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ABSTRACT. Let M™ be an n(n > 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter
space, S and K be the squared norm of the second fundamental form
and Gauss-Kronecker curvature of M™. If S or K is constant, nonzero
and M™ has two distinct principal curvatures one of which is simple, we
obtain some characterizations of the Riemannian products: S"~!(a) x
H'(Va2 = 1), or H""1(a) x H'(v/1 — a?).
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1. Introduction

By an (n+1)-dimensional Lorentzian space form M (¢) we mean a de Sit-
ter space ST (¢), a Minkowski space R7™" or an anti-de Sitter space H" ™ (c),
according to ¢ > 0, ¢ = 0 or ¢ < 0, respectively. That is, a Lorentzian space
form M}'(c) is a complete simply connected (n + 1)-dimensional Lorentzian
manifold with constant curvature c. A hypersurface in a Lorentzian manifold
is said to be spacelike if the induced metric on the hypersurface is positive
definite. Denote by (h;;) the second fundamental form, by H = = > | h;; the
mean curvature and by S = Z? =1 h?j the squared norm of the second funda-
mental form of M™. The function K = det(h;;) is called the Gauss-Kronecker
curvature of M"™. We choose e, ..., e, such that h;; = X;0;;. Then we see
that K = det(hi;) = AiA2---A,. We notice that if M™ has constant mean
curvature or constant scalar curvature in M 1"+1(c), there are many important
characteristic results for such spacelike hypersurfaces, see [2-6]. Since H, S
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Spacelike hypersurfaces with constant S or K 836

and K are the important rigidity invariants under the isometric immersion, we
may naturally ask the following questions:

(1) if S is constant, nonzero and H satisfies some pinching conditions (related
to S), can we obtain any characteristic results?

(2) if K is constant, nonzero and H or S satisfies some pinching conditions
(related to K), can we also obtain any characteristic results?

In this note, we try to give some answers to the above questions. Let S*(a)
and H*(a) denote k-dimensional sphere and k-dimensional hyperbolic surface
with radius %, S¥(a) and HF(a) denote k-dimensional de Sitter sphere and
k-dimensional anti-de Sitter sphere with radius é, where a is a constant para-
metric. Firstly, we introduce the well-known standard models of complete
spacelike hypersurfaces with constant S or K in S}t (1) or H"M(—1).

Example 1.1. Spacelike hypersurface z : S*(a) x H* *(v/a2 — 1) — S?(1),
1<k<n-—1 Letz=(x1,22) € S¥(a) x H* *(v/a2 = 1) C R¥** x Rp=F+1,

(r1,21) = a2, (w9, m2) = —(a® — 1), epy1 = (— Vazflxl, — a‘;_lxg) be the
unit normal vector of x such that {(e,y1,e,+1) = —1. By a direct calculation,
we know that x has two distinct principal curvatures “2_1 and \/afji - with

multiplicities £ and n — k, respectively. We easily see that x has constant
2 2
squared norm of the second fundamental form S = k“a§1 + (n — k) 5= and
2 2k

a® = . Denote by H the mean curvature of S"~!(a) x
2k—(S£+/S2—4k(n—k))

H'(Va? —1), if a® = 2n-1) then

2(n—1)—(SF4/52-4(n-1))’

o VLS F /T —dn -1 +2)
ny/2(S F /5T~ d(n — 1))

We see that the Gauss-Kronecker curvature of S 1(a) x H'(vVa2 — 1) is K =

(¥ a(i_l)”*l \/G‘L <. Thus, the mean curvature and the squared norm of the

second fundamental form of S"~1(a) x H'(va? — 1) is

1
H=—{(n-1)K72 - K 72},
n

S=(n—1)K2 + K w2,

where a2 = 1/(1 — K#°7).

If)\ziv“f;lZ/i> %,Wehavea2217n2,n<1and
2 2
a®—1 a

(1.1) S=(n-1) 2t 1<n/<52.
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By a direct and simple calculation, we see that (1.1) holds if and only if a(k) <
a? < B(k), where

B 2(n—1)
(1.2) a(k) = 2(n —1) + /n2x* —4(n — 1) — nk?’
B 2(n—1)
(1.3) B(r) = 2n —1) — /n2ct —4(n — 1) — nk?’
and k2 > E

It can be easﬂy checked that a(k) <
a? < B(k) and 1 > K2 >7vl.

If A= v‘1_< <\/7wehavea> ,21f/-£>1a< /21f/<<1
and

—L . Thus, we conclude that 15 <

2
a‘—1

s+ > nk'2.
a

(1.4) S=(n-1) o
By a direct and simple calculation, we see that if " > 1, (1.4) holds if and
only if a(x') < a® < B(r'), if &' < 1; (1.4) holds if and only if a® < a(x’) or
a? > B(k'), where

o 2(n—1)

(15) O‘(K: ) - 2(n B 1) + /n2k/"4 — 4<n — 1) — TLK/Q,
o 2(n—1)

(1.6) B(k') = 20n—1) — /n2  —4(n — 1) — nk?’

and k2 > szl Thus, we conclude that a(k’) < a? < B(x') if & > 1;
a? < a(r) or B(k') < a® < =L if 2L < k2 < 1.

