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ABSTRACT. Inspired by the work of Suzuki in [T. Suzuki, A general-
ized Banach contraction principle that characterizes metric completeness,
Proc. Amer. Math. Soc., 136 (2008), 1861-1869], we prove a fixed point
theorem for contractive mappings that generalizes a theorem of Geraghty
in [M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc.,
40 (1973), 604-608] and characterizes metric completeness. We introduce
the family A of all nonnegative functions ¢ with the property that, given
a metric space (X,d) and a mapping T : X — X, the condition

z,y € X, z #vy, dz,Tz) < d(z,y) = d(Tz,Ty) < ¢(d(z,y)),

implies that the iterations x, = Tz, for any choice of initial point z € X,
form a Cauchy sequence in X. We show that the family of L-functions,
introduced by Lim in [T.C. Lim, On characterizations of Meir-Keeler
contractive maps, Nonlinear Anal., 46 (2001), 113-120], and the family
of test functions, introduced by Geraghty, belong to A. We also prove a
Suzuki-type fixed point theorem for nonlinear contractions.

Keywords: Banach contraction principle, Contractive mappings, Fixed
points, Suzuki-type fixed point theorem, Metric completeness.
MSC(2010): Primary: 54H25; Secondary: 54E50, 11Y50.

1. Introduction

Throughout this paper, R denotes the set of nonnegative real numbers,
Z7" denotes the set of nonnegative integers, and N denotes the set of positive
integers. Given a set X and a mapping T : X — X, the nth iterate of T
is denoted by T™ so that T?z = T(Tz), T3z = T(T?x) and so on. A point
xg € X is called a fized point of T if Txg = xg.
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Let (X, d) be a metric space. A mapping T : X — X is said to be contractive
if d(Tz,Ty) < d(z,y), for all z,y € X with © # y, and a contraction if there
is r € [0,1) such that d(Tz,Ty) < rd(x,y), for all z,y € X. The following
famous theorem is referred to as the Banach contraction principle.

Theorem 1.1 (Banach, [1]). If X is a complete metric space, then every con-
traction T on X has a unique fixed point.

The Banach contraction principle is very simple and powerful. It became
a classical tool in nonlinear analysis with many generalizations; see [2—4,7,12,
14,15,20-23,25,26]. For instance, the following result, due to D.W. Boyd and
J.S. Wong, is a great generalization of Theorem 1.1.

Theorem 1.2 (Boyd and Wong, [2]). Let (X,d) be a complete metric space,
and let T be a mapping on X. Suppose there ewists a function ¢ : RT — RT
satisfying $(0) = 0, ¢(s) < s for s > 0 and that ¢ is right upper semicontinuous
such that

(11) Vr,ye X, d(Tz,Ty) < ¢(d(z,y)).
Then T has a unique fized point.

Another interesting generalization of Banach contraction principle was given,
n [14], by A. Meir and E. Keeler:

Definition 1.3 ( [14]). A mapping T : X — X on a metric space (X,d) is
called a Meir-Keeler contraction if, for every e > 0, there exists § > 0 such
that

(1.2) Va,y € X, (5§d(m,y)<8+5 = d(Tx,Ty)<5).

Theorem 1.4 (Meir and Keeler, [14]). If X is a complete metric space, then
every Meir-Keeler contraction T on X has a unique fixed point.

In [13], T.C. Lim introduced the notion of L-functions and gave a character-
ization of Meir-Keeler contractions; see Theorem 1.6 below. Lim’s character-
ization reveals that Meir-Keeler’s Theorem 1.4 is a very strong generalization
of Boyd-Wong’s Theorem 1.2.

Definition 1.5 ( [13]). A4 function ¢ : Rt — R* is called an L-function if
?(0) =0, ¢(s) >0 for s > 0, and, for every s > 0, there exists 6 > 0 such that
o(t) < s for allt € [s,s+ 0].

The family of L-functions is denoted by L. Note that every L-function ¢
satisfies ¢(s) < s, for all s > 0.

