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ABSTRACT. In the present paper we consider a time-fractional inverse dif-
fusion problem, where data is given at x = 1 and the solution is required
in the interval 0 < « < 1. This problem is typically ill-posed: the solution
(if it exists) does not depend continuously on the data. We give the op-
timality analysis for this problem, and an optimal regularization method
is also provided. Numerical examples show that this method works effec-
tively.
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1. Introduction

Recently, more and more people are concerned about the problems of the
fractional differential equation. The main reason is that it is frequently en-
countered in physics, chemistry, biological systems and so on. Moreover, time-
fractional diffusion equation is often used to describe viscoelastic and vis-
coplastic flow [5] and anomalous diffusion (superdiffusion, non-Gaussian dif-
fusion, subdiffusion) [1,2,8,10], which might be inconsistent with the classical
Brownian motion model. Therefore, it is very meaningful for studying this
topic [4,7,9,15].

In the past decades, studies on the problems of the fractional differential
equation mainly focused on direct problem and boundary value problems. How-
ever, it is usually encountered into determine the temperature on the surface
of a body, where the surface itself is inaccessible to measurements [11]. In this
case, it is necessary to determine surface temperature distribution 0 < =z < 1
from a measured temperature history at a fixed location (x = 1) inside the body,
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which leads to time-fractional diffusion inverse problem. In this paper we con-
sider the following problem, which arises from many real applications [11,16]:
Problem I

—uy(x,t) = oDfu(z,t), x>0,t>0,0<a<l,
u(z,0) =0, x>0,
u(l,t) = f(1), t>0,
xlgrolo u(x,t) =0, t >0,

where the time-fractional derivative o Dfu(x,t) is the Caputo fractional deriv-
ative of order a(0 < o < 1), which is defined by [12]

o _ 1 b ou(z,s) ds
(1.1) oD u(z,t) = T —a) /0 95 =97 0<a<l,
(1.2)  oD%u(z,t) = w, a=1

We want to determine the temperature for 0 < z < 1. This problem is seriously
ill-posed [3,11,13,16], therefore, an effective and easy-to-use numerical method
for solving such equation is needed. In [11,13], Murio and Qian give space
marching mollification algorithm and optimal regularization method only for
a = %, respectively. In [16], the authors give a new regularization method which
bases on mollification the fraction differential equation, but the convergence
estimate is not optimal in theory. The main purpose of this paper is to give
an optimality result for this problem, and an optimal regularization method is
also provided. In the last section, numerical examples show that this method
works effectively.

2. Preliminary results
Consider an ill-posed operator equation
(2.1) Az =y,

where A : X — Y is a linear bounded operator between infinite dimensional
Hilbert spaces X and Y with non-closed range in Y. We assume that the noisy
data ys € Y satisfies

(2.2) ly — wsll < 6.

Any operator R : Y — X can be considered as a special method for approxi-
mately solving (2.1) and the approximate solution is denoted by Rys.

Let M C X be a bounded set. We introduce the worst case error A(4, R) [14]
for identifying x from ys as:

(2.3) A(6,R) :=sup{||Rys — x| |z € M,ys € Y, || Ax — ys|| < 6} .
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The best possible error bound (or optimal error bound) is defined as the infi-
mum over all mappings R:Y — X [14]:

(2.4) w(d) = i%fA((S, R).

Now we review an optimality result for the source set M = M, g which is
given by [14]:

(2.5) My ={z€X|z=[p(A"A)v,|lv] < E}.

The operator function ¢(A*A) is well defined via the representation
(2.6 o) = [ oONE,,
0

where A*A = foa AdE) is the spectral decomposition of A*A, {E\} denotes the
spectral family of the operator A*A, and a is a constant such that [|[A* A < a,
with a = oo if A*A is unbounded [6,14]. A parameter dependent regularization
method R = Rs is called optimal on the set M, g, if A(d, Rs) = w(d) holds.

In order to derive an explicit (best possible) optimal error bound for the
worst case error A(d, R) defined in (2.3), we assume that the function ¢ in
(2.5) satisfies the following assumption:
Assumption 2.1. [14] The function ¢(X) in (2.5): (0,a] — (0,00), where a is
a constant with ||[A*A| < a, is continuous and satisfies:

(1) limp(X\) = 0;

A—=0

(ii) @ is strictly monotonically increasing on (0, a);

(iii) p(X) == Ao~ L(\) : (0, p(a)] — (0,ap(a)] is convez.

Under Assumption 2.1, the next lemma gives a general formula for the op-
timal error bound.

