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Abstract. Let Pn(x) =
∑n

i=0 Aix
i be a random algebraic polynomial,

where A0, A1, . . . is a sequence of independent random variables belong
to the domain of attraction of the normal law. Thus Aj ’s for j = 0, 1, . . .

possess the characteristic functions exp{− 1
2
t2Hj(t)}, where Hj(t)’s are

complex slowly varying functions. Under the assumption that there ex-
ist a real positive slowly varying function H(·) and positive constants t0,
C∗ and C∗ that C∗H(t) ≤ Re[Hj(t)] ≤ C∗H(t), t ≤ t0, j = 1, . . . , n,

we find that while the variance of coefficients are bounded, real zeros
are concentrated around ±1, and the expected number of real zeros of
Pn(x) round the origin at a distance (logn)−s of ±1 are at most of order
O ((logn)s log(logn)).

Keywords: Random algebraic polynomial, Expected number of real ze-
ros, Slowly varying function, Domain of attraction of Normal law.
MSC(2010):Primary: 60H25; Secondary: 60E10.

1. Introduction

Since the fundamental paper of Kac [8], random algebraic polynomials
have received tremendous attentions from researchers in theoretical and applied
fields of science and engineering. Among certain features, the asymptotic be-
havior of the expected number of real zeros of random algebraic polynomials, as
the degree n increases, have been investigated intensively. There are varieties in
techniques and results depending on the statistical assumptions on the random
vector (A0, A1, . . . , An) formed by the coefficients. The cases that coefficients
are iid were targeted first. The iid normal case is treated by Kac [8], Sam-
bandham [23], Wilkins [24], Farahmand [4] and others, see Farahmand [5] for a
complete survey. The iid stable case is treated by Logan and Shepp [12]. The
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case that the coefficients are iid follow a distribution in the domain of attrac-
tion of the normal law was treated by Ibragimov and Maslova [10,11]. Recently
there has been much interest in cases where the coefficients of random alge-
braic polynomials form certain random processes. Rezakhah and Soltani [20,21]
studied the expected density and asymptotic behavior of the expected number
of real zeros when the coefficients are neither independent and nor identically
distributed and follow a Levy and Harmonizable stable process, or form con-
secutive observations of Brownian motion. Rezakhah and Shemehsavar [14–17]
followed the case where the coefficients are Brownian points and studied the
asymptotic behavior of the expected number of level crossings, slop crossings,
local maxima, and sharp crossings of such random polynomials.

Edelman and Kostlan [3], studied the asymptotic behavior of the expected
number of real zeros for the case that the coefficients Ak, k = 1, 2, . . . n,
are independent centered normally distributed with Var(Ak) =

(
n
k

)
, where the

variance of the coefficients are increasing in n. They showed that the expected
number of real zeros of Pn(x) increases from the order of log(n) to the order

√
n

in compare to the case where the variance of the coefficients where not subject
to the increase with n, see [5] for a review of previous studies. Their studies
reveals that in such a case zeros are concentrated around zero in compare to
the previous studies where zeros are concentrated around ±1. The expected
density for this case is plotted in figure 1.
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Figure 1. Expected density of Pn(x)

More recently Rezakhah and Shemehsavar [18, 19] considered different cases
where the variance of the coefficients are increasing in n, and found that in
these cases again roots of the algebraic polynomials are concentrated around
zero.
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In this work, we extend the work of Ibragimov and Maslova [10] to the case
where the coefficients are not identically distributed. Our results illuminate
that when the coefficients are independent and their variances are bounded,
the roots are mainly concentrated round ±1. More precisely we study the
case where the coefficients are independent and are not necessarily identically
distributed, and belong to the domain of attraction of the normal law with
some bounded-ness condition for the exponent of their characteristic functions.
In such a case we provide an asymptotic upper bound for the expected number
of the real zeros of random algebraic polynomials with degree n in the interval

(−1+
(
log n

)−s
, 1−

(
log n

)−s
), to be of order (log n)s log log n for all 0 < s ≤ 1.

This result clarifies that for such wide class of distribution of the coefficients
the roots of the algebraic polynomials are accumulated around ±1, and also
clarifies that while the coefficients are independent the accumulation of the
roots around zero just happens when the variance of the coefficients are not
bounded, like the cases where considered in [3, 18, 19]. These would be an
exceptional illumination in the behavior of the distribution of zeros of random
algebraic polynomials. We should clarify that we follow some techniques of
Ibragimov and Maslova [10] in this study.

This paper is organized as follows. In Section 2 we provide some prelimi-
naries and some refinements on slowly varying complex functions. In Section
3 we state and prove the main result of this article.

