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Abstract. In this paper, we prove the Hyers-Ulam stability of the sym-

metric functional equation f(φ1(x, y)) = φ2(f(x), f(y)) in random normed
spaces. As a consequence, we obtain some random stability results in the
sense of Hyers-Ulam-Rassias.
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1. Introduction

In 1940, the stability problem of functional equations originated from a
question of Ulam [11] concerning the stability of group homomorphisms. In
1941, Hyers [3] gave an affirmative partial answer for the question of Ulam for
Banach spaces. Since then, In 1978, Hyers’ theorem was generalized by Th.M.
Rassias [8] for linear mappings by considering the unbounded Cauchy difference
as follows:

Theorem 1.1. Let f be an approximately additive mapping from a normed
vector space E into a Banach space E′, i.e., f satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥r + ∥y∥r)

for all x, y ∈ E, where ϵ and r are constants with ϵ > 0 and 0 ≤ r < 1. Then
the mapping L : E → E′ defined by L(x) = limn→∞ 2−nf(2nx) is the unique
additive mapping which satisfies

∥f(x+ y)− L(x)∥ ≤ 2ϵ

2− 2r
∥x∥r

for all x ∈ E.
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In 1994, a generalization of the Th. M. Rassias’ theorem was obtained by
Gǎvruta [2] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Th. M. Rassias’ approach.

Some of the most famous functional equations such as, additive Cauchy
equation, generalized additive Cauchy equation, exponential equation and log-
arithmic equation (see [5]), satisfy the following general equation:

(1.1) f(φ1(x, y)) = φ2(f(x), f(y)),

where for i = 1, 2, φi : Xi ×Xi → Xi is an given mapping f : X1 → X2 is a
unknown mapping, X1 is a set andX2 is a complete metric space. The existence
of solutions of (1.1) and a generalization of Hyers’ theorem was investigated by
Forti [1]. He proved, under certain hypothesis on φ1 and φ2, that the existence
of solution of the functional inequality

d
(
f(φ1(x, y)), φ2(f(x), f(y))

)
≤ h(x, y),

where h : X × X → [0,+∞) is a suitable function, implies the existence of a
solution of the equation (1.1). This means that the equation (1.1) has Hyers-
Ulam stability. The results in [1] are improved and simplified in [9]

The purpose of this paper is to solve the Hyers-Ulam stability problem for
symmetric type functional equations (1.1) when the unknown function is with
values in a random normed space. In particular, Theorem 2.2 in both [6] and [7]
will be obtained. We note that in our proofs you use the direct method.

2. Random normed spaces

In the section, we adopt the usual terminology, notions and conventions of
the theory of random normed spaces as in [10].

Throughout this paper, let ∆+ denote the set of all probability distribution
functions F : R → [0, 1] such that F is left-continuous and nondecreasing on R
and F (0) = 0. It is clear that the set

D+ = {F ∈ ∆+ : F (+∞) = 1},
where F (+∞) := limt→+∞ f(t), is a subset of ∆+. The set ∆+ is partially
ordered by the usual point-wise ordering of functions, that is, F ≤ G if and
only if F (t) ≤ G(t) for all t ∈ R. For any a ≥ 0, the element Ha(t) of D+ is
defined by

(2.1) Ha(t) =

{
0, if t ≤ a,
1, if t > a.

We can easily show that the maximal element in ∆+ is the distribution function
H0(t).

Definition 2.1. A function T : [0, 1]2 → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(i) T is commutative and associative;
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(ii) T is continuous;
(iii) T (x, 1) = x for all x ∈ [0, 1];
(iv) T (x, y) ≤ T (z, w) whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Three typical examples of continuous t-norms are as follows:

T (x, y) = xy, T (x, y) = max{x+ y − 1, 0}, T (x, y) = minx, y.

Recall that, if T is a t-norm and {xn} is a sequence in [0, 1], then T (x1, x2, . . . ,
xn) is defined recursively by

T (x1, x2, . . . , xn) = T (T (x1, . . . , xn−1), xn).

for every integer n ≥ 2.