Example 1.2. Spacelike hypersurface = : H*(a) x H" *(v/1 — a2) — H}'(-1),
1<k<n-—1 Letz = (x1,2) € H*(a) x H" *(v/1T —a2) C RF! x R+,

(r1,21) = —a?, (x2,73) = —(1 —a?) and e,y = (— 1;a2$17 \/ﬁﬂﬁz) be
the unit normal vector of x, (e,4+1,en+1) = —1. By a direct calculation, we

know that x has two distinct principal curvatures 1;‘12 and — \/117 with

multiplicities £ and n — k, respectively. We easily see that x has constant

squared norm of the second fundamental form S = jel=gt (n—k) fz 7 and
a l1-a

2 = 2k . Denote by H the mean curvature of H" 1(a) x
2k+S+4/52—4k(n—Fk)
H'(WV1—=a?),if a® = 2(n—1) , then

2(n—1)+S5F4/S2—4(n—1)
- vn—1(SF4/5%—-4(n—-1) -
ny/2(5 F /57— d(n — 1))
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If)\zivl;‘ﬂ25>\/g,wehavecﬂgH%HandS:(n—l)l_”Q—i—lfzg <

a2

nk?. Thus, we conclude that v(k) < a? < H%’ k # 1 and k2 > Lz_l, where

B 2(n—1)
(1.7) v(k) = nk2 +/n2t —4dn—1)+2(n—1)
(1.8) d(k) i)

TR Vn2rt —An—1) +2(n—1)

If)\:ivla_azSn’<\/g,wehavecﬂZ#andS:(nfl)lf“er S

1+k'2 a? 1—a?
ni'?. Thus, we conclude that a? > §(x’), 2 > 2¥2=L or o < a? <A(K),
27;‘_1 < k'? < 1, where

) 2(n—1)
(1.9) V) = T An—1)+2(n-1)
(1.10) (k) = A

k2 — \/n2% —4(n—1)+2(n—1)

We shall prove the following:

Theorem 1.3. Let M™ be an n(n > 3)-dimensional complete connected and

oriented spacelike hypersurface in a de Sitter space S?H(l) with nonzero con-

stant S and two distinct nonzero principal curvatures A and p of multiplicities
n—1and1l.

(1) If X is bounded from below by a positive constant k > \/% and

I Vn—1(S + /5?2 —4(n—1)+2)
T /A + /S A1)
2

then M™ is isometric to the Riemannian product S"~1(a) x H*(va2 — 1), a®> =

2(n—1) L <2 2§ 2vn—1,
D (s +/Fy T S a® < B(k) and 1 > k% > 22—

(2) If X is bounded from above by a positive constant k' < \/g and

o Vi1 = /T A= 1) +2)
T /2SS 1)
2

then M™ is isometric to the Riemannian product S"~1(a) x H*(va2 — 1), a®> =

2(n—1) / 2 ’ ’ .42 / /
D5 T a(k') < a® < B(K') and ' > 1; a® < a(k') or B(K')

a2§11 and 2”271</-£’2<1.

— K2 n

)

)

A

Theorem 1.4. Let M™ be an n(n > 3)-dimensional complete connected and

oriented spacelike hypersurface in an anti-de Sitter space H {”1 (—1) with nonzero
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constant S and two distinct nonzero principal curvatures A and p of multiplic-
itiesn — 1 and 1.

(1) If X is bounded from below by a positive constant k > \/g and

o VIS + /5 1) )
T onfaAS+ /I —am-1)
then M™ is isometric to the Riemannian product H" '(a) x H'(v/1— a?),
a* = 2(7171)"1’323’”\;;)2*4(7171); (k) < a* < ﬁ’ o> 1
(2) If X is bounded from above by a positive constant k' < \/g and

oo VIS~ /T A1) )
T onfas— /I —am-1)

then M™ is isometric to the Riemannian product H" '(a) x H'(v/1 — a?),

2 _ 2(n—1) 2 / 12 s 2¢v/n—1 L« 42 /
a TRy Ty a® > 0(k'), K= > ==, or 7 < a® < y(K),

2vn—1 2

Theorem 1.5. Let M™ be an n(n > 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space S?H(l) with nonzero con-
stant Gauss-Kronecker curvature K and two distinct principal curvatures A and
w of multiplicitiesn — 1 and 1. If0 < K <1 and

1
H < —{(n-1K77 —K 77},
n
or
1 1 S
H>A(n—-1)K»2 - K =72}
n
then M™ is isometric to one of the Riemannian products: S™~*(a)x H'(v/a? — 1),
a?=1/(1-Kw7).