Theorem 1.6 (Lim [13], see also [24]). Let (X, d) be a metric space. A mapping
T : X — X is a Meir-Keeler contraction if and only if there exists an L-function
¢ such that

Ve,ye X, d(Tx,Ty) < é(d(z,y))-
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There is an example, in [5], of an incomplete metric space X on which every
contraction has a fixed point. This means that Theorem 1.1 cannot characterize
the metric completeness of X. Recently, in [25], Suzuki proved the following
remarkable generalization of the classical Banach contraction principle that
characterizes the metric completeness of X.

Define a function 0 : [0,1) — (1/2,1] by

if0<r<(v5-1)/2;
2, i (VE-1)/2 <r < 1/V2
)y if1/V2<r <1
Theorem 1.7 (Suzuki, [25]). Let (X,d) be a metric space. Then X is complete
if and only if every mapping T on X satisfying the following has a fixed point:
o There exists r € [0,1) such that

1
(1.3) 0(r) = E

1—1r
1+r

(14) Va,ye€ X, (H(T)d(x,T:c) <d(z,y) = d(Tz,Ty) < rd(m,y)).

The above Suzuki’s generalized version of Banach contraction principle ini-
tiated a lot of work in this direction and led to some important contribution in
metric fixed point theory. Several authors obtained variations and refinements
of Suzuki’s result; see [8,10,11,16,18,19].

The situation for contractive mappings is different. A contractive mapping
on a complete metric space need not have a fixed point. Edelstein, in [6], proved
that if the metric space is compact then every contractive mapping possesses
a unique fixed point. Then, in [26], Suzuki generalized Edelstein’s result as
follows.

Theorem 1.8 (Suzuki, [26]). Let X be a compact metric space and let T :
X — X satisfy the following condition:

(1.5) Vz,ye X, (%d(w,Tx) <d(z,y) = d(Tz,Ty) < d(:r,y)).

Then T has a unique fized point.

It is interesting to note that, although the above Suzuki’s theorem generalizes
Edelstein’s theorem in [6], these two theorems, as Suzuki mentioned in [26], are
not of the same type.

Let T be contractive, fix a point z € X, and set x,, = T"z, for n € N.
Criteria for the sequence of iterates {x,} to be Cauchy are of interest, for if it
is Cauchy then it converges to a unique fixed point of 7', [9]. Many papers have
presented such criteria, especially since the important paper of Rakotch [17].
For example, Geraghty in [9] proved the following theorem that gives a neces-
sary and sufficient condition for a sequence of iterates to be convergent. Here,
and in the sequel, the following notation is used: for any pair of subsequences
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{z,, } and {z,, } of a given sequence {z,} in X, we let §,, = d(x,,z,,) and

A — 0, 0n = 0;
" d(Txp,, Txy,)/0n, 6y > 0.

Theorem 1.9 (Geraghty, [9]). Let T be a contractive mapping on a complete
metric space X, let v € X, and set x,, = T"xz, n € N. Then {z,} converges
to a unique fized point of T if and only if, for any two subsequences {z,,} and
{zq, }, with x,, # zq,, if Ay — 1 then 6, — 0.

2. A fixed point theorem for generalized contractive mappings

Definition 2.1. Let (X,d) be a metric space and T : X — X be a mapping.
We call T a generalized contractive mapping if

(2.1) Vz,ye X, (:1: £y, d(z,Tx) <d(z,y) = d(Tz,Ty) < d(m,y)).

Theorem 2.2. Let T : X — X be a generalized contractive mapping on a
metric space X. Given v € X, the following statements for the sequence x, =
T"x, n € N, are equivalent:

(1) {xn} is a Cauchy sequence.
(2) For any two subsequences {x,, } and {zq, }, with d(zp, , Tzp,) < d(zp, , Tq,,)
for all n, if A, — 1 then 6, — 0.

Proof. The implication (1) = (2) is clear, because if {x,} is Cauchy then, for
any two subsequences {z,, } and {z,, }, we have §, — 0.