Definition 2.2. A random normed space (briefly, RN -space) is a triple (X,µ, T ),
where X is a vector space, T is a continuous t-norm and µ : X → D+ is a map-
ping such that the following conditions hold (denote µ(x) by µ[x])

(a) µ[x](t) = H0(t) for all t > 0 if and only if x = 0;
(b) µ[αx](t) = µ[x]( t

|α| ) for all α ∈ R with α ̸= 0, x ∈ X and t ≥ 0;

(c) µ[x+ y](t+ s) ≥ T (µ[x](t), µ[y](s)) for all x, y ∈ X and t, s ≥ 0.

Moreover,

µ

[ n∑
k=1

xk

]( n∑
k=1

tk

)
≥ T (µ[x1](t1), . . . , µ[xn](tn)).

Every normed space (X, ∥·∥) defines a random normed space (X,µ, TM ), where

µ[u](t) =
t

t+ ∥u∥
for all t > 0 and TM is the minimum t-norm. This space X is called the induced
random normed space.

If the t-norm T is such that sup0<a<1 T (a, a) = 1, then every RN -space
(X,µ, T ) is a metrizable linear topological space with the topology τ (called
the µ-topology or the (ε, δ)-topology, where ε > 0 and λ ∈ (0, 1)) induced by
the base {U(ε, λ)} of neighborhoods of θ, where

U(ε, λ) = {x ∈ X : µ[x](ε) > 1− λ}.

Definition 2.3. Let (X,µ, T ) be an RN -space.
(1) A sequence {xn} in X is said to be convergent to a point x ∈ X (write

xn → x as n → ∞) if
lim

n→∞
µ[xn − x](t) = 1

for all t > 0.
(2) A sequence {xn} in X is called a Cauchy sequence in X if

lim
n,m→∞

µ[xn − xm](t) = 1

for all t > 0.
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(3) The RN -space (X,µ, T ) is said to be complete if every Cauchy sequence
in X is convergent.

Theorem 2.4. If (X,µ, T ) is an RN -space and {xn} is a sequence such that
xn → x, then

lim
n→∞

µ[xn](t) = µ[x](t).

3. Random stability of the equation (1.1): the first case

Let X be any set. A mapping φ : X ×X → X is called diagonal symmetric
if

φ(φ(x, x), φ(y, y)) = φ(φ(x, y), φ(x, y)).

for all x, y ∈ X. For example, if X is any vector space, and φ : X ×X → X is
a mapping such that

φ(λx, λy) = λφ(x, y) (x, y ∈ X)

for all scalar λ and φ(x, x) = αx for some scalar α, then φ is diagonal symmetric
on X. It is easy to show that if ∆x := φ(x, x) then φ is diagonal symmetric if
and only if φ(∆x,∆y) = ∆φ(x, y).

In what follows, all t-norms will be assumed to be the minimum t-norm and
for any function g : X ×X → D+, g(x, y) denoted by g[x, y] for all x, y ∈ X.

Theorem 3.1. Let X1 be a real linear space and let (X2, µ, T ) a complete RN -
space. Assume that φ1, φ2 are two diagonal symmetric mappings on X1, X2,
respectively, such that φ1 is continuous, ∆1x := φ1(x, x) is an invertible map-
ping on X1, and there exists a β > 0 such that

(3.1) µ
[
∆2x−∆2y

]
(t) ≥ µ

[
x− y

]
(βt) (x, y ∈ X2),

where ∆2x := φ2(x, x). Let h : X1 ×X1 → D+ be a mapping for which there
exists an α > β−1 with

(3.2) h
[
∆1x,∆1y

]
(αt) ≤ h[x, y](t) (x, y ∈ X1).

Suppose that f : X1 → X2 is a mapping satisfying f(0) = 0 and

(3.3) µ
[
f(φ1(x, y))− φ2(f(x), f(y))

]
(t) ≥ h

[
x, y

]
(t) (x, y ∈ X1, t > 0).

Then there is a unique mapping A : X1 → X2 satisfying

(3.4) A(φ1(x, y)) = φ2(A(x), A(y)) (x, y ∈ X1),

and

(3.5) µ
[
A(x)− f(x)

]
(t) ≥ h

[
x, x

]
(
αβ − 1

β
t) (x, y ∈ X1, t > 0).
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Proof. Putting x = y in (3.3), we get

(3.6) µ
[
∆2f(x)− f(∆1x)

]
(t) ≥ h

[
x, x

]
(t) (x ∈ X1, t > 0).