Theorem 1.6. Let M™ be an n(n > 3)-dimensional complete connected and
oriented spacelike hypersurface in a de Sitter space S?H(l) with nonzero con-
stant Gauss-Kronecker curvature K and two distinct principal curvatures A and
w of multiplicitiesn — 1 and 1. If 0 < K <1 and

S<(n-1)Kiz + K e,
or
S>m—-1)K=? + K 73,

then M™ is isometric to one of the Riemannian products: S™~*(a)x H'(va? — 1),
a?=1/(1—K#7).
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Remark 1.7. We notice that, in Lemma 3.1, in order to ensure that the
positive function w (see (3.18)) is bounded, the condition (in Theorem 1.3 and

Theorem 1.4) that A is bounded from below by a positive constant x > \/%
s

or is bounded from above by a positive constant " < /2 is necessary. We
also notice that, in the proof of Lemma 4.1 and Lemma 4.2, the condition

0 < K <1 (in Theorem 1.5 and Theorem 1.6) is necessary.

Remark 1.8. If ¢ = —1, from the proof of Lemma 4.1, we can not know
whether the positive function w = |[A" — K |_% is bounded or not. Thus,
the similar results as Theorem 1.5 and Theorem 1.6 in an anti-de Sitter space
H""'(—~1) may be not held.

2. Preliminaries

Let M™ be an n-dimensional spacelike hypersurface in an (n+1)-dimensional
Lorentzian space form M (¢) with constant sectional curvature ¢. We choose
a local field of semi-Riemannian orthonormal frames {e1, ..., e, 1} in M7 (c)
such that at each point of M™, {ey,...,e,} span the tangent space of M™ and
form an orthonormal frame there. We use the following convention on the range
of indices:

1<ABC,---<n+1; 1<4,jk,---<n.

Let {w1,...,wn+1} be the dual frame field so that the semi-Riemannian metric
of Mt (c) is given by d5® = Y w? — w2, = 3 eaw?, where ¢; = 1 and
i A

€En+1 = —1.
The structure equations of M]""!(c) are given by

(2.1) de:ZeBwAB/\wB, waB +wpa =0,
B

(2.2) dwap = Z ecwac Nwep +Qag,

C
where

1
(2.3) Qap = —izKABCDWC/\WDv
C,D

(2.4) Kapcp = €aepc(dacdpp —0apdBc).

Restrict these forms to M™, we have

(2.5) Wni1 = 0.
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Cartan’s Lemma implies that

(26) Wn41i = Z hijwj, hij = hjl‘.

J
The structure equations of M"™ are
(27) dw; = Zwij A wj, Wij + Wj; = 0,

J
1
(2.8) dwij = Zwik N Wi — § ZRijklwk N wy,
k k,l
(2.9) Rijri = (0051 — 0u105i) — (hihji — hathjr),
where R;;;; are the components of the curvature tensor of M™ and
(2.10) h= Z hijwi & wj
]

is the second fundamental form of M™.

From the above equation, we have
(2.11) nin—1)(R—c) =S —n?H?

where n(n — 1)R is the scalar curvature of M™, H is the mean curvature, and
S=> h?j is the squared norm of the second fundamental form of M™.
i2J

We choose ey, ..., e, such that h;; = \;d;;. From (2.6) we have

(212) Wn41i = )\iwi, 1= 1,27...,71.
From the curvature forms of M} (c),

1
(2.13) Qi =~ 5 CZL; Knicpwo Awp

1
=5 Z c(0ncdip — dnpdic)we Awp = cwy A wj.
C.D

Since the covariant derivative of the second fundamental form h;; of M™ is

defined by
> higrwr = dhij + Y higwrs + > hrjwi,
k k k
we have
Z hijkwk = 5ﬂd)\] + ()\Z — /\j)wij.
k
Putting

Yij = (X = Aj)wij,
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we have 77[}z'j = ’(/)ji and

(2.14) ij + 0idN; =D hijrwk,
k

where h;j, satisfy

(2.15) hijk = hjik = hik;.

We state a Proposition which can be proved by making use of the similar
method due to Otsuki [7].

Proposition 2.1. Let M™ be a spacelike hypersurface in an (n+1)-dimensional
Lorentzian space form M{H'l(c) such that the multiplicities of the principal cur-
vatures are constant. Then the distribution of the space of the principal vectors
corresponding to each principal curvature is completely integrable. In partic-
ular, if the multiplicity of a principal curvature is greater than 1, then this
principal curvature is constant on each integral submanifold of the correspond-
ing distribution of the space of the principal vectors.