To prove (2) = (1), first we assume that x,, = Tp,41, for some m. Then
Ty = Tm, for n > m, and particularly {x,} is a Cauchy sequence. Next,
assume that z, # x,41 for all n. Since d(x,,Tx,) < d(x,,Tx,), condition
(2.1) implies that the sequence §,, = d(zy, zy41) is strictly decreasing. Thus
0, — 6 for some nonnegative number 6. If § > 0, take p, =n and ¢q, = n + 1.
Then d(zp,,T2p,) < d(zp,,zq,), for all n, and A,, — 1 while §, — ¢ # 0.
This is a contradiction and hence d(x,,, z,4+1) — 0.

For every n € N, choose k,, € N such that d(z,, Zm+1) < 1/n for m > k,.
If {z,} is not a Cauchy sequence, there exist € > 0 and sequences {p,} and
{gn} of positive integers such that ¢, > p, > k,, and d(z,, ,z,,) > €. We also
assume that ¢, is the least such integer so that d(zp, , x4, -1) < €. Therefore,

e <d(zp,,xq,) < dlxp,,xq,-1) + d(xg,-1,%,,) <e+1/n.
This shows that §,, — . Since we have, for every n € N,
d(@p,, Txp,) < d(@p,, Tq,),
condition (2.1) shows that d(T'z,, ,Tzq,) < 0n. So

On —2/n < d(Tzp, , Tx,,)
o On

=A, <l
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It shows that A,, — 1 and thus 6,, — 0. This is a contradiction. Therefore,
{z,} is a Cauchy sequence. O

The following is a Susuki-type generalization of Theorem 1.9.

Theorem 2.3. Let X be a complete metric space and let T be a mapping on
X satisfying the following condition:

(2.2) Ve,ye X, (%d(x,Tx) <d(z,y) = d(Tz,Ty) < d(ac,y)).

Given © € X, the following statements for the sequence x, = T"x, n € N, are
equivalent:
(1) zp, — 2z in X, with z a unique fixed point of T';
(2) for any two subsequences {xp, } and {4, }, with d(xp,, , Txp,) < d(Tp,, Tq, )
for alln, if A, — 1 then 6, — 0.

Proof. Let us first prove that 1" has at most one fixed point. If z is a fixed
point of T and z # y then (1/2)d(z,Tz) < d(z,y) and condition (2.2) implies
that d(Tz,Ty) < d(z,y). Since Tz = z, we must have Ty # y, i.e., y is not a
fixed point of T'.

The implication (1) = (2) is clear. We prove (2) = (1). By Theorem 2.2,
the sequence {z,} is Cauchy and, since the metric space X is complete, x,, — 2
for some z € X. We show that Tz = z. First note that,

(2.3) Vn o (d(2n, Tni1) < 2d(zn, 2) o d(Tpi1, Tpga) < 2d(Tpi1,2)).
For, if 2d(z,, z) < d(zp, Tnt1) and 2d(xp41, 2) < d(Zp41, Tnt2) hold, for some
n, then
2d(n, Tnt1) < 2d(zp, 2) + 2d(Tp41, 2)
S d(x'rw mn+1) + d(xn+1; $n+2)
< d(xp,Tnt1) + d(@n, Tpy1) = 2d(n, Tptt)-
This is absurd and thus we have (2.3). Now condition (2.2) together with (2.3)
imply that
(2.4) Vn o (d(zne1,T2) < d(an, 2) or d(@nq2,T2) < d(Tpi1, 2)).

Since x,, — z, condition (2.4) implies the existence of a subsequence of {z,}
that converges to T'z. This shows that Tz = z. |

Next, we prove that the constant 1/2 in Theorem 2.3 is the best.