Since ∆1 is invertible on X1, (3.2) implies that

(3.7) h
[
∆−1

1 x,∆−1
1 y

]
(t) ≥ h

[
x, y

]
(αt) (x, y ∈ X1, t > 0).

Let q0 := f and qn := ∆n
2f∆

−n
1 for n > 0. Then qn = ∆2qn−1∆

−1
1 , and we

prove by induction that

(3.8) µ
[
qn(x)− qn−1(x)

]
(t) ≥ h

[
x, x

](
α(αβ)n−1

)
for all x ∈ X1, t > 0 and n ∈ N. Fix x ∈ X1 and t > 0. Using (3.7), we obtain
that

µ
[
q1(x)− q0(x)

]
(t) = µ

[
∆2f(∆

−1
1 x)− f(x)

]
(t)

= µ
[
∆2f(∆

−1
1 x)− f∆1(∆

−1
1 x)

]
(t)

≥ h[∆−1
1 x,∆−1

1 x](t) ≥ h[x, x](αt).

Suppose that (3.8) holds for n. Then for n + 1, applying (3.1) and (3.6), we
obtain

µ
[
qn+1(x)− qn(x)

]
(t) = µ

[
∆2qn∆

−1
1 x−∆2qn−1∆

−1
1 x

]
(t)

≥ µ
[
qn∆

−1
1 x− qn−1∆

−1
1 x

]
(βt)

≥ h[∆−1
1 x,∆−1

1 x]
(
(αβ)nt

)
≥ h[x, x]

(
α(αβ)nt

)
.

From (3.8) and the relation

qn+m(x)− qm(x) =
n+m−1∑
k=m

qk+1(x)− qk(x) (x ∈ X1),

we deduce that

µ
[
qn+m(x)− qm(x)

](
t

n+m−1∑
k=m

1

α(αβ)k

)

= µ

[ n+m−1∑
k=m

qk+1(x)− qk(x)

](
t

n+m−1∑
k=m

1

α(αβ)k

)
≥ T

(
µ[qm+1(x)− qm(x)]

(
1

α(αβ)m
t

)
, · · · ,

µ[qn+m(x)− qn+m−1(x)]

(
1

α(αβ)n+m−1
t

))
≥ T

(
h
[
x, x

]
(t), · · · , h

[
x, x

]
(t)

)
= h

[
x, x

]
(t).
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Hence
(3.9)

µ
[
qn+m(x)− qm(x)

]
(t) ≥ h

[
x, x

]( t∑n+m−1
k=m

1
α(αβ)k

)
(x ∈ X1;m,n ≥ 0).

Since αβ > 1,
∑n+m−1

k=m
1

α(αβ)k
→ 0 as m,n → +∞ and so

lim
m,n→+∞

h
[
x, x

]( t∑n+m−1
k=m

1
α(αβ)k

)
= 1.

Thus

lim
m,n→+∞

µ
[
qn+m(x)− qm(x)

]
= 1,

and for every x ∈ X1, the sequence {qn(x)} is a Cauchy sequence in (X2, µ, T ).
Since (X2, µ, T ) is a complete RN -space, this sequence converges to some point
A(x) ∈ X2. Fix x ∈ X1 and put m = 0 in (3.9). Then we obtain

µ
[
qn(x)− f(x)

]
(t) = µ

[
qn(x)− q0(x)

]
(t) ≥ h

[
x, x

]( t∑n−1
k=0

1
α(αβ)k

)
and so for every δ > 0, we have

µ[A(x)− f(x)](t+ δ) ≥ T

(
µ[A(x)− qn(x)](δ), µ[qn(x)− f(x)](t)

)
≥ T

(
µ[A(x)− qn(x)](δ), h[x, x]

(
t∑n−1

k=0
1

α(αβ)k

))
.