Lemma 2.2. [14] Let M, g be given by (2.5) and Assumption 2.1 be satisfied.
2

Moreover, let S; € o(A*Ap(A*A)), where o(A*A) denotes the spectrum of
operator A*A. Then there holds

(2.7) w(6, E) = E,/p—l(%).

Now we give the optimality result for Problem (I) by using Lemma 2.2. Let
§(&) denote the Fourier transform of the function g(x), which is defined by

23) 0= 0= [ gtadn, i= VI

The solution of Problem (I) is easily obtained as the following form:

(2.9) a(z, &) = e(ié)“(l—w)f(g) — el&l™ cos(F)(1—x) yisgn(£)[€]* Sin(%)(l—w)f(g)’
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and equivalently,
1 [ e 1o &
(2.10) u(z,t) = E/ €19 (1-2) (£ g

The ill-posedness of Problem (I) can be seen from (2.10), the details can be
found in [11,13,16].

Assume the exact data f(z) and the measured data fs(x) both belong to
L?(R) and satisfy

(2.11) If = fsll <0,

where ¢ > 0 is the noise level, and || - || denotes the norm in L?(R). Moreover,
assume there holds the following a priori bound

(2.12) [lu(0,t)] < E,

where F is a fixed positive constant.
The equality (2.9) can be viewed as the following operator equation

(2.13) Az, &) = f(§),
where A = ()" (==1) js a multiplication operator. By a simple calculation, we
know A* = (71 (@=1) and AA* = A*A = 2l€]” cos(F)(=—1)

Note that a priori bound (2.12), the source set (2.5) for Problem (I) can be
described as the following form:

My g = {i(x,€) € L*(R) | a(x,€) = e™""0(0,¢)
* 1. ~
(2.14) = [p(A"A)]24(0,€), [|a(0,§)|| < E}.

By denoting B = e~ *(#)" we can easily find B* = e *(=%€)” and BB* =
B*B = e~2oltl" cos() " Due to the relation ||BU| = ||(B*B)2U||, we obtain
that
(2.15) p(A*A) = e~ 2w[€]% cos(F) (e2|£|" COS(%)(CD—l)) =

the function ¢(A) in (2.14) is given by
(2.16) e\) =T, 0<z<l1,

and @(A) : (0,00) — (0,00) is continuous.
We now verify the conditions in Assumption 2.1.
(i) It is obvious that ;ir%gp()\) =0;
—

2x—1

(ii) From ¢'(\) = 152 A 1= >0, 0 <z <1, we know ¢ is strictly mono-
tonically increasing on (0,00);

(iii) From (2.16), we have p=1()\) = AF and p(A) = Ap~'(\) = A\=. By
an elementary calculation, we get

1—=x

(2.17) p'(\) = AT >0,

xr2
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therefore p(\) is conver and
(2.18) PN = A"

Theorem 2.3. Supposing conditions (2.11) and (2.12) hold, then the optimal
error bound for Problem (I) is

(2.19) w(6, B) = E'"5".

Proof. According to Lemma 2.2 and (2.18), we know that for Problem (I)
there holds

(2.20) w((s’ E) = E\/@ - F (%22); — pl-zg§z.

3. The optimal regularization method

Define the filtering function (z, )

(3.1)
el&la COS(L{’)(l—w)eiSW(f)If\a Si“(“T")(l—ﬂﬂ)7 5(93) > el&la COS(%)(l—ﬂﬂ)7
K(z,§) = B(x)eisgn(§)|§|"‘sin(%)(17$)7 B(z) < elél“COS(“ZJ)(lfr%
with
(3.2) Blx) = x( 2y
. E .

Let the approximate solution v(z,t) be defined by it’s Fourier transform
with respect to variable ¢:

(3.3) o(2,€) = r(2,€) f5(6),

or equality v(z,t) = % fjs e (x, &) f5(€)de, where k(x, €) is given by (3.1)-
(3.2).
Theorem 3.1. Let u(x,t) be the exact solution of Problem (I), and v(x,t) be

its reqularization approximation defined by (3.3). Assume the conditions (2.11)
and (2.12) be satisfied, then there holds the estimate

(3.4) u(z,-) —v(z,)|| < E¥76%, for 0<z<l1.
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Proof. Due to the Parseval formula and (2.9),(3.3),(2.11),(2.12), we have
lu(z,t) — v(a,t)|
=||i(z, &) — 0 (x, &)l
=[|el )" =) f(¢) — k(, €) f5(&)]
<[t (&) — k@, ) F(E)I + llr(, ) F(€) = rla, &) f5()l
19" f(¢) (770" — (a, )¢ ) | + Iln(e, )(F() — f5(©))]