Theorem 2.4. For every n > 1/2, there exist a complete metric space (X, d)
and a mapping T : X — X with the following properties:

(1) the mapping T has no fized point in X ;

(2) nd(z,Tx) < d(z,y) implies d(Tx,Ty) < d(z,y), for all z,y € X;

(3) condition (2) of Theorem 2.3 holds for any choice of initial point.
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Proof. Take n > 1/2 and choose r € (1/4/2,1) such that (1 4+7)"" < n. As
in [25, Theorem 4], for n € Z*, let u, = (1 — r)(—r)", and then set X =
{0,1} U {uy, : n € ZT}. Define a mapping T on X by 70 = 1, T1 = ug and
Tty = upi1 for n € Z*. Obviously T has no fixed point in X and thus (1) is
proved. We now prove part (2). In [25], Suzuki showed the following

Vz,ye X, ((1 +r) Yz, Tz) < d(z,y) = d(Tz,Ty) < rd(z, y))

Now, if nd(x, Tz) < d(z,y) then (14+7)~td(x, Tz) < d(z,y) and thus d(Tz, Ty) <
rd(z,y) < d(z,y). This proves part (2). Finally, we show that, in this setting,
condition (2) of Theorem 2.3 holds. Take an arbitrary element € X as an
initial point and set x, = T"x, n € N. Then {z,, : n > 2} is a subsequence
of {u,} and since u,, — 0 the sequence {z,} is Cauchy. Hence if {z,, } and
{z4,} are two subsequences of {z,} we have d(zp, ,z,,) — 0. O

3. A fixed point theorem for generalized ¢-contractions

Definition 3.1. Let ¢ : RT — R™ be a function such that ¢(s) < s, forall s. A
mapping T : X — X on a metric space X, is called a generalized ¢-contraction

if
(3.1) Va,y € X, (x £y, dz,Tz) <d(z,y) = d(Tz,Ty) < gi)(d(x,y))).

We call ¢ admissible if, for every choice of initial point x € X, the iterations
Tp =T"x, n € N, form a Cauchy sequence.

Notation. The family of admissible functions is denoted by A. We denote by Ag
the set of those admissible functions ¢ € A for which the function a(s) = ¢(s)/s
is decreasing near zero, i.e., there exists § > 0 such that

(3.2) 0<s<t<d = aft) <als).

We denote by Aar the set of those functions ¢ € Ay for which

(3.3) ap = liminf a(s) = liminf 9(s) > 0.
s—0+ s—0+ S

For simplicity, given two distinct points z,y in X, we will write a(z, y) to mean
a(d(z,y)).

Proposition 3.2. Let X be a complete metric space and let T : X — X be a
mapping. Assume that, for some admissible function ¢ € A, we have

(34) Va,ye€ X, (%d(:r,Tx) <d(z,y) = d(Tz,Ty) < ¢>(d(z,y))).
Then T has a unique fized point.

Proof. The proof is similar to that of Theorem 2.3. O
Theorem 3.3. Every L-function is admissible, that is, L C A.
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Proof. Let ¢ be an L-function and let 7" be a generalized ¢-contraction on a
metric space X. Fix ¢ € X and let z,, = T"z, n € N. If d(zn, Zint1) = 0,
for some m, then x,, = x,, for n > m and there is nothing to prove. Assume
that d(xy, 2p41) > 0 for all n. Since d(xy,, Tx,) < d(xn, Txy) and @, # Tpi1,
condition (3.1) implies that, for every n € N,

d(Tn11, Tny2) < O(d(Tn, Tni1)) < d(Tn, Tpir).

This shows that the sequence {d(x,,zp41)} is strictly decreasing and thus it
converges to some point s > 0. If s > 0, since ¢ is an L-function, there is
0 > 0 such that ¢(t) < s for s <t < s+ . Take n € N large enough so that
s <d(xp,Tn+1) < s+ 9. Then

d(Tpt1, Tnye) < O(d(@n, Tri1)) < s,

which is a contradiction. Hence d(xy,, zp+1) — 0.

Next, we show that {x,} is a Cauchy sequence. To this end, we adopt the
same method used by Suzuki in [24]. Fix € > 0 and let s = ¢/2. Since ¢ is an
L-function, there exists § € (0, s) such that ¢(t) < s for s <t < s+ . Since
d(xp,pt1) — 0, there is N € N such that d(z,,2n11) < § for n > N. We
show that

(3.5) AT, Tpam) <0+ s <c¢g, (n> N, meN).