Taking the limit as n → +∞ and using the last relation, we get

µ[A(x)− f(x)](t+ δ) ≥ T

(
µ[0](δ), h[x, x]

(
t∑+∞

k=0
1

α(αβ)k

))
= h[x, x]

(
t∑+∞

k=0
1

α(αβ)k

)
,

and so

µ[A(x)− f(x)](t+ δ) ≥ h[x, x](
αβ − 1

β
t).

Since δ was arbitrary, by taking δ → 0 in the above relation, we obtain

µ[A(x)− f(x)](t) ≥ h[x, x](
αβ − 1

β
t) (x ∈ X1, t > 0).
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Now we prove that A satisfies (3.4). To show this, note that

µ[qn(φ1(x, y))− φ2(qn(x), qn(y))](t)

= µ[∆n
2f(∆

−n
1 φ1(x, y))− φ2(∆

n
2f(∆

−n
1 x),∆n

2f(∆
−n
1 y))](t)

≥ µ[∆n
2f(∆

−n
1 φ1(x, y))−∆n

2 (φ2(f∆
−n
1 x, f∆−n

1 y))](t)

≥ µ[f(φ1(∆
−n
1 x,∆−n

1 y))− φ2(f∆
−n
1 x, f∆−n

1 y)](βnt)

≥ h[∆−n
1 x,∆−n

1 y](
t

βn
) ≥ h[x, x]((αβ)nt),

where the diagonal property of φi is used for i = 1, 2. Therefore,

(3.10) µ[qn(φ1(x, y))− φ2(qn(x), qn(y))](t) ≥ h[x, x]((αβ)nt)

for all x, y ∈ X1 and all n ∈ N. Since αβ > 1, and

lim
n→+∞

h[x, x]((αβ)nt) = 1,

using the continuity of φ2 and the fact that qn(x) → A(x) for all x ∈ X1 in
(3.10), we obtain

µ[A(φ1(x, y))− φ2(A(x), A(y))] = 1

for all x, y ∈ X1 and every t > 0. Hence A satisfies (3.4).
Finally it remains to prove that A is a unique mapping satisfying (3.4) and

(3.5). Assume that there exists another mapping A′ : X1 → X2 satisfying
(3.4) and (3.5). Letting y = x in (3.4) for both A and A′, respectively, we get
A(∆1x) = ∆2A(x), A′(∆1x) = ∆2A

′(x) and more generally

A(∆n
1x) = ∆n

2A(x) and A′(∆n
1x) = ∆n

2A
′(x).

for all x ∈ X1 and n ∈ N. It follows from (3.1), (3.5) and (3.7) that

µ
[
A(x)−A′(x)

]
(t)

= µ
[
A(∆n

1 (∆
−n
1 x))−A′(∆n

1 (∆
−n
1 x))

]
(t)

= µ
[
∆n

2A(∆
−n
1 x)−∆n

2A
′(∆−n

1 x)
]
(t)

≥ µ
[
A(∆−n

1 x)−A′(∆−n
1 x)

]
(βnt)

≥ T

(
µ
[
A(∆−n

1 x)− f(∆−n
1 x)

]
(
1

2
βnt), µ

[
f(∆−n

1 x)−A′(∆−n
1 x)(

1

2
βnt)

])
≥ T

(
h
[
∆−n

1 x,∆−n
1 x

](αβ − 1

2β
βnt

)
, h

[
∆−n

1 x,∆−n
1 x

](αβ − 1

2β
βnt

))
= h

[
∆−n

1 x,∆−n
1 x

](αβ − 1

2β
βnt

)
≥ h[x, x]

(
αβ − 1

2β
(αβ)nt

)
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Since limn→+∞
αβ−1
2β (αβ)nt = +∞, we get

lim
n→+∞

h[x, x]

(
αβ − 1

2β
(αβ)nt

)
= 1.

Therefore, it follows that µ
[
A(x)−A′(x)

]
(t) for all t > 0 and so A(x) = A′(x).

This completes the proof. □

Corollary 3.2. ( [7, Theorem 2.2]) Let X1 be a real linear space, (X2, µ, T ) an
RN -space, and h a mapping from X1 ×X1 to D+ such that, for some α0 > 2,

h[x, y](t) ≥ h[2x, 2y](α0t) (x, y ