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1. Introduction and preliminaries

Let Mn be the algebra of all n× n complex matrices. The numerical range
of A ∈ Mn, denoted by W (A), is defined as the subset of complex plane given
by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.
It is known that W (A) is a compact and convex subset of C. It can be viewed
as a picture of A containing useful information of A. Even if the matrix A is not
known explicitly, W (A) would allow one to see many properties of the matrix.
For example, the numerical range can be used to locate eigenvalues, deduced
algebraic and analytic properties, help find dilations with simple structure, etc.
For more information see [10] and [15, Chapter 1].
The numerical radius of A ∈ Mn, denoted by ω(A), is defined as

ω(A) = max{|λ| : λ ∈ W (A)}.
The quantity ω(A) is useful in studying perturbations, convergence, stability,
approximation problems, iterative methods, etc. For more information see
[3, 8, 20]. In this paper, the symbol |||.||| stands for unitarily invariant norm on
the space of matrices. The spectral matrix norm ∥.∥ (i.e., the matrix norm
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subordinate to the Euclidean vector norm) is an example of unitarily invariant
norms; see [4] and [14] for more information.

It is well known that ω(.) is a vector norm on Mn but is not unitarily
invariant norm. We recall the following results about the numerical radius of
matrices which can be found in [10] (see also [15, Chapter 1]).

Lemma 1.1. Let A ∈ Mn and k be a positive integer. Then the following
assertions are true:

(i) ω(U∗AU) = ω(A), where U ∈ Mn is unitary;
(ii) If A = A1 ⊕ · · · ⊕Ak, then ω(A) = max{ω(A1), . . . , ω(Ak)};
(iii) 1

2∥A∥ ⩽ ω(A) ⩽ ∥A∥;
(iv) ω(A) = ∥A∥ if ( but not only if) A is normal;
(v) ω(Ak) ⩽ ωk(A).

In Mn, beside the usual matrix product, the entrywise product is quite
important and interesting. The entrywise product of two matrices A and B is
called the Schur (or Hadamard) product of A and B, and denoted by A ◦ B.
With this multiplication, Mn becomes a commutative algebra for which the
matrix with all entries equal to one is the unit.
If A = (aij) ∈ Mn is positive semidefinite, then for any matrix X ∈ Mn

(see [2]), we have

(1.1) ω(A ◦X) ⩽ ( max
1⩽i⩽n

aii) ω(X).

Throughout the paper, we use the notation A ≥ 0 to mean that A is positive
semidefinite and A > 0 to mean it is positive definite. In [17–19], the matrix
Young inequality for numerical radius and operator norm, even for the special
case arithmetic geometric mean inequality, are investigated. In section 2 of
this paper, using several examples of positive definite functions, we will con-
sider some important inequalities for numerical radius; in particular for the
Heinz inequality. In section 3, by using some results in [6, 7], we obtain some
inequalities about the numerical radius of matrices, and we also give some open
problems.

2. Main results

A complex valued function φ on R is said to be positive definite if for each
positive integer n, the matrix [φ(xi−xj)] is positive semidefinite for every choice
of real numbers x1, . . . , xn. Let I be any interval and K(x, y) be a bounded
continuous complex valued function on I × I. We say that K is a positive
definite kernel if ∫

I

∫
I

K(x, y)f(x)f(y)dxdy ⩾ 0,

for every continuous function f on the interval I. We repeatedly use the con-
nection between positive definite matrices, positive definite functions on R and
positive definite kernels. Now, we state the following proposition.
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Proposition 2.1. [4, Exercise 5.1.6] A bounded continuous function K(x, y)
on I × I is a positive definite kernel if and only if for all choices of points
x1, . . . , xn in I, the n × n matrix [K(xi, xj)] is positive semidefinite. Also, a
bounded continuous function φ on R is positive definite if and only if the kernel
K(x, y) = φ(x− y) is positive definite.

Let f be a function in L1(R). The Fourier transform of f is the function f̂
defined as

f̂(t) =

∫ ∞

−∞
f(x)e−itxdx.

By a known theorem of Bochner, if f ∈ L1(R), then f̂ is positive definite if and
only if f(t) ⩾ 0 for almost all t; see, e.g. [12, p. 70]. So, we have the following
lemma.

Lemma 2.2. [6, 7] The following functions are positive definite:

(i)
cosh(αx)

cosh(x)
, for −1 < α < 1;

(ii)
sinh(αx)

sinh(x)
, for 0 < α < 1;

(iii)
sin(x)

x
;

(iv)
x

sinh(x)
;

(v)
x cosh(αx)

sinh(x)
, for −1/2 < α < 1/2.

Bhatia and Parthasarathy in [7, p. 216 and 217], by using Lemma 2.2(i),
Proposition 2.1 and congruence relation, proved the following result.

Lemma 2.3. Let λ1, . . . , λn be positive real numbers (not necessarily distinct),

and 0 ⩽ ν ⩽ 1. If Y = [yij ] ∈ Mn, where yij =
λν
i λ

1−ν
j + λ1−ν

i λν
j

λi + λj
, then Y ≥ 0.

In [11], Heinz proved the following inequality:

(2.1)
∣∣∣∣∣∣AνXB1−ν +A1−νXBν

∣∣∣∣∣∣ ⩽ |||AX +XB||| ,

where A,B ∈ Mn are positive semidefinite matrices, 0 ⩽ ν ⩽ 1 and X ∈ Mn.
For another proof of this inequality, see [7]. Now, we state a similar inequality
for the numerical radius of matrices.

Theorem 2.4. Let A,X ∈ Mn be such that A ≥ 0. Suppose that 0 ⩽ ν ⩽ 1.
Then

ω(AνXA1−ν +A1−νXAν) ⩽ ω(AX +XA).
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Proof. In view of Lemma 1.1(i), we assume that A = diag(λ1, . . . , λn), where
λi ⩾ 0. At first, let λi > 0 for all i = 1, . . . , n. A simple calculation shows that:

AνXA1−ν +A1−νXAν = Y ◦ (AX +XA),

where Y ∈ Mn is the matrix with entries given by yij =
λν
i λ

1−ν
j + λ1−ν

i λν
j

λi + λj
.

Then by Lemma 2.3, Y ≥ 0, and hence the result in this case follows from
(1.1).
In the general case, assume A = A1⊕0n−k, where A1 ∈ Mk(k < n) is a positive

definite matrix. Let X =

[
X1 X2

X3 X4

]
∈ Mn, where X1 ∈ Mk and X4 ∈ Mn−k.

Then we have

AνXA1−ν +A1−νXAν = (Aν
1X1A

1−ν
1 +A1−ν

1 X1A
ν
1)⊕ 0n−k,

AX +XA =

[
A1X1 +X1A1 A1X2

X3A1 0n−k

]
.

Now, by Lemma 1.1(ii), the argument in the first case and [9, Lemma 2.1], we
have:

ω(AνXA1−ν +A1−νXAν) = ω(Aν
1X1A

1−ν
1 +A1−ν

1 X1A
ν
1)

⩽ ω(A1X1 +X1A1)

⩽ ω(AX +XA).

So, the proof is complete. □

The following example shows that the inequality (2.1) need not be true for
the numerical radius norm.

Example 2.5. Let ν = 1
2 , A = I, B1/2 = diag(2±

√
3, 1) andX=

[
1/(4± 2

√
3) 3

0 −2

]
.

Then a simple calculation shows that:

2.7025 = ω(AνXB1−ν +A1−νXBν) > ω(AX +XB) = 2.6213.

By setting X = I in (2.1), we have the following inequality:∣∣∣∣∣∣AνB1−ν +A1−νBν
∣∣∣∣∣∣ ⩽ |||A+B||| .

In the following theorem, we prove this inequality for the numerical radius of
matrices.

Theorem 2.6. Let A,B ∈ Mn be positive semidefinite matrices and 0 ⩽ ν ⩽ 1.
Then

(2.2) ω(AνB1−ν +A1−νBν) ⩽ ω(A+B).

Proof. By using Lemma 1.1((iii) and (iv)), the result is easy to verify. □
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In [7, p. 218 and 219], by using Lemma 2.2(ii), Proposition 2.1 and congru-
ence relation, we have the following result:

Lemma 2.7. Let λ1, . . . , λn be positive real numbers (not necessarily distinct),
and 0 ⩽ ν ⩽ 1. If Y = [yij ] ∈ Mn, where

(2.3) yij =


λν
i λ

1−ν
j − λ1−ν

i λν
j

λi − λj
if i ̸= j and λi ̸= λj ,

1 if i ̸= j and λi = λj ,

2ν − 1 if i = j,

then Y ≥ 0.

Theorem 2.8. Let A,X ∈ Mn, where A ≥ 0. Suppose that 0 ⩽ ν ⩽ 1. Then

ω(AνXA1−ν −A1−νXAν) ⩽ |2ν − 1|ω(AX −XA).

Proof. In view of Lemma 1.1(i), we assume that A = diag(λ1, . . . , λn), where
λi ⩾ 0. At first, let λi > 0 for all i = 1, . . . , n. A simple calculation shows that:

AνXA1−ν −A1−νXAν = Y ◦ (AX −XA),

where Y ∈ Mn is the matrix as in (2.3). By Lemma 2.7, Y ≥ 0, and hence the
result in this case follows from (1.1).

By the same manner in the proof of Theorem 2.4, the result in the general
case also holds. So, the proof is complete. □
Lemma 2.9. [7, p. 222] Let λ1, . . . , λn be positive real numbers (not neces-
sarily distinct). If Y = [yij ] ∈ Mn, where

(2.4) yij =


log λi − log λj

λ
1/2
i λ

−1/2
j − λ

−1/2
i λ

1/2
j

if i ̸= j and λi ̸= λj ,

1 if i = j or λi = λj ,

then Y ≥ 0.

Theorem 2.10. Let A,X ∈ Mn be such that A > 0. Then

ω((logA)X −X(logA)) ⩽ ω(A1/2XA−1/2 −A−1/2XA1/2).

In particular, if H is Hermitian, then

ω(HX −XH) ⩽ ω(eH/2Xe−H/2 − e−H/2XeH/2).

Proof. In view of Lemma 1.1(i), we assume that A = diag(λ1, . . . , λn), where
λi > 0. A simple calculation shows that:

(logA)X −X(logA) = Y ◦ (A1/2XA−1/2 −A−1/2XA1/2),

where Y ∈ Mn is the matrix as in (2.4). By Lemma 2.9, Y ≥ 0, and hence the
result follows from (1.1).
The second inequality follows from this fact that every Hermitian matrix can
be written as the logarithm of a positive definite matrix. □
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Theorem 2.11. Let H,X ∈ Mn be such that H = H∗. Then

ω((sinH)X(cosH)− (cosH)X(sinH)) ⩽ ω(HX −XH).

Proof. In view of Lemma 1.1(i), we assume that H = diag(λ1, . . . , λn), where
λi ∈ R. A simple calculation shows that:

(sinH)X(cosH)− (cosH)X(sinH) = Y ◦ (HX −XH),

where Y = (yij) ∈ Mn is the following matrix:

yij =


sin(λi − λj)

λi − λj
if i ̸= j and λi ̸= λj ,

1 if i = j or λi = λj .

By Lemma 2.2(iii), Y ≥ 0, and hence the result follows from (1.1). □

Theorem 2.12. Let H,X ∈ Mn be such that H = H∗. Then

ω(HX −XH) ⩽ ω((sinhH)X(coshH)− (coshH)X(sinhH)).

Proof. In view of Lemma 1.1(i), we assume that H = diag(λ1, . . . , λn), where
λi ∈ R. A simple calculation shows that:

HX −XH = Y ◦ ((sinhH)X(coshH)− (coshH)X(sinhH)),

where Y = (yij) ∈ Mn is the following matrix:

yij =


λi − λj

sinh(λi − λj)
if i ̸= j and λi ̸= λj ,

1 if i = j or λi = λj .