3. Proofs of Theorem 1.3 and Theorem 1.4

Let M™ be an n-dimensional complete spacelike hypersurface with nonzero
constant squared norm of the second fundamental form and two distinct nonzero
principal curvatures A and g of multiplicities » — 1 and 1. By changing the
orientation for M"™ and renumbering e, ...,e, if necessary, we may assume
that A > 0. Thus, we have that

(3.1) S = (n—1)\2 + 2,

(3.2) =145 —(n—1)A2
and
(3.3) 0AA—pu=AFV/S—(n—1)\2

We denote the integral submanifold through x € M™ corresponding to A by
D(z). Putting

(3.4) AAN=) " Npwr,  dp =) g wk.
k=1 k=1

From Proposition 2.1, we have

(3.5) AM=A2=-=XAp_1=0 on D(x).
From (3.2), we have

(n—1)A

(3.6) dp = :Fm



843 Shu and Chen

Thus, we also have
(3.7) = fy2="++=fyp—1=0 on D(x).

In this case, we may consider locally A as a function of the arc length s of the
integral curve of the principal vector field e,, corresponding to the principal
curvature y. From (2.14) and (3.5), we have for 1 < j <n —1,

n n n—1
(38)  Anwn =3 Njwi=d\=d\; =Y hjjuwr = Y _ hjjewr + hjjnwn.
i=1 k=1 k=1
Therefore, we have
(39) hjjk = O, 1 < k <n-— 1, and h]‘jn = )\m .
By (2.14) and (3.7), we have
n n n—1
(310) Wy Wn = Z Hoyi Wi = dpp =d N, = Z kWi = Z Rk Wk + Rppnwn.
i=1 k=1 k=1
Hence, we obtain
(3.11) honk =0, 1<k<n-—1, and hupp = by -
From (3.6), we get
(n—1)A
3.12 honn = iy = F———rmtoe=Ain
(3.12) [ = F Ty

From the definition of v;;, if © # j, we have 9;; = 0 for 1 < ¢ < n —1 and
1 < j < n—1. Therefore, from (2.14), if i # j and 1 < ¢ < n — 1 and
1<j<n-—1we have

(3.13) hijr =0, for any k.

By (2.14), (3.9), (3.11) and (3.13), for j < n, we get

n
(3.14) Gin =Y hjnkewr
k=1
:hjjnw]- + hjmwn = )\,n wy.
From 9;; = (A\; — Aj)wij, (3.3) and (3.14), for j < n, we have
"/)jn )\an )\m

3.15 Win = = w; = Wi .
(8:15) XN A=p AT /S—(m—Dr2

n—1

Thus, from the structure equations of M™ we have dw, = > Win AWk +Wnn A
k=1

wp, = 0. Therefore, we may put w, = ds. By (3.5), we get d\ = )\, ds,
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A = %. Thus, we have

dx

Wipn — ds W
TAF /S — -’
d{hl | nT—l()\ F /S — (Tl _ ]_)AQ)QZFmarcsin ";1)\

ds

(3.16)

1
W}

Wij.

From (3.16) and the structure equations of M (c), for j < n, we have

n—1
dwjn = Z Wik N Wgn + Win N Wnp — Win+1 A Wntin + an
k=1
n—1
= Z Wik N Wkn — Wint1 A Wnyin — W5 AWy
k=1
d{ln|y/ " (A F /S = (n = D)AZ)eFVrTaresinVESA T}

ds Z Wik N\ Wi
k=1
— (¢ = Ap)wj Ads.

Differentiating (3.16), we have

d2{1n|\@(A F S — (TL _ 1)A2)€$\/Earcsin \/"Tj)w%}

den ds2 ds AN wj
d{lnh/?()\q: S — (n— 1)A2)eFVn—Larcsin "51,\|%}
+ ds dw]'
d2{1n|\/§()\$ S — (n_ 1))\2)e$marcsin Lg,l)\|%}
- ds2 ds N\ wj
d{ln |\/§()\ + S — (n _ 1))\2)e¢marcsin \/nTj)\|%} n
! d ijk N W
3 k=1
d2{1n|\@(/\:|: S — (nf 1))\2)e:!:marcsin "51/\ %}
:{ - ds?
d{lnl\/E(A F /S = (n— )A2)eFvn—Taresiny/=2gin 21
+ [ ds ] }UJJ' Nds

d{ln|/2E (N F /S = (n — 1)A2)eFVr-Taresin/ 552y o1
+ S

ds ijk N Wg.
k=1
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From the previous two equalities, we have

d2{1n |\/§()\ ¥ S — (n _ 1))\2)G¥Marcsin %M%}

(3.17) -
Al |/ Z5E A F /5 = (0 = DAD)eFVAToresin BN
- { ds }
—(c—Ap)=0.
Putting

_1 H n—1 1
(318) w = |\/T()\:F S_(n_1)/\2)e$marcsms/T)\l_;’

from (3.17), we obtain
d*w

By (3.2), we have

(3.19) % +w(cFA/S—(n—1)A%) =0.

On the other hand, from (3.16), we have V. e, = > | wni(en)e; = 0. By the
definition of geodesic, we know that any integral curve of the principal vector
field corresponding to the principal curvature p is a geodesic. Thus, we see
that w(s) is a function defined in (—oo,400) since M™ is complete and any

integral curve of the principal vector field corresponding to u is a geodesic.
We can prove the following Lemmas:

Lemma 3.1. If \ is bounded from below by a positive constant k > \/g or s

bounded from above by a positive constant k' < \/g, then w is bounded.

