .

Proof. Suppose that $R \bowtie I$ is normal. Then, one can use Serre's characterization of normality together with Theorems 2.3 and 2.5 to deduce that R is normal and that I satisfies (S_2) . Now if ht $I \leq 1$, then, by Lemma 2.8, we have I = 0 which is a contradiction. Conversely, again, Theorems 2.3 and 2.5 imply that $R \bowtie I$ satisfies (R_1) and (S_2) . Thus $R \bowtie I$ is a normal ring.

3. Cohen-Macaulay rings

In [5], D'Anna showed that $R \bowtie I$ is Cohen-Macaulay if and only if R is Cohen-Macaulay and I is maximal Cohen-Macaulay. In this section, we are interested in establishing a similar result for generalized Cohen-Macaulay rings and filter rings.

Let us recall that a finitely generated module M over a Noetherian local ring (R, \mathfrak{m}) is said to be a generalized Cohen-Macaulay R-module if $H^i_{\mathfrak{m}}(M)$, the i-th local cohomology module of M with respect to \mathfrak{m} , is of finite length

for all $i < \dim M$. A local ring is called generalized Cohen-Macaulay if it is a generalized Cohen-Macaulay module over itself. It is known that over a local ring (R, \mathfrak{m}) , a finitely generated R-module M is Cohen-Macaulay if and only if $H^i_{\mathfrak{m}}(M) = 0$ for all $i < \dim M$ (see [2, Corollary 6.2.8]). Therefore every Cohen-Macaulay module is a generalized Cohen-Macaulay module.

Remark 3.1. Let (R, \mathfrak{m}) be a local ring and I be a nontrivial ideal of R. Consider the local ring homomorphism $\varphi: R \to R \bowtie I$, where $\varphi(r) = (r, r)$. By [6, Theorem 3.5(a)(v)], we have $\mathfrak{m}_0 = \sqrt{\mathfrak{m}(R \bowtie I)}$. Thus, by the Independence Theorem of local cohomology [2, Theorem 4.2.1], we have

$$\begin{split} H^i_{\mathfrak{m}_0}(R\bowtie I) &\cong H^i_{\mathfrak{m}}(R\bowtie I) \\ &\cong H^i_{\mathfrak{m}}(R\oplus I) \\ &\cong H^i_{\mathfrak{m}}(R) \oplus H^i_{\mathfrak{m}}(I) \end{split}$$

as R-modules; so that $R \bowtie I$ is Cohen-Macaulay if and only if $H^i_{\mathfrak{m}_0}(R \bowtie I) = 0$ for all $i < \dim R \bowtie I$ if and only if $H^i_{\mathfrak{m}}(R) = 0 = H^i_{\mathfrak{m}}(I)$ for all $i < \dim R$ if and only if R is Cohen-Macaulay and I is maximal Cohen-Macaulay. Thus, we obtain a second alternate proof of D'Anna's result.

Next we generalize D'Anna's result to generalized Cohen-Macaulay rings. To this end, we need an auxiliary lemma.

In the course of next lemma and its proof, for a finite length R-module M, we use $\ell_R(M)$ to denote the length of M over R.

Lemma 3.2. Let (R,\mathfrak{m}) be a local ring and M be an $R\bowtie I$ -module. If $\ell_{R\bowtie I}(M)<\infty$, then, $\ell_R(M)<\infty$ and $\ell_{R\bowtie I}(M)=\ell_R(M)$. Here M is considered as an R-module via $\varphi:R\to R\bowtie I$.

Proof. Let $n:=\ell_{R\bowtie I}(M)$. Then, there is a composition series $0=M_0\subset M_1\subset\cdots\subset M_n=M$ of $R\bowtie I$ -modules such that $M_i/M_{i-1}\cong R\bowtie I/\mathfrak{m}_0$ for all $i=1,\ldots,n$. On the other hand, $R\bowtie I/\mathfrak{m}_0\cong R/\mathfrak{m}$ as R-modules. Thus, we have a composition series of R-modules $0=M_0\subset M_1\subset\cdots\subset M_n=M$ such that $M_i/M_{i-1}\cong R/\mathfrak{m}$ for all $i=1,\ldots,n$. Therefore $\ell_R(M)<\infty$ and $\ell_R(M)=n$.

Theorem 3.3. Let (R, \mathfrak{m}) be a local ring and I be a nontrivial ideal of R. Then $R \bowtie I$ is generalized Cohen-Macaulay if and only if R and I are generalized Cohen-Macaulay and dim $I \in \{0, \dim R\}$.

