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Abstract. In this paper, we first present a new important property for
Bouligand tangent cone (contingent cone) of a star-shaped set. We then

establish optimality conditions for Pareto minima and proper ideal effi-
ciencies in nonsmooth vector optimization problems by means of Bouli-
gand tangent cone of image set, where the objective is generalized cone

convex set-valued map, in general real normed spaces.
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1. Introduction

In the last several decades, nonsmooth set-valued vector optimization prob-
lem has attracted increasing attentions. Various notions of efficiency for vector
optimization problems with set-valued maps have been introduced, such as
Pareto minima [5], weak efficient points, ε−weak efficient points [6, 8, 15, 16],
strong minima [2, 10], proper efficiencies [12] and isolated minima [4]. To con-
sider optimality conditions for these efficiencies, many generalized derivatives
of objective maps have been introduced with fruitful applications. Such as
the generalized subderivative [2], the contingent derivative and the Dini deriv-
ative [5, 6], the Clarke derivative and adjacent derivative [16], the contingent
epiderivative [8, 10] and the generalized contingent epiderivative [3].

In most of references, both necessary and sufficient optimality conditions
obtained in terms of generalized derivatives are only for weak Pareto efficien-
cies of vector optimization problems (see, for examples, [4–6, 10, 12, 15] and
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references), and the well-known optimality conditions for Pareto efficiency by
means of Bouligand tangent cone of image set are only sufficient (see, [9]). Un-
der what assumptions, do Bouligand tangent cone of image set present also
necessary conditions for Pareto efficiency in vector optimization problems? On
the other hand, we observe also that the notion of proper ideal points for vec-
tor optimization problem was introduced in [1], but rather few results on it
along with optimality conditions have been developed. So the main results
in this paper are based on Bouligand tangent cone of image set to establish
optimality conditions for Pareto minima and proper ideal points in vector op-
timization problems with generalized cone convex set-valued map. Before this,
some useful properties and new results (see, Proposition 2.3 and Corollary 2.7)
for contingent cone of a star-shaped set are also highlighted, which are stronger
than the corresponding results obtained earlier by Jahn ( [11], Chapter 4) and
can help us obtain optimality conditions for vector optimization problems.

The organization of the paper is as follows. The preliminaries and the no-
tations, especially an important property for Bouligand tangent cone are pre-
sented in section 2. Necessary and sufficient conditions for the existence of
Pareto minimum and proper ideal efficiency by means of Bouligand tangent
cone of image set in nonsmooth set-valued vector optimization problems, the
main results, are established in section 3. Section 4 contains some concluding
remarks.

2. Preliminaries and notations

Throughout the paper, if not otherwise stated, let X,Y be real normed
spaces, D ⊂ Y be a closed, convex and pointed cone. F : X → 2Y be a
set-valued map. The graph, the epigraph and the domain of F are defined
respectively by

grF = {(x, y) ∈ X × Y : y ∈ F (x)},
epiF = {(x, y) ∈ X × Y : y ∈ F (x) +D},

and
domF = {x ∈ X : F (x) ̸= ∅}.

For A ⊂ X, the sets clA, intA, coneA and extA denote respectively by
closure, the interior, the cone hull and the extreme point of A.

Furthermore,
coneA = {λa : λ ≥ 0, a ∈ A},

and a point x0 ∈ A is called an extreme point of A, if

x0 = λx1 + (1− λ)x2,

for some x1, x2 ∈ A and some λ ∈ (0, 1) implies that x1 = x2 = x0.
It is well known that if A is a convex set, so are clA and coneA.
A is called star-shaped at x0 (x0 ∈ A), if for all x ∈ A and λ ∈ [0, 1], one

has (1− λ)x0 + λx ∈ A.
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The Bouligand tangent cone (contingent cone) of A at x0 is defined as,

T (A, x0) = {u ∈ X : ∃tn → 0+,∃un → u,∃n0 ∈ N, ∀n ≥ n0, x0 + tnun ∈ A}.

Proposition 2.1 (see [11], Chapter 4). Let x0 ∈ A, if A is star-shaped at x0,
then A− x0 ⊆ T (A, x0).

In the following sections, we always denote the origin as θ.
We say that A ⊂ X satisfies the property 𝟋, if for any x ∈ A and λ ∈ [0, 1],

one has λx ∈ A. Let θ ∈ A, we say thatA satisfies the property Λ near θ, if there
exists a neighbourhood B(θ, ε) of θ such that for any x ∈ B(θ, ε)∩ (clA \ intA)
and λ ∈ [0, 1], one has λx ∈ clA \ intA, where B(θ, ε) denotes the ball centered
at θ with radius ε.

Corollary 2.2. Let A ⊂ X be star-shaped at x0, then A − x0 satisfies the
property 𝟋.

Proof. Take any x ∈ A and t ∈ [0, 1], we have t(x− x0) + x0 = tx+ (1− t)x0.
Therefore t(x− x0) + x0 ∈ A follows immediately from the assumption that A
star-shaped at x0, which implies t(x−x0) ∈ A−x0. The proof is complete. □

In the following sections, the n is always in a index set Ξ.

Proposition 2.3. Let A ⊆ X and intA ̸= ∅. If A satisfies the property 𝟋 and
Λ near θ or the origin θ, then cone(clA)=cl(coneA).

Proof. Obviously, θ ∈ cone(clA) and θ ∈ cl(coneA), so we consider only u ̸= θ
in the sequel. We first prove the inclusion cone(clA) ⊆ cl(coneA). Let u ∈
cone(clA), then there exists a ∈ clA, t > 0 such that u = ta. Furthermore,
following a ∈ clA, so there exists {an} ⊂ A such that an → a. For each n,
set un = tan, then un ∈ coneA and un = tan → ta = u, i.e., un → u, which
implies u ∈ cl(coneA).

For the contrary inclusion, we should only prove cone(clA) is a closed cone.
Let {un} ⊂ cone(clA) and un → u. Next, we will prove u ∈ cone(clA). In fact,
we conclude that there exist xn ∈ X and xn → θ such that u + xn = un ∈
cone(clA). So, for each n, there exist tn > 0, an ∈ clA such that

(2.1) u+ xn = un = tnan.

If an → θ, then tn → +∞ as n → +∞. For each n, we have
u

tn
+

xn

tn
= an ∈ clA.

For given ε > 0, there exists n0 such that an ∈ B(θ, ε), ∀ n ≥ n0. We consider
{an} into two cases to discuss.

(i) If {an} ⊂ clA \ intA as n ≥ n0, by assumption, we can conclude that
there exists a subsequence {anm} ⊆ {an} such that

(2.2) anm = λnman0 ,
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with λnm ∈ (0, 1] and n0 ≥ n0. In fact, since tnan → u, so for any ε1 > 0,
there exists n1 ≥ n0 such that ∥tnan − u∥ ≤ ε1 as n ≥ n1. Otherwise, if for
any given n0 ≥ n1 and λ ∈ (0, 1],

(2.3) λan0 /∈ {an},

then we can take some tn from {tn} such that
tn0

tn
< 1 as n ≥ n0. From

(2.3), it follows that
tn0

tn
an0 /∈ {an} as n ≥ n0. Thus ∥tn(

tn0

tn
an0) − u∥ =

∥tn0an0 − u∥ > ε1, a contradiction. So (2.2) holds. Again from tnan → u, so,
tnmanm = tnmλnman0 → u. Furthermore, an0 is fixed, so, tnmλnm → t0. That
is, tnmλnm = t0 + tnm with tnm → 0. Thus, tnmanm = (t0 + tnm)an0 = t0an0 +
tnman0 → t0an0 . Considering the uniqueness of limits, we have u = t0an0 with
an0 ∈ clA \ intA, which implies u ∈ cone(clA).

(ii) If {an} ⊂ intA, then for any n, ∃ εn such that B(an, εn) ⊂ A. From
tnan = u + xn, one has an − u

tn
= xn

tn
and an ∈ B(θ, ε) as n large enough.

If there exists n0 such that ∥an0 − u
tn0

∥ =
∥xn0∥
tn0

≤ εn0 , then u
tn0

∈ A, so,

u ∈ cone(clA). If, for any n, ∥an − u
tn
∥ = ∥xn

tn
∥ > εn, then this implies

there exists an ∈ clA \ intA such that ∥an − an∥ ≤ ∥xn∥
tn

. But, ∥tnan − u∥ =

∥tnan − tnan + tnan − u∥ ≤ tn
∥xn∥
tn

+ ∥xn∥ = 2∥xn∥ → 0. Thus, tnan → u.