2. Preliminaries

Let X1, X2, . . . be a sequence of independent random variables with a com-
mon distribution F (·), the distribution F (·) belongs to the domain of attraction
of a distribution G(·) if there exist sequences of constants an > 0 and bn such
that the distribution of a−1

n (X1 +X2 + . . . +Xn) − bn tends to G(·), we take
G(·) to be standard normal distribution Φ(·).

Let X be a non-degenerate zero mean random variable with a distribu-
tion function F (·) in the domain of attraction of N(0, 1). Let ϕ(t) be the
characteristic function of X. We cite the following fact from Chung [2]:
Since ϕ(0) = 1 and ϕ(t) is uniformly continuous on some interval of zero,
so there is an interval [−T, T ] on which ϕ(t) is non-zero. Thus there is a
unique continuous function Ψ : [−T, T ] → C, ( C the set of complex num-
bers), that Ψ(0) = 0 and ϕ(t) = exp{Ψ(t)} for −T ≤ t ≤ T . Now define
H(t) = −2t−2Ψ(t), t ∈ [−T, T ]− {0}. Then by the fact that ϕ(−t) = ϕ̄(t) we
have that:
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(i)− H(t) is continuous on [−T, T ]− {0}

(ii)− ϕ(t) = exp{−1

2
t2H(t)}(2.1)

(iii)− H(−t) = H̄(t),

where H̄(·) is the complex conjugate. Thus we shall take t > 0, and recall
from Ibragimov and Linnik [9] that, as the distribution of X is in the domain
of attraction of standard normal law, H(t) is a complex slowly varying at zero.

Thus
H(λt)

H(t)
→ 1, as t ↓ 0, for each fixed λ.

Let

(2.2) Qn(x) =

n∑
j=0

Ajx
j ,

be a random algebraic polynomial of degree n, where the random coefficients
A0, A1, . . . , An are assumed to be independent. We also assume each Aj , j =
0, . . . , n, belongs to the domain of attraction of the normal law, possessing the
characteristic function

(2.3) φj(t) = exp

{
−1

2
t2Hj(t)

}
, for t near zero,

where Hj(t) is a complex slowly varying function:

lim
t→0

Hj(τt)

Hj(t)
= 1,

The following lemma is a refinement on complex slowly varying functions.

Lemma 2.1. If a distribution function belongs to the domain of attraction of
the normal law, then its characteristic function possesses (2.1) and its corre-
sponding complex slowly varying function H(t) satisfies

(2.4) H(t) = Re[H(t)](1 + o(1)), as t −→ 0,

where Re[z] stands for the real part of a complex number z.

Proof. Let X be non-degenerate zero mean random variable with a distribu-
tion function F (x) in the domain of attraction of N(0, 1). Let ϕ(t) be the
characteristic function of X. According to Feller [6, Section 17.5, Theorem
1], the necessary and sufficient condition for F (x) to belong to the domain of
attraction of N(0, 1) is that the truncated variance U(x) :=

∫
(−x,x]

y2dF (y) to
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be slowly varying at infinity, that is

U(sx)

U(s)
→ 1 as s → ∞

for every positive x. Thus if X1, . . . , Xn are i.i.d. with law F , in the domain
of attraction of N(0, 1), then (a−1

n

∑n
i=1 Xi) ⇒ N(0, 1), where it is necessary

and sufficient that the constants an > 0 satisfy, see Loève [13, page 364],

n

a2n
U(an) → 1 (n → ∞).

It follows that the sequence (an) is regular varying with index 1/2, that is, the
function a[x] is regularly varying with index 1/2. In particular an → ∞ and
an+1/an → 1 as n → ∞, see Loève [13, page 364]. In the special case where
σ2 := Var(X) < ∞, clearly the truncated variance is a slowly varying function,
and the requirement on an reduces to an ∼ σ

√
n. But in general F (·) does not

necessarily have a finite second moment. This special case corresponds to H
being continuous at 0 with value σ2 there, see [9, page 90].

We denote the corresponding characteristic function of F (·) by ϕ(·),so

ϕn(t/an) → exp{−t2/2}, (n → ∞),

for each t ∈ R. For any t > 0 we have t/an ≤ T for all large n; and so, by (2.1),
the left-hand side equals exp{−(n/2)(t/an)

2H(t/an)}. By the uniqueness in
the result of Chung [2] quoted at the beginning of this section, it follows that
for each t > 0,

n

a2n
H(t/an) → 1 (n → ∞).

Write H(t) = Re[H(t)] + iIm[H(t)], then

(2.5)
Im[H(t/an)]

Re[H(t/an)]
→ 0, (n → ∞),

for each t > 0.

Now since X is non-degenerate, there exists S > 0 such that |ϕ(t)| < 1 for
0 < t ≤ S. We may take S ≤ T , then since |ϕ(t)| = exp{−(1/2)t2Re[H(t)]},
we deduce that Re[H(t)] > 0 for 0 < t ≤ S. Thus by (2.1) we find that
u(t) := Im[H(t)]/Re[H(t)] is continuous on 0 < t ≤ S. We set u(t) := u(S)
for t > S in order that u(·) will be defined and continuous on (0,∞). Set
cn := log an and v(x) := u(exp(−x)) for x ∈ R, then by the fact that an ∼ σ

√
n,

so (2.5) can be written as

v(cn + x) = u

(
exp(−x)

an

)
→ 0, (n → ∞).

for each fixed x ∈ R. Now v is continuous and the properties of an yields that
cn → ∞ and cn+1 − cn → 0 as n → ∞. This gives us the Kingman conditions
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needed for Theorem 1.9.1(ii) in [1] are fulfilled, giving that v(x) → 0 as x → ∞.
Thus u(t) → 0 as t ↓ 0, giving that

H(t)

Re[H(t)]
− 1 = i

Im[H(t)]

Re[H(t)]
→ 0,

as t ↓ 0. Thus as t → 0,

H(t)

Re[H(t)]
− 1 = o(1) ⇒ H(t) = Re[H(t)](1 + o(1)).

The proof of the Lemma is complete. □

Let Nn(α, β) denote the number of real zeros of the random polynomial
Qn(x), given in (2.2), lying in the interval (α, β). Also let Nn ≡ Nn(−∞,+∞).
Ibragimov and Maslova [10, 11] considered the average number of real zeros
when the coefficients are iid and belong to the domain of attraction of the
normal law. Two cases were treated by them: (i) the coefficients possess zero
mean, and (ii) the coefficients possess nonzero mean. They showed that

ENn(R) ∼
{

(2/π) log n, E{Ak} = 0,
(1/π) log n, E{Ak} = m( ̸= 0).

In the following section we will provide an upper bound for the ENn[−1 +
(log n)−s, 1− (log n)−s], 0 < s ≤ 1, under an assumption milder than “identi-
cally distributed”. This will allow to deduce the relative reduction in the upper
bound for the expected number of real zeros in the interval [−1+(log n)−s, 1−
(log n)−s], as it shrinks, i.e., s ↓ 0.

3. An asymptotic upper bound

Let us state the main result of this article. Through out this section we
assume that the coefficients A0, A1, . . . , An are:
(i) non-degenerate and centered,
(ii) belong to the domain of attraction of the normal law, possess slowly varying
complex functions H0,H1, . . . ,Hn (as justified in Lemma 2.1),
(iii) there exist constants t0 > 0, C∗ and C∗ (0 < C∗ < C∗ < ∞) such that

C∗H(t) ≤ Re[Hj(t)] ≤ C∗H(t)

for all t ≤ t0 and all j, where H(t) is a positive slowly varying function.

Theorem 3.1. Under the conditions (i),(ii) and (iii) given above,

ENn[−1 + (log n)−s, 1− (log n)−s] ≤ C(log n)s log log n, n → ∞, 0 < s ≤ 1.

Before processing to the proof of the theorem, Let us record that
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(3.1) Qn(x) = xn
n∑

j=0

An−jx
−j = xnQ∗

n(y), y =
1

x
.

Therefore corresponding to every zero of the polynomial Qn(x) in the interval
(0,1) (or (-1,0)) there is a zero of the polynomial Q∗

n on the half-line (1,∞)
(or (−∞,−1)). As Q∗

n(·) and Qn(·) both satisfy the conditions of theorem, we
have that

ENn(0, 1) = ENn(1,∞), ENn(−1, 0) = ENn(−∞,−1).

Hence, as it is known to the experts in this field, it will be sufficient to confine
ourselves to −1 < x < 1.

For the proof of the theorem we needs the following lemma, that extends
the formula (2) in Rudin [22, Section 15.20].

Lemma 3.2. Let f(z) be holomorphic in the disc |z| < R and continuous on
the closed disc |z| ≤ R.Then the number of zeros of f(z) in the disc |z| < r,
where 0 < r < R, does not exceed

(3.2)
1

log(R/r)
log

sup
|z|=R

|f(z)|

|f(0)|
.