Proof. Suppose that $R \bowtie I$ is generalized Cohen-Macaulay. Then the local cohomology module $H^i_{\mathfrak{m}_0}(R \bowtie I)$ is of finite length over $R \bowtie I$ for all $i < \dim(R \bowtie I)$. Thus, by the previous lemma, $H^i_{\mathfrak{m}_0}(R \bowtie I)$ has finite length over R for $i < \dim R$. Notice that we have the R-isomorphism $H^i_{\mathfrak{m}_0}(R \bowtie I) \cong H^i_{\mathfrak{m}}(R) \oplus H^i_{\mathfrak{m}}(I)$. Hence $H^i_{\mathfrak{m}}(R)$ and $H^i_{\mathfrak{m}}(I)$ have finite length over R

for all $i < \dim R$. Therefore R and I are generalized Cohen-Macaulay and $\dim I = \dim R$ or 0 by [2, Corollary 7.3.3]. Conversely suppose that R and I are generalized Cohen-Macaulay and $\dim I = \dim R$ or 0. Thus, there exists a positive integer t such that $\mathfrak{m}^t H^i_{\mathfrak{m}}(R) = 0 = \mathfrak{m}^t H^i_{\mathfrak{m}}(I)$ for all $i < \dim R$. Hence $\mathfrak{m}^t H^i_{\mathfrak{m}_0}(R \bowtie I) = 0$ for all $i < \dim(R \bowtie I)$. On the other hand, by [6, Theorem $3.5(\mathfrak{a})(\mathfrak{v})$], we know $\mathfrak{m}_0 = \sqrt{\mathfrak{m}(R \bowtie I)}$; so that there exists a positive integer s such that $\mathfrak{m}_0^s \subseteq \mathfrak{m}(R \bowtie I)$. Consequently $\mathfrak{m}_0^{st} H^i_{\mathfrak{m}_0}(R \bowtie I) = 0$ for all $i < \dim(R \bowtie I)$. Therefore $R \bowtie I$ is generalized Cohen-Macaulay.

In [4], Cuong, Schenzel, and Trung introduced the notion of filter regular sequence as an extension of the more known concept of regular sequences. By using this notion they defined the filter modules.

Let (R, \mathfrak{m}) be a local ring and M be a finitely generated R-module. Recall from [4] that a sequence x_1, \ldots, x_n of elements in \mathfrak{m} is an M-filter regular sequence if $x_i \notin \mathfrak{p}$ for all $\mathfrak{p} \in \mathrm{Ass}(M/(x_1, \ldots, x_{i-1})M) \setminus \{\mathfrak{m}\}$ and for all $i = 1, \ldots, n$. M is called a *filter module* if every system of parameters of M is an M-filter regular sequence. A ring is called filter ring if it is a filter module over itself

In general, every generalized Cohen-Macaulay module is a filter module.

Proposition 3.4. ([4, Satz 2.5]) Let (R, \mathfrak{m}) be a local ring and M be a finitely generated R-module such that dim M > 0. Then the following are equivalent:

- (1) M is a filter module.
- (2) depth $M_{\mathfrak{p}} = \dim M \dim R/\mathfrak{p}$, for all $\mathfrak{p} \in \operatorname{Supp}(M) \setminus \{\mathfrak{m}\}$.
- (3) $M_{\mathfrak{p}}$ is Cohen-Macaulay, for all $\mathfrak{p} \in \operatorname{Supp}(M) \setminus \{\mathfrak{m}\}$, and $\operatorname{Supp}(M)$ is catenary and equidimensional.
- (4) $M_{\mathfrak{p}}$ is Cohen-Macaulay, of dimension $\dim M_{\mathfrak{p}} = \dim M \dim R/\mathfrak{p}$, for all $\mathfrak{p} \in \operatorname{Supp}(M) \setminus \{\mathfrak{m}\}$.

Finally, using above proposition, we obtain the following generalization of D'Anna's result to filter rings.

Theorem 3.5. Let (R, \mathfrak{m}) be a local ring and I be a nontrivial ideal of R. Then $R \bowtie I$ is a filter ring if and only if R is a filter ring and $I_{\mathfrak{p}}$ is maximal Cohen-Macaulay for all $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$.

Proof. First suppose that $R \bowtie I$ is a filter ring. Let $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$. Consider the following two cases.

Case 1. If $I \subseteq \mathfrak{p}$, then \mathfrak{p}_0 is the only prime ideal of $R \bowtie I$ lying over \mathfrak{p} , and we have the isomorphisms $(R \bowtie I)_{\mathfrak{p}_0} \cong R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}$ and $(R \bowtie I)/\mathfrak{p}_0 \cong R/\mathfrak{p}$. Note that in this case $\mathfrak{p}_0 \neq \mathfrak{m}_0$. Since $R \bowtie I$ is a filter ring, then, by Proposition 3.4, $(R \bowtie I)_{\mathfrak{p}_0}$ is Cohen-Macaulay and

$$\dim(R \bowtie I)_{\mathfrak{p}_0} = \dim(R \bowtie I) - \dim(R \bowtie I)/\mathfrak{p}_0.$$