(3.5)  <Esuple 09" — k(x,)e” % | 4+ dsup |k(z, ).
geR £€R

From (3.1) and (3.2), we know
(3.6) |k(z,8)| < B(x) wuniformly for £ €R,
and therefore
iz, &) — oz, €)]
<Esup e 0" — k(x,¢)e” 9" 4+ 55(x)

EER
=Esup|(e™08" — B(z)ei9n@IEl” sin(F)A-2) o= (O%)| 4 55(x)
§ER
(3.7) =FEsup (e_z‘f‘a cos(5) _ B(z)e ¢ COS(%)) + 68(x).
ER

Let g(s) := e — B(x)e™*, where s = |{|* cos(%") > 0, we can easily get

’

(3.8) g (8) = —xe ™™ + B(x)e™?
5 (x)

and the maximum point of function g(s) is sg = ln(l[jb ), therefore

sup g(s) = sup (e*” — B(z)efs)

s>0 s>0

.\ L\

3.9 =g(s50) = | 7= — Bz () .
(39 s = (505) 5@ (575

Combining (3.9) with (3.7), we obtain

(3.10) Jlu(z, ) — vz, )| < B ((5?)) ) (55) ) 1 58(x).

Taking () given by (3.2) into the right-hand side of (3.10), the estimate (3.4)
is obtained.

Due to Theorem 2.3, we know the result of Theorem 3.1 is just the optimal
error bound of Problem 1.
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Remark 3.2. In general, the a prior bound F in (2.12) is unknown exactly.
In the practical calculation, we can replace 5(z) in (3.2) by

(3.11) B(x) = 26",
and we have
(3.12) |u(z, ) —v(z, )| < E6*, 0<z<l,

where F is just a positive constant and it is not necessary to be known exactly.

4. Numerical examples

In this section a simple example is given to verify the validity of the regu-
larization method proposed in this paper. We use the Fast Fourier and Inverse
Fourier transform to complete our numerical experiments. In these numerical
experiments we always take o = 0.1, 0.3 for different points respectively.

Suppose the vector F' represents samples from the function f(t), then we
can obtain the perturbed data through

(4.1) F¢ = F + erandn(size(F)),

where the function “randn(-)” generates arrays of random numbers whose el-
ements are normally distributed with mean 0, variance 02 = 1. The error is
given by

M+1
1
(42) 6= 1P = Flle = \| 577 O [Fe(n) = PP,

=1

here we usually choose M = 100 and U,f (z,t) to represent the discrete regular-
ization solution of u(zx,t).

In the numerical experiments, we compute the approximation U,‘g (z,t) ac-
cording to Theorem 3.1, and take £ = | f|;2r). The following numerical
example is given by [16].

Example The function

oz(a:—i—l)M x+1

u(z,t) = totl al te )
0, 1<,

t>0, x>0,

is the exact of Problem (I) with the data

2« 2
pit) = { Mol
0, t <0,

t>0, x>0,
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where M, (z) denotes Mainardi’s function

P S
“ k(1 —a- ak)’

0<a<l.

xact solution

The exact solution and approximate solution for a =
z=0.3, (c) x=0.6, (d) z=0.9.

exact solution

0 0.2 0.4 0.6 0.8



833

()

Cheng, Gao and Zhu

exact solution
e=le-2
03
- - —e=le3

-0.05

0.2

0.4

0.6

0.8 1 0

(d)

The exact solution and approximate solution for « = 0.3,(a) x = 0.1, (b)
x=0.3, (c)z =0.6, (d)  =0.9.

Figure 1 shows the comparison of the exact solution and the approximate
solution at the different points x = 0.1, 0.3, 0.6 and 0.9 for o = 0.1 for different
noise levels € = 1072, 1073 respectively. Figure 2 shows the comparison of the
exact solution and the approximate solution at the different points and different
noise levels for a = 0.3 respectively. From these two figures, we can find that
the smaller the € is, the better the computed approximation is, and the smaller
the x is, the worse the computed approximation is.

Although the optimal filtering regularization method is optimal in theory,
its numerical effect may be not perfect. The reasons may be that new errors
must appear in the computational process and we can approximately adjust
the regularization parameter for the other methods to obtain a better result.
While for the optimal filtering method, the parameter 3(x) is completely fixed
and can not be corrected. Therefore, a posteriori rule should be used. We will
consider this problem by combining the general convergence rate results for the
discrepancy principle with our concrete problem in forthcoming work.
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