PROOF. Let n(r) be the number of zeros, counting multiplicities, of f(z)

in |z| < r. Denote these zeros by α1, . . . , αn(r). Let g(z) :=
∏n

i=1
z−(αi/R)
1−z(αi/R) be

the Blashke product. Then the function f(Rz)
g(z) is holomorphic in the open unit

disc. The maximum modulus principle [22] thus gives∣∣∣ f(0)
g(0)

∣∣∣ ≤ sup
|z|=1

∣∣∣ f(Rz)
g(z)

∣∣∣
Now it is clear that for every complex β and z with |β| < 1 and |z| = 1 ,∣∣∣ z−β

1−βz

∣∣∣ = 1. Therefore |g(z)| = 1 whenever |z| = 1. Thus∣∣∣ f(0)
g(0)

∣∣∣ ≤ sup
|z|=1

|f(Rz)| = sup
|z|=R

|f(z)| = Sf (R).

So

|f(0)| ≤ Sf (R)|g(0)| = Sf (R)
n∏

i=1

∣∣αi

R

∣∣ ≤ Sf (R)
(
r
R

)n(r)
and the result follows.
Proof of Theorem 3.1 The variation of Hj(t) is bounded, so there exist a
positive number c that

(3.3) qj := Pr(|Aj | < c) and q∗ = sup
j≥1

qj < 1.
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This is by the fact that C∗H(t) ≤ Re[Hj(t)] ≤ C∗H(t) for all j and t, we
may choose t0 > 0 such that H(t0) ̸= 0. Then Re[Hj ](t0) ≥ C∗H(t0) > 0 if
H(t0) > 0; or Re[Hj(t0)] ≤ C∗H(t0) ≤ 0 if H(t0) < 0. So there is no sequence
of integers jn → ∞ such that Hjn(t0) → 0, i.e. so that ϕjn(t0) → 1. So there is

no sequence of integers jn such that Ajn
d→ 0. Suppose that for every c1 > 0,

supn≥1Pr(|An| < c1) = 1. Let n1 = min{n : Pr(|An| < 1) > 0}, and for j > 1

nj = min{n : n > nj−1, Pr(|An| < j−1) > 1− j−1}.

Thus as j → ∞, nj → ∞, and Pr(|Aj | < j−1) → 1, so Ajn
d→ 0 which

contradicts the above assumption. Thus there exist some c > 0 such that
supjqj = supj Pr(|Aj | < c) < 1.

Now let

(3.4) Bk = {ω : |A0| ≤ c, . . . , |Ak−1| ≤ c, |Ak| > c}

where k = 0, 1, 2, . . ., and let B = {ω : |A0| ≤ c, . . . , |A[ns]| ≤ c}, so Bc =

[ns]∪
0

Bk.

By using the Lemma 3.2, we have that on Bk,,

(3.5) Nn(−r, r) ≤ k +
1

log(R/r)
log

sup
|z|=R

|Q(k)
n (z)|

k!c
,

due to the facts that Nn(−r, r) ≤ k + N
(k)
n (−r, r), where N

(k)
n (−r, r) is the

number of real zeros of Q
(k)
n (z) in (−r, r), Q

(k)
n (0) = k!Ak, and on Bk,

|Ak| > c.

Let Cjk =
j!

k!(j − k)!
Rj−k. Then

(3.6)

sup
|z|=R

|Q(k)(z)|
k!

= sup
|z|=R

∣∣∣ ∑n
j=k

j!
(j−k)!k!z

j−kAj

∣∣∣ ≤
n∑

j=k

Cjk|Aj |.

From this, formula (3.5) and the inequality Nn(−r, r) ≤ n + 1 the validity of
the following inequality follows :

ENn(−r, r) ≤
[ns]∑
k=0

kPr(Bk) +
1

log(R/r)

[ns]∑
k=0

∫
Bk

log

n∑
j=k

Cjk|Aj |Pr(dw)

− log c

log(R/r)

[ns]∑
k=0

Pr(Bk) + (n+ 1)Pr(B)(3.7)

≤ C

(
1 +

1

log(R/r)

)
+

1

log(R/r)

[ns]∑
k=0

∫
Bk

log

n∑
j=k

Cjk|Aj |Pr(dw).
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This is by the fact that, using the independence of Aj ’s and (3.3),

[ns]∑
k=0

kPr(Bk) =

[ns]∑
k=0

k∑
j=1

Pr(|A0| < c, . . . , |Ak−1| < c, |Ak| ≥ c)

≤
∞∑
j=1

∞∑
k=j

Pr(|A0| < c, . . . , |Ak−1| < c, |Ak| ≥ c)

=
∞∑
j=1

Pr(|A0| < c, . . . , |Aj−1| < c)

=
∞∑
j=1

qjj ≤
∞∑
j=1

q∗
j

=
q∗

1− q∗
,

so it is bounded. Also as n → ∞, (3.3) implies that

(n+ 1)Pr(B) = (n+ 1)Pr(|A0| < c, . . . , |A[ns]| < c) = (n+ 1)

[ns]∏
j=0

qj → 0,

and this is bounded too.