For every n > N, we prove (3.5) by induction on m. It is obvious that
(3.5) holds for m = 1. Assume that (3.5) holds for some m € N. Then
O(d(Xpy Trnem)) < s. Now, if d(xn, Txy) < d(zy, Tpim) then (3.1) shows that
d(Tnt1, Tntme1) < O(d(Tn, Tpim)) and thus

d(Tp,, Tnpmt1) < d(Tn, Tng1) + d(@Tns1, Tpmtr) <0+ s < e
If d(zp, Tpam) < d(xn, Txy,) then d(x,, pem) < 6 and thus
A(Tny s Trpmt1) < d(@n, Tntm) + A Tngmy Tnamt1) <I+0 < d+s<e.
Therefore (3.5) is verified and {z,} is a Cauchy sequence. O

As in [9], we take S as the class of all functions a : RT — [0, 1] such that,
for any sequence {s,,} of positive numbers, if a(s,) — 1 then s, — 0.

Theorem 3.4. If a € S, the function ¢(s) = a(s)s is admissible.

Proof. Let o € S and define ¢(s) = a(s)s. Let T be a generalized ¢-contraction
on a metric space X, let x € X and let x,, = T"x, n € N. Let s,, = d(zy, Tpy1).
As in the proof of Theorem 3.3, we assume that s, > 0 for all n. Then
Sn+1 < asp)sn and thus s, — s for some s > 0. If s > 0 then s,41/s, — 1
and thus a(s,) — 1. Since a € S, we must have s = 0 which is a contradiction.
Hence s = 0 and d(xy, zp41) — 0.

For every n € N, choose k,, € N such that d(z,,, 1) < 1/n for m > k,.
If {x,} is not a Cauchy sequence, there exist £ > 0 and sequences {p,} and
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{gn} of positive integers such that ¢, > p, > k, and d(z,,,z,,) > €, and
d(xp,,rq,-1) < €. Therefore,

e <d(zp,,xq,) < dxp,,xq,—1) + d(xq,-1,24,) <e+1/n.

This shows that s, — €. Since d(zp,,,Tx,,) < d(zp,,2,,), for every n € N,
condition (3.1) shows that d(zp, +1,Zq,+1) < @(sn)S,. Hence we have

sn = d(Tp,,2q,) < d(Tp,, Tp,+1) + d(Tp, +1, Tg,+1) + d(2q, 41, Tq, )
< 2/n+ osp)Sn-

Dividing the above inequality by s,,, since a(s,,) < 1, we get «(s,,) — 1 and thus
$pn, — 0 which is a contradiction. Therefore, {z,} is a Cauchy sequence. d

We now state and prove a Suzuki-type fixed point theorem for ¢-contractions.

Theorem 3.5. Let (X,d) be a complete metric space and let T : X — X be a
mapping. Suppose, for some ¢ € Ag and a(s) = ¢(s)/s, we have

d(xz,Tx)

<d(z,y) = d(Tz.Ty) < (d(z.y))).

Then T has a unique fized point.

Proof. If z € X is a fixed point of T and y # z then
(1+ a(z,Tz))_ld(z7Tz) <d(z,y),

and thus by (3.6) we have d(Tz,Ty) < d(z,y). Since Tz = z, we must have
Ty # y, i.e., y is not a fixed point of T'.

Now, we prove the existence of the fixed point. Take two points z,y € X
with ¢ # y. If d(z,Tz) < d(z,y) then (1 + a(x,T:c))fld(x,Tm) < d(z,y),
because oz, Tx) > 0 and d(z,y) > 0. Hence T satisfies condition (3.1) with
¢(s) = a(s)s. Fix z € X and define x,, = T"x, n € N. Since the function
@(s) = a(s)s is admissible, the sequence {z,} is Cauchy. Since X is complete,
there is z € X such that z,, — z. Next, we show that Tz = z.