Therefore, the Cohen-Macaulayness of $R_{\mathfrak{p}}\bowtie I_{\mathfrak{p}}$ in conjunction with Proposition 2.7 implies that $R_{\mathfrak{p}}$ is Cohen-Macaulay and $I_{\mathfrak{p}}$ is maximal Cohen-Macaulay. Also one has

$$\dim R_{\mathfrak{p}} = \dim(R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}})$$

$$= \dim(R \bowtie I)_{\mathfrak{p}_{0}}$$

$$= \dim(R \bowtie I) - \dim(R \bowtie I)/\mathfrak{p}_{0}$$

$$= \dim R - \dim R/\mathfrak{p}.$$

Case 2. If $I \nsubseteq \mathfrak{p}$, then \mathfrak{p}_1 and \mathfrak{p}_2 are the only prime ideals of $R \bowtie I$ lying over \mathfrak{p} , and we have the isomorphisms $(R \bowtie I)_{\mathfrak{p}_i} \cong R_{\mathfrak{p}}$ and $(R \bowtie I)/\mathfrak{p}_i \cong R/\mathfrak{p}$ for i = 1, 2. Again note that $\mathfrak{p}_i \neq \mathfrak{m}_0$ for i = 1, 2. Thus, $(R \bowtie I)_{\mathfrak{p}_i} \cong R_{\mathfrak{p}}$ is Cohen-Macaulay and

$$\dim(R\bowtie I)_{\mathfrak{p}_i}=\dim(R\bowtie I)-\dim(R\bowtie I)/\mathfrak{p}_i.$$

Note also that $I_{\mathfrak{p}} = R_{\mathfrak{p}}$ is maximal Cohen-Macaulay. Hence, we obtain that

$$\dim R_{\mathfrak{p}} = \dim R - \dim R/\mathfrak{p}.$$

Therefore R is a filter ring by Proposition 3.4.

Conversely assume that R is a filter ring and $I_{\mathfrak{p}}$ is maximal Cohen-Macaulay for all $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \{\mathfrak{m}\}$. Let $\mathfrak{q} \in \operatorname{Spec}(R \bowtie I) \setminus \{\mathfrak{m}_0\}$ and set $\mathfrak{p} = \mathfrak{q} \cap R$. Consider the following two cases.

Case 1. If $I \subseteq \mathfrak{p}$, then we have $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}} \bowtie I_{\mathfrak{p}}$ and $(R \bowtie I)/\mathfrak{q} \cong R/\mathfrak{p}$. Since $\mathfrak{p} \neq \mathfrak{m}$, by assumption, we have that $R_{\mathfrak{p}}$ is Cohen-Macaulay and $I_{\mathfrak{p}}$ is maximal Cohen-Macaulay. Consequently $(R \bowtie I)_{\mathfrak{q}}$ is Cohen-Macaulay and we have the following equalities

$$\begin{aligned} \dim(R\bowtie I)_{\mathfrak{q}} &= \dim(R_{\mathfrak{p}}\bowtie I_{\mathfrak{p}}) \\ &= \dim R_{\mathfrak{p}} \\ &= \dim R - \dim R/\mathfrak{p} \\ &= \dim(R\bowtie I) - \dim(R\bowtie I)/\mathfrak{q}. \end{aligned}$$

Case 2. If $I \nsubseteq \mathfrak{p}$, then $\mathfrak{q} = \mathfrak{p}_1$ or \mathfrak{p}_2 and we have the isomorphisms $(R \bowtie I)_{\mathfrak{q}} \cong R_{\mathfrak{p}}$ and $(R \bowtie I)/\mathfrak{q} \cong R/\mathfrak{p}$. Since $\mathfrak{p} \neq \mathfrak{m}$, by assumption, we have that $R_{\mathfrak{p}}$ is Cohen-Macaulay. Consequently $(R \bowtie I)_{\mathfrak{q}}$ is Cohen-Macaulay and we have the following equality

$$\dim(R \bowtie I)_{\mathfrak{q}} = \dim(R \bowtie I) - \dim(R \bowtie I)/\mathfrak{q}.$$

Therefore $R \bowtie I$ is a filter ring.

Acknowledgments

Parviz Sahandi was in part supported by a grant from IPM (No. 91130030).

References

- [1] A. Bagheri, M. Salimi, E. Tavasoli and S. Yassemi, A construction of quasi-Gorenstein rings, *J. Algebra Appl.* **11** (2012), no. 1, 1250013, 9 pages.
- [2] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
- [3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1998.
- [4] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73.
- [5] M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519.
- [6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459.
- [7] J. P. Serre, Algèbre Locale, Multiplicites, Lecture Notes in Mathematics, 11, Springer-Verlag, Berlin-New York, 1965.

(Parviz Sahandi) Department of Mathematics, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran, and, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

 $E ext{-}mail\ address: sahandi@tabrizu.ac.ir}$

(Nematollah Shirmohammadi) Department of Mathematics, University of Tabriz, P.O.Box 5166616471, Tabriz, Iran

E-mail address: shirmohammadi@tabrizu.ac.ir