Let us estimate the second term in the right hand of (3.7). Let

T > 0, Zk ≡ Z = E

n∑
j=k

|CjkAj |,

Bk0 = {ω :
n∑

j=k

Cjk|Aj | > TZ}, Bki = {ω : eiZ <
n∑

j=k

Cjk|Aj | ≤ ei+1Z},

where i assumes the values i0 = log T, i0 + 1, i0 + 2, . . . . Then Bk0 = ∪∞
i=i0

Bki

and∫
Bk

log

n∑
j=k

Cjk|Aj |Pr(dω) =
∫
Bk∩Bc

k0

+

∞∑
i=i0

∫
Bk∩Bki

≤ Pr(Bk ∩Bc
k0) logZkT +

∞∑
i=i0

(i+ 1)Pr(Bk ∩Bki) + Pr(Bk ∩Bk0) logZk,

but
∞∑

i=i0

(i+ 1)Pr(Bk ∩Bki) ≤ i0

∞∑
i=i0

Pr(Bk ∩Bki) +
∞∑
j=0

(j + 1)Pr(Bki0+j)

≤ (log T ) Pr(Bk ∩Bk0) +
∞∑
j=0

Pr
(∑n

l=k Clk|Al| > ei0+jZ
)
,
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and by the definition of z,
∞∑
j=0

Pr
(∑n

l=k Clk|Al| > ei0+jZ
)

≤
∞∑
j=0

E
∣∣ ∑n

l=k Clk|Al|
∣∣

(ei0+jZ)

≤
∞∑
j=0

E
∑n

l=k |Clk|Al||
e(i0+j)Z

≤
∞∑
j=0

1

e(i0+j)
= Ce−i0 =

C

T
,

by cr inequality, and C is constant. Thus∫
Bk

log

n∑
j=k

Cjk|Aj |Pr(dω) ≤ Pr(Bk) logZk + Pr(Bk) log T +
C

T
,

setting T = 1
Pr(Bk)

in this inequality we obtain

(3.8)∫
Bk

log
n∑

j=k

Cjk|Aj |Pr(dω) ≤ Pr(Bk) logZk + C[Pr(Bk)− Pr(Bk) log Pr(Bk)],

where the second term in the right of the above inequality is bounded ( since

Pr(Bk) ≤
∏k−1

i=0 qi ). Inequalities (3.7) and (3.8) imply that

ENn(−r, r) ≤ C[1 + (log(R/r))−1] +
(
log(R/r)

)−1
[ns]∑
k=0

(∏k−1
i=0 qi

)
logZk.

If |R| < 1, then by using the definition of Cjk,

logZk = log
{

E
∑n

j=k |CjkAj |
}

≤ log(supE|Aj |) + log
n∑

j=k

|Cjk|

≤ C − log(1−R)k+1 = C + (k + 1) log
1

1−R
,

and hence

(3.9) ENn(−r, r) ≤ C

[
1 + (log(R/r))−1

(
1 + log

1

1−R

)]
.

Observe that from relation (3.9) it follows that ENn(−r, r) = O(1) as n −→ ∞.
for any fixed r in (0,1). Setting r = 1− (log n)−s and R = 1− 1

2 (log n)
−s, then

log(R/r) = logR − log r = 1
c (R − r) = 1

2c (log n)
−s where r < c < R, and

log 1
1−R = log[2(log n)s] = log 2 + s log log n, thus

ENn(−1 + (log n)−s, 1− (log n)−s) ≤ C(log n)s log log n.
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The proof of the Theorem is complete.

Remark 3.3. It follows from Theorem 3.1 that if the length of the interval
is reduced from 2(1 − (log n)−s1) to 2(1 − (log n)−s2), s2 < s1, then the
relative reduction in the rate of the asymptotic upper bound will be [(logn)s1−
(log n)s2 ]/(log n)s1 . Thus the roots of such polynomials will accumulate around
±1.

This provides an extension of the work of Ibragimov and Maslova [10] to the
non identically distributed coefficients where the variances are bounded.
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