Considering an ∈ clA \ intA and (i), we conclude that u ∈ cone(clA).
If an ↛ θ, then {tn} is bounded. Set t = supn{tn}, then t ≥ tn and

t ∈ R+. Dividing t by (2.1) and, for each n, set bn = tnan

t = u
t + xn

t . By
the assumption that A satisfies the property 𝟋, we get bn ∈ A and bn → u

t as
n → ∞. Thus, u

t ∈ clA, i,e., u ∈ cone(clA). From the above two cases, we
conclude that cone(clA) is a closed cone, so, cl(coneA) ⊆ cone(clA). The proof
is complete. □

The following two examples will illustrate the importance of the property Λ
for a set.

Example 2.4. Consider the set A = {(x, y) ∈ R2 : 0 ≤ y ≤
√
x, x ≥ 0}, then

one has
clconeA = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},

but,
cone(clA) = {(x, y) ∈ R2 : x > 0, y ≥ 0} ∪ {(0, 0)}.

Obviously, clconeA̸=cone(clA).

We note that A satisfies the property 𝟋, but not satisfies Λ.

Example 2.5. Consider A = {(x, y) : 0 ≤ y ≤ 2x ≤ 1
2} ∪ {(x, y) : 0 ≤ y ≤√

x, x ≥ 1
4}, it is easy to see that

cone(clA) = {(x, y) ∈ R2 : 0 ≤ y ≤ 2x, x ≥ 0} = clconeA.

Obviously, the set A satisfies both 𝟋 and Λ.
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Corollary 2.6. Let A be a cone in X and satisfy the property Λ near the set
θ, then cone(clA)=clA.

Corollary 2.7. Let x0 ∈ A. If A is a closed subset of X and star-shaped at
x0 with intA ̸= ∅ such that A − x0 satisfies the property Λ near the θ, then
coneA=cl(coneA).

Proposition 2.8 ( [11], Chapter 4). Let x0 ∈ A ⊂ X, if A is star-shaped at
x0, then T (A, x0) = cl(cone(A− x0)).

The following corollary states a new property for Bouligand tangent cone
(contingent cone) of a star-shaped set.

Corollary 2.9. Let x0 ∈ A ⊂ X. If A is a closed set and star-shaped at x0

with intA ̸= ∅ such that A−x0 satisfies the property Λ near θ, then T (A, x0) =
cone(A− x0).

Proof. By Proposition 2.6, one has T (A, x0) = cl(cone(A−x0)). Furthermore,
applying Corollary 2.5, one has

cl(cone(A− x0)) = cone(A− x0),

which implies T (A, x0) = cone(A− x0). □

Let A be a subset of X, F : A → 2Y be a set-valued map, D ⊂ Y be a closed
convex and pointed cone. We recall that F is closed-valued on A, if F (A) is a
closed subset of Y , and we call that F is D−closed-valued on A, if F (A)+D is
a closed subset of Y . We say that F is D−convex-along-rays at (x0, y0) ∈ grF ,
if A is star-shaped at x0 and (1 − t)y0 + tF (x) ⊆ F ((1 − t)x0 + tx) + D for
all x ∈ A and 0 < t < 1, and F is convex-along-rays at (x0, y0) ∈ grF if A is
star-shaped at x0 and (1− t)y0 + tF (x) ⊆ F ((1− t)x0 + tx) for all x ∈ A and
0 < t < 1. Obviously, if F is D−convex-along-rays at (x0, y0), then F (A) +D
is star-shaped at y0. Similarly, if F convex-along-rays at (x0, y0), then F (A) is
star-shaped at y0.

Now we turn attention to a D−covexlike set-valued maps F . Let A be a
nonempty subset of X. F is called D−covexlike, if for all x1, x2 ∈ A and
λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F (A) +D.

Remark 2.10. F is D−covexlike on A if and only if F (A) + D is a convex
subset of Y .

Let A be a convex set. We recall that a set-valued map F : A → 2Y is called
convex map on convex set A, if for all x1, x2 ∈ A and λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F ((λx1) + (1− λx2)).
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3. Main results

We consider the following set-valued vector optimization problem:

Min{F (x) : x ∈ x},(3.1)

where F : X → 2Y , F (A) =
∪

x∈A

F (x).

In this section we restrict ourselves to dealing with necessary and sufficient
conditions for the existence of the Pareto minimal point and the proper ideal
efficiency of vector optimization problems (3.1) by means of contingent cone of
image set. If not otherwise stated, we always assume D ⊂ Y is a closed convex
and pointed cone.

Definition 3.1. Consider the above problem (3.1), let x0 ∈ A, y0 ∈ F (x0),

(i) A pair (x0, y0) ∈ grF is called Pareto minimal point of F on A, if
(F (A)− y0)

∩
(−D) = {θ}.

(ii) A pair (x0, y0) ∈ grF is called proper ideal point of F on A, if there exists
a closed, convex, pointed cone P of Y such that D ⊂ P and F (A)− y0 ⊂ P .

The set of all minimal points and proper ideal points of (3.1) are denoted
by Min(F,A) and PI(F,A), respectively.

Obviously, PI(F,A) ⊆ Min(F,A).
Now, let us first consider the optimality conditions for Pareto minimal points

of (3.1).
In the following, we suppose int(F (A)) ̸= ∅.

Theorem 3.2. Let (x0, y0) ∈ grF , x0 ∈ A and A be star-shaped at x0. If
F : A → 2Y is convex-along-rays at (x0, y0) and closed-valued on A such that
F (A) − y0 satisfies the property Λ near θ, then (x0, y0) ∈ Min(F,A) if and
only if T (F (A), y0)

∩
(−D) = {θ}.

Proof. F is closed-valued on A, i.e., F (A) is a closed subset of Y , so is F (A)−
y0. F is convex-along-rays at (x0, y0), thus, F (A) is star-shaped at y0. From
Corollary 2.2, F (A) − y0 satisfies the property 𝟋 and also the property Λ
near θ by assumption. Applying Proposition 2.6 and Proposition 2.3, we get
T (F (A), y0) = cl(cone(F (A) − y0)) = cone(F (A) − y0). Therefore, (F (A) −
y0)

∩
(−D) = {θ} if and if T (F (A), y0)

∩
(−D) = {θ}. The proof is complete.

□

Lemma 3.3 ( [9], Proposition 3.2). Let x0 ∈ A, y0 ∈ F (x0). If D is a pointed
cone and T (F (A) +D, y0)

∩
(−D) = {θ}, then (x0, y0) ∈ Min(F,A).

Theorem 3.4. Let (x0, y0) ∈ grF , x0 ∈ A and A be star-shaped at x0. If
F : A → 2Y is D-convex-along-rays at (x0, y0), D−closed valued on A and
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(x0, y0) ∈ Min(F,A) such that (F (A) +D − y0) satisfies the property Λ near
θ, then T (F (A) +D, y0)

∩
(−D) = {θ}.

Proof. Since (x0, y0) ∈ Min(F,A), therefore (F (A)− y0)
∩
(−D) = {θ}. Since

D is a pointed cone, so (F (A) +D− y0)
∩
(−D) = {θ}. By virtue of Corollary

2.7, we conclude that T (F (A) + D, y0) = cone(F (A) + D − y0), which yields
T (F (A) +D, y0)

∩
(−D) = {θ}. □

From Lemma 3.3 and Theorem 3.4, we get the following corollary.

Corollary 3.5. Let x0 ∈ A, y0 ∈ F (x0). If F : A → 2Y is D−closed valued on
A and F (A) +D is also star-shaped at y0 such that (F (A) +D − y0) satisfies
the property Λ near θ, then (x0, y0) ∈ Min(F,A) if and only if T (F (A) +
D, y0)

∩
(−D) = {θ}.

If F is a convex map on A and D is a pointed convex cone (not necessarily
closed) of Y , we will obtain another necessary conditions for Pareto minimal
points of (3.1).

We recall that if A is a convex set and intA ̸= ∅, then intA is a convex set
and intA = int(clA), see [14].

Theorem 3.6. Let (x0, y0) ∈ grF and x0 ∈ A. If F is a convex map on convex
set A and D is a convex pointed cone of Y such that (x0, y0) ∈ Min(F,A), y0 ∈
ext(F (A)) and D ⊂ (int(T (F (A)+D, y0)

∪
{θ}), then T (F (A)+D, y0)

∩
(−D) =

{θ}.

Proof. From the assumption that F is a convex map on convex set A and D is
a convex pointed cone, we conclude that F (A) +D is a convex set. It is clear
that

T (F (A) +D, y0) = cl(cone(F (A) +D − y0)).

Therefor, int(T (F (A)+D, y0) = int(cl(cone(F (A)+D−y0))) = int(cone(F (A)+
D − y0)). Suppose that T (F (A) + D, y0)

∩
(−D) = {θ} is not true, i.e.,

there is u ∈ T (F (A) + D, y0)
∩
(−D) and u ̸= θ. Since D ⊂ (int(T (F (A) +

D, y0))
∪
{θ}), we can assume that

u ∈ T (F (A) +D, y0)
∩

(−int(T (F (A) +D, y0))).

Then for n sufficiently large, there exists un ∈ cone(F (A)+D−y0)
∩
(−cone(F (A)+

D − y0)) such that un → u. Thereby, there exists tn, sn > 0, yn, wn ∈ F (A)
and dn, qn ∈ D such that

un = tn(yn + dn − y0),

and

un = −sn(wn + qn − y0),(3.2)
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i.e.,

tn(yn + dn − y0) + sn(wn + qn − y0) = θ.(3.3)

Obviously, yn ̸= y0 ̸= wn.
Otherwise, if yn = y0, then

un = tdn ̸= θ.(3.4)

Substituting (3.4) into (3.2), one has

θ ̸= sn(wn + qn − y0) = −tdn ∈ (−D),(3.5)

which contradicts (x0, y0) ∈ Min(F,A).
Dividing (tn + sn) by (3.3) one has

(
tnyn

tn + sn
+

snwn

tn + sn
) + (

tndn
tn + sn

+
snqn

tn + sn
)− y0 = θ.

From F being convex map on convex set A, D a convex cone and y0 ∈
ext(F (A)), we can assume that there exists y ∈ F (A), y ̸= y0, d ∈ D such
that

y + d− y0 = θ.

This contradicts also (x0, y0) ∈ Min(F,A). The proof is complete. □

We note that the condition D ⊂ (int(T (F (A) + D, y0)
∪
{θ}) of Theorem

3.6 is easily fulfilled if the cone D is not necessarily closed. Let us consider the
following example.

Example 3.7. Let A = [0, 1] ⊂ R, D = intR2
+ ∪ {(0, 0)} and let F : A → 2R

2

be defined by

F (x) =

{
(x; +∞)× (x; +∞), x ̸= 0,

(0, 0), x = 0.

It is easy to see F (A) + D = D and y0 = (0, 0), so D ⊂ (int(T (F (A) +
D, y0)

∪
{θ}).

Lemma 3.8 ( [1], Proposition 3.1). The following assertions hold: PI(A) ⊂
ext(A))

∩
Min(A).

Where Min(A), PI(A) and ext(A) are all minimal points, proper ideal
points and extreme points of the set A, respectively.

Next, we establish optimality conditions for proper ideal efficiencies of (3.1).

Theorem 3.9. Let A be a nonempty subset of X, F : A → 2Y be D-convexlike
and D-closed valued. If (x0, y0) ∈ grF and y0 ∈ ext(F (A) + D) such that
(F (A) +D − y0) satisfies the property Λ near θ, then (x0, y0) ∈ PI(F,A).
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Proof. Following the D−convex of F on subset A and Remark 2.8, we get that
F (A) + D is a convex subset of Y . Obviously, F (A) + D is star-shaped at
y0. Furthermore, F is D−closed valued on A, so F (A) +D is a closed convex
subset of Y . From Corollary 2.7 and proposition 2.1, we have

T (F (A) +D, y0) = cone(F (A) +D − y0),(3.6)

and

F (A)− y0 ⊆ F (A) +D − y0 ⊆ T (F (A) +D, y0).(3.7)

(3.6) implies that T (F (A) +D, y0) is a closed convex cone and D ⊂ T (F (A) +
D, y0). In the following, we will show that T (F (A) +D, y0) is a pointed cone.

Suppose to the contrary that there is u ∈ T (F (A) + D, y0)
∩
(−T (F (A) +

D, y0)) and u ̸= θ. Then there exists t, s > 0, x1, x2 ∈ A, y1 ∈ F (x1), y2 ∈
F (x2) and d1, d2 ∈ D such that

u = t(y1 + d1 − y0),(3.8)

and

u = −s(y2 + d2 − y0),(3.9)

Obviously, y0 ̸= y1 + d1 ̸= y2 + d2.
(3.8) and (3.9) yield

t(y1 + d1 − y0) + s(y2 + d2 − y0) = θ.(3.10)

Dividing (3.10) by s+ t we obtain

y0 =
t(y1 + d1)

s+ t
+

s(y2 + d2)

s+ t
,(3.11)

which is contrary to y0 ∈ ext(F (A) +D). The proof is complete. □

The following theorem illustrates a minimal point is a proper point under
determined conditions.

Theorem 3.10. Let A be a nonempty subset of X, F : A → 2Y be D−covex
and D−closed valued. If (x0, y0) ∈ Min(F,A), y0 ∈ ext(F (A)) such that
(F (A) +D − y0) satisfies the property Λ near θ, then (x0, y0) ∈ PI(F,A).

Proof. By virtue of the proof of Theorem 3.8, we need only prove T (F (A) +
D, y0) is a pointed cone. In fact, (3.10) can be rewritten as

(
ty1
s+ t

+
sy2
s+ t

) + (
td1
s+ t

+
sd2
s+ t

)− y0 = θ.(3.12)

We can assume that y1 ̸= y0 ̸= y2. Otherwise, if y1 = y0, then

u = td1 ̸= θ.(3.13)

Substituting (3.13) into (3.9), one has

θ ̸= s(y2 + d2 − y0) = −td1 ∈ (−D),(3.14)
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furthermore, there exists d ∈ D and d ̸= θ such that

y2 − y0 = −d ∈ (−D \ {θ}),(3.15)

which contradicts (x0, y0) ∈ Min(F,A). By the same reason, y0 ̸= y2. Fur-
thermore, y0 ∈ ext(F (A)) implies that

ty1
s+ t

+
sy2
s+ t

̸= y0.(3.16)

Following the convexity of D and the D−convexlikeness of F on A, we have,

(
ty1
s+ t

+
sy2
s+ t

) + (
td1
s+ t

+
sd2
s+ t

) ∈ F (A) +D +D(3.17)

= F (A) +D.(3.18)

Taking into account (3.12−3.18), we conclude that there exist y ∈ F (A), y ̸= y0,
and d ∈ D such that y + d − y0 = θ, which contradicts (x0, y0) ∈ Min(F,A).
The proof is complete. □

The following example satisfies all the conditions of Theorem 3.9.

Example 3.11. Let A = [0, 1] ⊂ R, D = R2
+ and let F : A → 2R

2

be defined
by

F (x) =

{
0 ≤ y ≤ 2x, 0 ≤ x ≤ 1

4 ,
y ≤

√
x, 1

4 ≤ x ≤ 1.

Taking any ε ∈ (0, 1
4 ], (F (A) +D − y0) obviously satisfies the property Λ near

θ with y0 = (0, 0).

Theorem 3.12. Let A be a nonempty subset of X, F : A → 2Y be D−convex
and D−closed valued on A. If (x0, y0) ∈ PI(F,A) such that (F (A) +D − y0)
satisfies the property Λ near θ, then T (F (A) + D, y0) is a closed, convex and
pointed cone.

Proof. We need only show that T (F (A) +D, y0) is a pointed cone. From the
assumption (x0, y0) ∈ PI(F,A) and Lemma 3.7, one has y0 ∈ ext(F (A)) and
(x0, y0) ∈ Min(F,A). The following proof is similar to that of Theorem 3.9, so
we omit it. □

Corollary 3.13. Let A be a nonempty subset of X, F : A → 2Y be D−convex
and D−closed valued, (x0, y0) ∈ grF such that (F (A) + D − y0) satisfy the
property Λ near θ. Then (x0, y0) ∈ PI(F,A) if and only if T (F (A) +D, y0) is
a closed, convex and pointed cone.
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4. Conclusions

Under certain conditions, Proposition 2.3 states cone(clA) = cl(coneA),
for A a star-shaped set with intA ̸= ∅, which is stronger than cone(clA) ⊆
cl(coneA) in the literature. As a consequence, Corollary 2.7 furthermore shows
that T (A, x0) = cone(A − x0) (in general, T (A, x0) ⊇ cone(A − x0), see [11]).
Based on the Corollary 2.7 and by means of Bouligand tangent cone of image
set of a set-valued map, we established necessary conditions (see, Theorem
3.4 and Theorem 3.6) for the existence of Pareto efficiency (only sufficient
condition obtained in [9]) and both necessary and sufficient conditions of proper
ideal efficiency (see, Theorem 3.9 and Theorem 3.10) for nonsmooth vector
optimization problems with set-valued map are established, which are all new
results.
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