By Lemma 2.2(iv), Y ≥ 0, and hence the result follows from (1.1). □

Bhatia and Kosaki in [6, p. 46], by using Lemma 2.2(v), Proposition 2.1 and
congruence relation, proved the following lemma.

Lemma 2.13. Let λ1, . . . , λn be positive real numbers (not necessarily dis-
tinct), and 1/4 ⩽ ν ⩽ 3/4. If Y = [yij ] ∈ Mn, where

(2.5) yij =


(λν

i λ
1−ν
j + λ1−ν

i λν
j )(log λi − log λi)

2(λi − λj)
if i ̸= j and λi ̸= λj ,

1 if i = j or λi = λj ,

then Y ≥ 0.

Theorem 2.14. Let A,X ∈ Mn, A > 0 and 1/4 ⩽ ν ⩽ 3/4. Then

1

2
ω(AνXA1−ν +A1−νXAν) ⩽ ω(

∫ 1

0

AtXA1−tdt).



895 Aghamollaei and Sheikh Hosseini

Proof. In view of Lemma 1.1(i), we assume that A = diag(λ1, . . . , λn), where
λi > 0 for all i = 1, . . . , n. A simple calculation shows that:

AνXA1−ν +A1−νXAν = Y ◦ (
∫ 1

0

AtXA1−tdt),

where Y ∈ Mn is the matrix as in (2.5). By Lemma 2.13, Y ≥ 0, and hence
the result follows from (1.1). □

The following lemma is a consequence of the spectral theorem for positive
operators and Jensen’s inequality (see, e.g., [16]).

Lemma 2.15. Let A ∈ Mn be such that A ≥ 0, and x ∈ Cn be a unit vector.
Then for all 0 ⩽ r ⩽ 1,

(2.6) x∗Arx ⩽ (x∗Ax)r,

and for all r ⩾ 1,

(2.7) (x∗Ax)r ⩽ x∗Arx.

Theorem 2.16. Let A,B ∈ Mn be positive semidefinite matrices, and 0 ⩽ ν ⩽
1. Then

ω(AνB1−ν +BνA1−ν) ⩽
√
2 ω1/2(A2 +B2).

Proof. By the Schwarz inequality, Young inequality for positive numbers and
convexity of the function f(t) = t2, for every unit vector x ∈ Cn, we have∣∣x∗(AνB1−ν +BνA1−ν)x

∣∣ = ∣∣x∗AνB1−νx+ x∗BνA1−νx
∣∣

⩽ ∥B1−νx∥ ∥Aνx∥+ ∥A1−νx∥ ∥Bνx∥

= (x∗B2(1−ν)x)1/2 (x∗A2νx)1/2

+ (x∗A2(1−ν)x)1/2 (x∗B2νx)1/2

⩽
√
2 [(x∗B2(1−ν)x)(x∗A2νx)

+ (x∗A2(1−ν)x)(x∗B2νx)]1/2

⩽
(2.6)

√
2 [(x∗B2x)1−ν(x∗A2x)ν

+ (x∗A2x)1−ν(x∗B2x)ν ]1/2

⩽
√
2 [x∗((1− ν)B2 + νA2)x

+ x∗((1− ν)A2 + νB2)x]1/2

=
√
2
(
x∗(A2 +B2)x

)1/2
.

Now, by taking the supremum over all unit vectors in Cn, the result holds. □
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It is known, see [5, Theorem 3], that if A,B ∈ Mn are positive semidefinite
matrices, and r ⩾ 1, then

(2.8) ∥Ar +Br∥ ⩽ ∥(A+B)r∥.

Theorem 2.17. Let A,B ∈ Mn be positive semidefinite matrices. Then

ω(A+B) ⩽
√
2 ω1/2(A2 +B2) ⩽

√
2 ω(A+B).

Proof. By convexity of the function f(t) = t2, for every unit vector x ∈ Cn, we
have

x∗(A2 +B2)x = x∗A2x+ x∗B2x

⩾
(2.7)

(x∗Ax)2 + (x∗Bx)2

⩾ 1

2
((x∗Ax) + (x∗Bx))

2

=
1

2
(x∗(A+B)x)2.