. _ /s : _
Proof. Since S — (n — 1)A? = u2 > 0, we have \ < —. Putting 0 =

arcsin |/ 251\, we have [sinf| = /21| A| < 1,thus 6] = |arcsin /21N < 2.
fAX>xk > \/g, we have A — /S —(n—1)A2 > k — /S —(n—1)k? >

\/g— /S — (n—1)2 = 0. Thus, we see that
Vs O VI G R T
> B - VI Dl T
> e VDRl T
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and 0 < w < (\/%W— \/m|e,%m)—;

On the other hand
— 1 . _
|\/n7()\ + /S — (n — 1))\2)6\/7ﬁarcsm \/?)\l
W7y s eI N

> n;lﬂe_% n=l n;e_%vn_1>0.
n

Thus 0 < w < (\/"T_le_% ”_1)_

A<k < \/g , by reasoning as above we see that w is also bounded [

3=

Lemma 3.2. (1) Let

t)=1—Vty/S— (n— 1),

and tO = ﬁ

If S < 2v/n—1, then Pi(t) > 0; if S > 2\/n — 1, then Pi(t) has two positive

— 2__ /S2—
real roots tq :% to = Shs 5= i(n D) and t; <to < to.

(i) if t > to, then t > to holds if and only if Pi(t) > 0 and t <ty holds if
and only if Py(t) <0;

(i) if t < to, then t <ty holds if and only if Pi(t) > 0 and t > t, holds if
and only if Py(t) <O0.

(2) Let

Py(t) = =1+ Vt\/S — (n - 1)t,

— S
and ty = Sn=T)
If S < 2¢/m — 1, then Po(t) < 0; if S > 2v/n — 1, then Py(t) has two positive
w tg— StySiodinzl) andt1 Stogtg.

2(n—1 T 2(n—1)

(1) if t > to, therft 2) to holds if and only if Po(t) <0 and t <ty holds if
and only if Ps(t) > 0;

(i) if t < to, then t <ty holds if and only if Py(t) < 0 and t > t1 holds if
and only if Py(t) > 0.

(3) Let

real roots t1 =

Hi(t)=(n—-1)Vt—+/S—(n— 1)t
Then
(i) t > to holds if and only if Hi(t) > Hy(t2) and t <ty holds if and only if
Hy(t) < Hy(t2);
(i) t > t1 holds if and only if H1(t) > Hi(t1) and t < t1 holds if and only
if Hi(t) < Hi(th).
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(4) Let
Hy(t) = (n — 1)Vt ++/S — (n - 1)t.
and ty = % Then

(1) if t > t{, when ty > t), then t > to holds if and only if Ha(t) < Ha(ts)
and t <ty holds if and only if Hy(t) > Ha(ts);

(#) if t < t, when to < 1y, then t > ty holds if and only if Ha(t) > Ha(t2)
and t <ty holds if and only if Hy(t) < Ha(t2). In addition, t > t1 holds if and
only if Ha(t) > Hy(t1) and t <ty holds if and only if Ha(t) < Ha(t1).

Proof. (1) We have
dP;(t) _ 2ln -1t -8

dt 2Wi\/S — (n— 1)t
dP;(t)
dt

it follows that the solution of =0isty = ﬁ Therefore, we know
that t < to if and only if P;(¢) is a decreasing function, ¢ > ty if and only if

Py(t) is an increasing function and Pj(t) obtain its minimum at tg =

and Pl(to)—l 2\/7

If S < 2y/n—1, we have Py(t) > Pi(tg) > 0;

If S > 2y/n—1, then P;(t) has two positive real roots t; =
ty = 2T ”2(n_zi " We easily see that t; <ty < t.

() if t > to, since P;(¢) is an increasing function, we have ¢ > t5 holds if and
only if P;(t) > Pi(t2) = 0 and t < t5 holds if and only if P;(¢) < Pi(t2) = 0.

(1) if t < tp, since Py (t) is a decreasing function, we have ¢ < ¢; holds if and
only if Py(t) > Pi(t1) = 0 and ¢t > ¢; holds if and only if P;(t) < Pi(t1) = 0.

(2) By the same method, (2) of Lemma 3.3 follows.

(3) We have

S
2(n—1)

S—4/82—4(n—1)
2(n—1) ’

dHl(t) n—1

1 1

=—|—-+t———= >0

dt 2 (ﬁ ,/S—(n—l)t)

it follows that H;(t) is an increasing function, we conclude.
(4) We have

dHy(t) n—-1(1 1
Vi m ’

)
it follows that the solution of dl{ff( ) = 0is ¢ = . Therefore, we know that
t <t if and only if Hy(t) is an increasing functlon t > t; if and only if

Hy(t) is a decreasing function and Hj(t) obtain its maximum at t{ = 2 and

Hy(t;) = vV'nS. We see that (i) and (i4) of (4) follows by the monotonicity of
Hy(t). O
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Proof of Theorem 1.3 . Putting t = A\2(> 0), since ¢ = 1, from (3.19), we have

(3.20) ‘%f +@(l—Vt/S—(n—1)t) =0,

(3.21) %+w(1+x/£\/5— (n—1)t) = 0.