If x,, = Tx,, for some m, the x,, = z for n > m and Tz = z. We assume
that x,, # Tz, for all n. Since ¢ € Ay, condition (3.2) holds for some § > 0.
Take a positive number N such that d(x,,Tzy,) < 0 for n > N. Then

0 < d(Tan, T?xy) < ¢(d(xn, Tay)) < d(2y, Tay),
and condition (3.2) shows that a(z,, Tx,) < a(Tz,, T?z,), for n > N, so that

1 a(zy, Try) <1

3.7
(3.7) 1+ a(z,, Tz,) 14 Tz, T?x,) —
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We claim that
(1+ a(xn,Txn))fld(xn,Txn) < d(zy,2),
(3.8) Vn >N, or
(1+ a(Tap, T2%2,)) " d(Tp, T2,) < d( i1, 2).
If (3.8) fails to hold, then, for some n > N, we have
d@n,2) < (1+ alen, Twn)) " d(wn, Taw),
d(zni1,2) < (1+ a(Txn,Tan))_ld(Ta:n,Tan).
Using (3.7), we have
d(xp, Txy) < d(Tp, 2) +d(Txs, 2)
< (14 afwy,, Txn))_ld(mn, Tz,) + (14 a(Tz,, szn))_ld(Txn, T?z,)
< [(1 + afzn, Txn))f1 + (14 a(Tzn, T2:En))71a(xn, Txzy,)|d(zn, Txy)
< d(zp,Tz,).

This is absurd and thus (3.8) must hold. Now condition (3.6) together with
(3.8) imply that

(3.9) Vn>N, d(xpi1,Tz) < ¢(d(zy,2)) or d(Tpy2,T2) < ¢(d(Tni1,2))-

Since x,, — z and ¢(s) < s, condition (3.9) implies the existence of a subse-
quence of {z,} that converges to T'z. This shows that Tz = z. O

The following theorem states that, for a certain family of functions ¢ € A,
the coefficient 1/(1 + «), in Theorem 3.5, is the best.

Theorem 3.6. For ¢ € A and a(s) = ¢(s)/s, suppose

(3.10) ap = liminf a(s) = liminf 9(s) > 1/V2.
s—0+ s—0+ S
Then, for every constant n > 1/(1 4+ «yp), there exist a complete metric space
(X,d) and a mapping T : X — X such that T does not have a fized point and
Va,y € X, (nd(x,Tw) <d(z,y) = d(Tz,Ty) < ¢(d(fc,y)))-

Proof. Take a number 7 € (1/4/2,ap) such that (1 +7)~! < 7. The proof of
Theorem 3 in [25] shows that there exist a closed and bounded subset X of R
and a mapping 7" : X — X such that T does not have a fixed point and

(3.11) Vz,y € X, ((1+r)71|x—Tx| <l|lr—y| = |Tz—Ty| §r|x—y|>.
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Since r < lim(i)gfa(s), there exists 0 > 0 such that r < «(s) for s € (0,4). Since
s—

X is bounded, there is a constant M such that |x — y| < M0, for all z,y € X.
Now, define a metric d on X by

1
d(m,y)=M|x—y|, (Z‘,yEX)

For z,y € X, if nd(z,Tx) < d(z,y) then (1 + r)~td(x,Tz) < d(z,y). Now,
condition (3.11) and the fact that d(z,y) < § shows that

d(Tz,Ty) < rd(z,y) < a(d(z,y))d(z,y). O

4. Metric completeness

In this section, we discuss the metric completeness.

Theorem 4.1. Let (X,d) be a metric space. Then X is complete if and only
if every mapping T : X — X satisfying the following two conditions has a fixed
point in X;
(1) There exists a constant n € (0,1/2] such that nd(x,Tz) < d(z,y) im-
plies d(Tx, Ty) < d(x,y), for all z,y € X.
(2) There exists a point x € X such that condition (2) of Theorem 2.3
holds.

Proof. Tf the metric space (X, d) is complete, then every mapping T satisfying
conditions (1) and (2) possesses a unique fixed point by Theorem 2.3.