Now, by taking the supremum over all unit vectors in Cn, the left inequality
holds.

Using the inequality in relation (2.8) and Lemma 1.1((iv) and (v)), we have

ω1/2(A2 +B2) ⩽ ω1/2((A+B)2) ⩽ ω(A+B),

and hence, the right inequality also holds. □

At the end of this section, by Theorems 2.6, 2.16 and 2.17, and this fact,
see [19], that ω(A1/2B1/2) ⩽ ω(A + B)/2 for any two positive semidefinite
matrices A,B ∈ Mn, we get the following corollary:

Corollary 2.18. Let A,B ∈ Mn be two positive semidefinite matrices, and
0 ⩽ υ ⩽ 1. Then

max{ω(AνB1−ν +A1−νBν), ω(AνB1−ν +BνA1−ν)} ⩽
√
2 ω1/2(A2 +B2),

and

max{2ω(A1/2B1/2), ω(A1/2B1/2 +B1/2A1/2)} ⩽ ω(A+B).

3. Additional results and some questions

Let A ∈ Mn. The linear operator SA on Mn, called the Schur multiplier
operator, is defined as SA(X) := A ◦X. The induced norm of SA with respect
to a unitarily invariant norm |||.||| will be denoted by

|||SA||| := sup
X ̸=0

|||SA(X)|||
|||X|||

= sup
X ̸=0

|||A ◦X|||
|||X|||

.
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Also, the induced norm of SA with respect to numerical radius norm will be
denoted by

∥SA∥ω := sup
X ̸=0

ω(SA(X))

ω(X)
= sup

X ̸=0

ω(A ◦X)

ω(X)
.

Ando and Okubo in 1991 proved the following two lemmas:

Lemma 3.1. [2, Corollary 1] For all A ∈ Mn,

∥SA∥ ⩽ ∥SA∥ω ⩽ 2∥SA∥.
Zhan in [21] claimed that the following useful result can be deduced from [1].

Lemma 3.2. If A ∈ Mn, then

|||SA||| ⩽ ∥SA∥.
Remark 3.3. By using Lemmas 3.1 and 3.2, in the proof of Theorems 2.4, 2.8,
2.10, 2.11, 2.12 and 2.14, we obtain the inequalities in this theorems for any
unitarily invariant norm. Now, if in this inequalities, we replace the matrices

A and X by

[
A 0
0 B

]
and

[
0 X
0 0

]
, respectively, then we get the following

corollaries, which were obtained in [6, relation (20)] and [7, relations (3.1),
(3.2), (4.5), (4.6), (4.7), (4.8)].

Corollary 3.4. Let A,B ∈ Mn be positive semidefinite matrices and 0 ⩽ ν ⩽ 1.
Then for all X ∈ Mn,∣∣∣∣∣∣AνXB1−ν +A1−νXBν

∣∣∣∣∣∣ ⩽ |||AX +XB||| .
Corollary 3.5. Let A,B ∈ Mn be positive semidefinite matrices and 0 ⩽ ν ⩽ 1.
Then for all X ∈ Mn,∣∣∣∣∣∣AνXB1−ν −A1−νXBν

∣∣∣∣∣∣ ⩽ |2ν − 1| |||AX −XB||| .
By setting X = I ∈ Mn in Corollary 3.5 and using Lemma 1.1((iii) and

(iv)), and this fact that the spectral matrix norm ∥.∥ is unitarily invariant, we
have the following result:

Proposition 3.6. Let A,B ∈ Mn be positive semidefinite matrices and 0 ⩽
ν ⩽ 1. Then

ω(AνB1−ν −A1−νBν) ⩽ |2ν − 1|ω(A−B).

Question 3.7. Let A,B ∈ Mn be positive semidefinite matrices and 0 ⩽ ν ⩽ 1.
Is it true that for all X ∈ Mn,

ω(AνXB1−ν −A1−νXBν) ⩽ |2ν − 1|ω(AX −XB)?