(HIEXN>k > \/g, we have t > % >ty = 2@75_1) We may easily see

that (3.21) does not hold. In fact, since 1+ +/¢,/S — (n — 1)t > 0, from (3.21),
we have "5;2” < 0. This implies that d?is) is a strictly monotone decreasing
function of s and thus it has at most one zero point for s € (—oo,+00). If

4=(5) has no zero point in (—00, +00), then w(s) is a monotone function of s

ds
in (—oo, +00). If dwd—gs) has exactly one zero point s in (—oo, +00), then w(s)
is a monotone function of s in both (—o0, so] and [sg, +00).
On the other hand, from Lemma 3.1, we know that w(s) is bounded. Since
w(s) is bounded and monotonic when s tends to infinity, we know that both

lims_, — oo @(8) and limg_, 4 o w(s) exist and then we get

. dw(s) .. dw(s)
(3.22) sl}r_noo ds sEI-Poo ds 0
dw(s)

This is impossible because =~ is a strictly monotone increasing function of
s. Therefore, we conclude that only (3.20) holds, that is

d*w
If S < 2y/n —1, by Lemma 3.2, we have P;(t) > 0. From (3.23), we have

‘f;f < 0. This implies that dwdis) is a strictly monotone decreasing function of

s. By the same arguments as above, we know that this is impossible.
If S > 2v/n — 1, since t > tg, from Lemma 3.2 and (3.23), we see that if

P (CE it (Ot V)
- n\/2(S+ V52— 4(n — 1))

that is, H = Hy(t) > Hi(t2) holds if and only if ¢ > ¢, if and only if P;(¢) >0

and if and only if ‘f;g < 0. Thus %—f is a monotonic function of s € (—o0, +00).

Therefore, as observed by Wei [8], w(s) must be monotonic when s tends

to infinity. From Lemma 3.1, we know that the positive function w(s) is

bounded. Since w(s) is bounded and monotonic when s tends to infinity,

we know that both lim,_, o w(s) and lims_, o w(s) exist and (3.22) holds.
dw(s) dw(s)

From the monotonicity of ==, we have == = 0 and w(s) = constant.

Combining @ = |,/ 252 (AF /S — (n — DAZ)eFVr-Taresing/ =52 =5 and (3.2),

we conclude that A and p are constant, that is, M™ is isoparametric. By the
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congruence Theorem of Abe, Koike and Yamaguchi (see Theorem 5.1 of [1])
and Example 1.1, we conclude that M™ is isometric to the Riemannian product

n—1 1 2 _ 2 _ 2(n—1) 1 2
S Ha) x HY(vVa? — 1), a* = T (54 i) T < a? < (k) and
1> k2> 2/l

2 IN<K < \/g, we have ¢ < % = t,. From the arguments in (1), we
know that only (3.20) holds.

If S < 2y/n — 1, by the same arguments in (1), we know that this is impos-
sible.

IfS>2yn—1, from Lemma 3.2, we see that if

o VIS = /ET A=) +2)
T 25— /S d(n - 1))

that is, H = Hi(t) < Hi(t1) holds if and only if ¢ < ;. Since t; < tp, from
Lemma 3.2 and (3.23), we have that ¢t < ¢; if and only if Pi(t) > 0 and if

and only if Cf;‘f < 0. Thus ‘fi—f is a monotonic function of s € (—oo0, +00).

By the same arguments as in the proof of (1) and Example 1.1, we conclude
that M™ is isometric to the Riemannian product S"~1(a) x H' (Va2 — 1), a®> =

2(n—1) ’ 2 l l .42 U l
T D5 aT)” a(k') < a® < B(k') and k' > 1; a* < a(k’) or B(K') <
a? < 1—1;42 and zv;’fl < K? < 1. O

Proof of Theorem 1.4. Putting t = A\2(> 0), since ¢ = —1, from (3.19), we have

(3.24) % +w(—=1—Vt\/S —(n—1)t) =0,

(3.25) %er(—u\/%\/S— (n— 1)) = 0.