Suppose the metric space (X, d) is not complete and let (X, J) be its comple-
tion. There exists a sequence {u,} in X which converges to a point u € X\ X.
Define a mapping T : X — X as follows: For each # € X, since d(z,u) > 0
and d(un, u) — 0, there exists m € N such that

(4.1) d(un,u) < (n > m).

Put T'(z) = up,. In case © = wyg, for some k, we choose m large enough such
that m > k and (4.1) holds. It is obvious that d(Tz,u) < d(x,u) so that
Tx # x, for every x € X. That is, T does not have a fixed point. Let us prove
that T satisfies (2.2). Fix z,y € X with (1/2)d(z,Tx) < d(z,y). In the case
where 2d(z,u) < d(y, u), we have

AT, Ty) < d(T,u) +d(Ty,u) < 3 (A, ) + dly,w)
2(d

%(d(m ) + d(y,u) + 2(d(y, u) — Qd(rmu)))
d(y,u) — d(z,u) < d(z,y).

IN

IN



941 Abtahi
In the other case, where d(y,u) < 2d(z,u), we have

d(z,y) > %d(m,Tﬂ:) > %(d(:ﬁ,u) - J(Tx,u)) > %(1 - %)d(aj,u) = %a?(x,u)

Therefore,

(Tz,u) + d(Ty,u) < %( (z,u) + d(y,u))
3

U,

d(Tz,Ty) <

IA
~|

(J(x, u) + QCZ(I,U)) = 7J(x,u) < d(z,y).

Finally, we show that, for any initial point z, condition (2) of Theorem 2.3
holds for the iteration sequence z,, = T"x, n € N. The definition of T" shows
that there exists a sequence {m,} of positive integers such that m, < m,y;
and 2, = Un,,. Hence {z,} is a subsequence of {u,}. Now, if {z,, } and
{z,, } are subsequences of {z,}, they are also subsequences of {u,} and thus
d(zp, ,x,4,) — 0 because {u,} is a Cauchy sequence. This shows that condition
(2) of Theorem 2.3 holds for the sequence {z,}. This is a contradiction since
condition (1) of Theorem 2.3 does not hold for the sequence {z,}. O

We say that two metrics d and p on X are equivalent if they generate the
same topology and the same Cauchy sequences. Given a metric p on X, we
denote the family of all metrics d on X equivalent to p by &,. It is obvious
that (X, p) is complete if and only if (X, d), for some d € &,, is complete if and
only if (X,d), for all d € £,, is complete.

Theorem 4.2. For a metric space (X, p) the following are equivalent:

(1) The space (X, p) is complete.

(2) For every ¢ € Ag and d € E,, every mapping T satisfying (3.6) has a
fixed point.

(3) For some ¢ € AJ and n € (0,1/2], and for all d € £,, every mapping
T satisfying the following condition has a fized point;

(4.2) Vz,y € X, (nd(x,Tx) <d(z,y) = d(Tz,Ty) < (b(d(x,y))).

Proof. The implication (1) = (2) follows from Theorem 3.5. The implication
(2) = (3) is clear because Aj C Ag and, for < 1/2, condition (4.2) implies
condition (3.6).

To prove (3) = (1), towards a contradiction, assume that the metric space
(X, p) is not complete. Define ag as in (3.3). Then ag > 0 since ¢ € Al. Take
a number r € (0, ap) and let § be a positive number such that r < ¢(s)/s for
all s € (0,0). Define a metric d on X as follows:

d(w,y) = 571 i(zéxy?y)’ (z,y € X).
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Then d € &, and thus (X, d) is not complete. The proof of Theorem 4 in [25]
shows that there exists a mapping 7' : X — X with no fixed point such that

Vx,y € X, (nd(z,Ta:) <d(z,y) = d(Tz,Ty) < rd(m,y)).

Since d(z,y) < §, we have rd(z,y) < ¢(d(x,y)) and thus T satisfies (4.2). This
is a contradiction. O
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