Corollary 3.8. Let H,K,X ∈ Mn be such that H = H∗ and K = K∗. Then

|||(sinH)X(cosK)− (cosH)X(sinK)||| ⩽ |||HX −XK||| ,
and

|||HX −XK||| ⩽ |||(sinhH)X(coshK)− (coshH)X(sinhK)||| .
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By setting X = I ∈ Mn in Corollary 3.8 and using Lemma 1.1((iii) and
(iv)), we have the following result:

Proposition 3.9. Let H,K,∈ Mn be Hermitian matrices. Then

ω(sinH cosK − cosH sinK) ⩽ ω(H −K).

In particular, if HK = KH, then

ω(H −K) ⩽ ω(sinhH coshK − coshH sinhK).

Question 3.10. Let H,K,X ∈ Mn be such that H = H∗ and K = K∗. Is it
true that

ω((sinH)X(cosK)− (cosH)X(sinK)) ⩽ ω(HX −XK)?

and

ω(HX −XK) ⩽ ω((sinhH)X(coshK)− (coshH)X(sinhK))?

Corollary 3.11. Let A,B,X ∈ Mn be such that A,B > 0. Then

|||(logA)X −X(logB)||| ⩽
∣∣∣∣∣∣∣∣∣A1/2XB−1/2 −A−1/2XB1/2

∣∣∣∣∣∣∣∣∣ .
In particular, if H,K ∈ Mn are Hermitian, then

|||HX −XK||| ⩽
∣∣∣∣∣∣∣∣∣eH/2Xe−K/2 − e−H/2XeK/2

∣∣∣∣∣∣∣∣∣ .
By setting X = I ∈ Mn in Corollary 3.11 and using Lemma 1.1((iii) and

(iv)), we have the following result:

Proposition 3.12. Let A,B ∈ Mn be such that A,B > 0 and AB = BA.
Then

ω(logA− logB) ⩽ ω(A1/2B−1/2 −A−1/2B1/2).

In particular, if H,K ∈ Mn are Hermitian and HK = KH, then

ω(H −K) ⩽ ω(eH/2e−K/2 − e−H/2eK/2).

Question 3.13. Let A,B,X ∈ Mn be such that A,B > 0. Is it true that

ω((logA)X −X(logB)) ⩽ ω(A1/2XB−1/2 −A−1/2XB1/2)?

Corollary 3.14. Let A,B,X ∈ Mn be such that A,B are positive semidefinite
matrices. If 1/4 ⩽ ν ⩽ 3/4, then

1

2

∣∣∣∣∣∣AνXB1−ν +A1−νXBν
∣∣∣∣∣∣ ⩽ ∣∣∣∣∣∣∣∣∣∣∣∣∫ 1

0

AtXB1−tdt

∣∣∣∣∣∣∣∣∣∣∣∣ .
By setting X = I ∈ Mn in Corollary 3.14 and using Lemma 1.1((iii) and

(iv)), we have the following result:
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Proposition 3.15. Let A,B ∈ Mn be positive semidefinite matrices such that
AB = BA. If 1/4 ⩽ ν ⩽ 3/4, then

(3.1) ω(AνB1−ν +A1−νBν) ⩽ 2ω(

∫ 1

0

AtB1−tdt).

Remark 3.16. Hiai and Kosaki [13, Corollary 2.3] proved that for all unitarily
invariant norms and 0 ⩽ t ⩽ 1,

2

∣∣∣∣∣∣∣∣∣∣∣∣∫ 1

0

AtXB1−tdt

∣∣∣∣∣∣∣∣∣∣∣∣ ⩽ |||AX +XB||| .

That is in this case, (3.1) is a refinement of (2.2).

Question 3.17. Let A,B,X ∈ Mn be such that A,B are positive semidefinite
matrices. If 1/4 ⩽ ν ⩽ 3/4, then is it true that

1

2
ω(AνXB1−ν +A1−νXBν) ⩽ ω(

∫ 1

0

AtXB1−tdt)?

and

ω(

∫ 1

0

AtXB1−tdt) ⩽ 1

2
ω(AX +XB)?
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