HIEAX>k> \/g, we have t > % >ty = % By reasoning as in the
proof of Theorem 1.3, we see that (3.24) does not hold. Thus it follows that
only (3.25) holds, that is

d*w
(326) ﬁ + ’ZDPQ(t) = 0
If S < 2y/n—1, by Lemma 3.2, we have Py(t) < 0. From (3.26), we have
‘f;s? > (0. By the same arguments as in the proof of Theorem 1.3, we know

that this is impossible.
If S > 2v/n —1, we consider two cases S >n and 2vn —1< S < n.
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If S > n, we easily check that to > t{. Since t, = DS to, we have

n

to > t(, > to. Since t > t{, > to, from Lemma 3.2 and (3.26), we see that if
o> Vn—1(S+ /52 —-4(n—-1)-2)
T /S + /S (D)

that is, Ha(t) > Ha(t2) holds if and only if ¢ < ¢, if and only if P»(¢) > 0 and if

2
and only if % < 0. Thus <2 is a monotonic function of s € (—o0, +00). Since

nk? > S > n, that is & > 1, by the same arguments as in the proof of Theorem
1.3 and Example 1.2, we conclude that M™ is isometric to the Riemannian

n—1 1 — 9 2 _ 2(n—1) 2
product H" '(a) x H'(v/1 —a?), a D5/ v(k) < a® <

ﬁ, K> 1.

If 2¢/n —1 < S < n, we easily check that to < t}. Since ty > tg, we have
ty > ta > to. Thust > to > tg. From Lemma 3.2 and (3.26), we have P(f) < 0
and ng > 0. By the same arguments as in the proof of Theorem 1.3, we know
that this is impossible. Thus, the case 2v/n — 1 < S < n does not occur.

2 IAN<FK < \/g, we have t < % = (. By reasoning as in the proof of
Theorem 1.3, we see that only (3.26) holds.

If S < 2y/n—1, by the same arguments in the proof of Theorem 1.3, we
know that this is impossible.

If S > 2¢/n — 1, we may easily check that ¢; < #{. Since t < t{,, from Lemma
3.2, we see that if

e YA 1(S — /57 —din—1) - 2)
T 25— /A1)
that is, Ha(t) < Ha(t;) holds if and only if ¢ < ¢;. Since ¢; < tp, by Lemma
3.2 and (3.26), we have that ¢t < ¢; if and only if P»(¢) < 0 and if and only
if ‘f;? > 0. Thus CfT? is a monotonic function of s € (—oo,+00). By the

same arguments as in the proof of Theorem 1.3 and Example 1.2, we conclude
that M™ is isometric to the Riemannian product H""!(a) x H(v/1 — a2),

2 _ 2(n—1) 2 N2 s 2vn—l L« 42 /
T myrs—ysamen ¢ > Ok, 7 2 P52 o m < @ <KD,
2V/n=T 2 1 O
2= <

4. Proofs of Theorem 1.5 and Theorem 1.6

Let M™ be an n-dimensional complete spacelike hypersurface with nonzero
constant Gauss-Kronecker curvature K and two distinct principal curvatures
A and g of multiplicities n — 1 and 1. We have that

(4.1) K=\"p4.
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From K # 0, we conclude that A # 0. By changing the orientation for M™ and

renumbering ey, ..., e, if necessary, we may assume that A > 0. Thus
K
(4.2) H= -1’
A" — K

Denote by D(x) the integral submanifold through € M™ corresponding to .
By Proposition 2.1, we have

(44) )\,1 = )\72 == )\an—l =0 on D(.’E)

From (4.2), we have

(4.5) dp = =2
Thus
(46) Myl = 2= :,U/,n,1:0 on D(SU)

From (2.14) and (4.4)—(4.6), by the same arguments as in section 3, we have

(47) hjj}c = 0, 1 < k <n-— 1, and hjjn = )\m-

(4.8) Bk =0, 1<k<n-—1, and hunn = fhyn -
n—1K

(49) h'rmn = Kyn = _Q/\,n, hijk = O, for any k.

L
By (2.14), (4.7)—(4.9), for j < n, we get
(4.10) wjn = Z hjnkwk
k=1
:hjjnwj + annwn = )\777, Wy.
From 9;; = (A\; — Aj)wij, (4.3) and (4.10), for j < n, we have

¢’n /\m /\n_l)\m
(4.11) wjn:)\i‘u:Afp,wj:)\"waj.

From the structure equations of M™ we have dw, = 0. Thus, we may put
wp =ds. By (4.4), we get dXA = A, ds, A\, = %. Thus, we have

An—1dA d(log |\" — K|#)
(4.12) Win = i (;szj = ds wij.
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From (4.12) and the structure equations of M (c), for j < n, we have

n—1
dwjn = Z Wik A Wgn + Win A Wnp — Win+1 N Wntin + an
k=1
n—1
= Z Wik N Wkn — Wint1 A Wntin — CWj AWy
k=1
d(log [A™
( g|ds K|%) ijk/\wk—(c—)\u)wj/\ds
k=1
Differentiating (4.12), we have
d(log |\" — K|7) d(log [\" — K|7)
dwjn = 752 ds Nwj + 75 dw;
d?(log |\ — K) d(log|\" — K|#) ¢
= e ds Awj + 75 ijk A Wi

k=1

:{ - d2(10g|222— K|w) N {d(logP\;s— K|3T)}2}wj N ds

1

lo )\” "
d(log | ZkaAwk

From the previous two equalities, we have
d*(log A" — K|7) {d(log A" —
ds? ds
If we define @ = [A\" — K|~ #, from (4.13) we obtain
d*w
ds2

(4.13)

K‘%)}Q —(ec—Au) =0.

(4.14) +w(c—Ap) =0.

From (4.12), we have V. e, = > wn;(en)e; = 0. By the same arguments

as in section 3, we see that w(s) is a function defined in (—oo, +00).
We can prove the following Lemmas:

Lemma 4.1. If c = 1 and K < 1, then the positive function w is bounded

from above.

Proof. From (4.3), we know that A — K # 0. Thus (4.2) and (4.14) imply that

d’w A2 K

(4.15) 7o +w e 0,
that is
&2 .
(4.16) % i wle- K(K o™it =o.

ds?
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Multiplying (4.16) by 292 and integrating, we get

deo\ 2
<dj> + cw? —wQ(K:I:wfn)% =C,
where C' is a constant. Thus, we have
2 C

If the positive function w is not bounded from above, that is, w — +0c0. From
(3.17), we have that ¢ — K= < 0, a contradiction with the assumption. O

Lemma 4.2. (1) Let

1
S(t) = W{(n - D2+ K2}, t>0,

to=K72, K>0. Ift <K andty < K, thent <ty holds if and only if S(t) >

(n— l)tg/n + t(;?/n and t > to holds if and only if S(t) < (n — l)tg/n + taQ/n.
(2) Let
1

to = K72, K>0. Ift < K and to < K, then t < to holds if and only
if H(t) > L{(n - l)t(l)/n - tal/n} and t > to holds if and only if H(t) <
1/n —-1/n

=1 =117},
Proof. (1) We have

dS(t)  2(n— 1)t2-3m/n

dt n

it follows that ¢ < K if and only if S(¢) is a decreasing function, ¢ > K if and
only if S(¢) is an increasing function.

If to < K, since t < K if and only if S(¢) is a decreasing function, we infer
that if t < K, then t <ty holds if and only if

(t2 - K2)a

S(t) 2 5(to) = t(z)(n}lw{(n - Dty + K?}
_ 152("%)/"{(”7 )2 + [(tﬁ 7}() ,tg;z]z}
0
{08+ [ -
0

By the same reason, the rest of (1) follows.
(2) Since H(t) is a decreasing function if ¢ < K and an increasing function
if t > K, it follows the result of (2). O
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Proof of Theorem 1.5. Putting t = A\"(> 0) and Pk (t) = t"° — K, from (4.15),
we have
d2w + PK(t)

@z T 0

(4.18)

Since we assume that 0 < K < 1, we see that tg < K, where t; = K#7 . We
consider two cases t > K and t < K.

If t > K, we have t > tg. Thus, Pk (t) > Pg(to) = 0. From (4.18), we have

‘f;;z” < 0. This implies that dwdgs) is a strictly monotone decreasing function

of s and thus it has at most one zero point for s € (—oo0, +00). By the same
arguments as in the proof of Theorem 1.3, we know that this is impossible.
If t < K, since tp < K, from (2) of Lemma 4.2 and (4.18), we see that

1 ]- n — n
H< A{(n-1)K> — K 72} = {(n—1)tg/" = t5"/"}
n n

holds if and only if ¢ > ¢y if and only if Pk (t) > 0 and if and only if ‘ilzs? <0.
Also

1 ]- n — n
H>A{(n-1)K7> — K 72} = {(n—1)tg/" = t5"/"}
n n

holds if and only if ¢ < ¢y if and only if Pk (t) < 0 and if and only if ‘ig > 0.
Thus ‘fi—f is a monotonic function of s € (—o0, +00). By use of the same method
as in the proof Theorem 1.3, we know that M™ is isometric to the Riemannian
product S"~1(a) le(\/aQ—l),(f:l/(l—K%). O
Proof of Theorem 1.6. Putting t = A"(> 0) and Pk (t) = t" — K, we see
that (4.18) holds. Since 0 < K < 1, we have ty < K, where to = K7-2. We
also consider two cases t > K and t < K.

If t > K, we have t > ty. Thus, Pk (t) > Pk(to) = 0. From (4.18), we have
‘f;? < 0. By the same arguments as in the proof of Theorem 1.3, we know
that this is impossible.

If t < K, since to < K, from (1) of Lemma 4.2 and (4.18), we see that

S<(n—1DKv7 + K 2 = (n— 1)t2/" + 152"

0.

holds if and only if ¢ > tg if and only if Pk (t) > 0 and if and only if ‘ig
Also

S>m—D)Kv7 + K w7 = (n— 1)t/ 452"
holds if and only if ¢ < ¢y if and only if Pk (t) < 0 and if and only if ‘fs? > 0.
Thus Cg—f is a monotonic function of s € (—oo0, +00). By the same arguments as
in the proof of Theorem 1.3, we know that M™ is isometric to the Riemannian

product S"~1(a) x H( a2—1),a2:1/(1_[(n2f2)_ 0
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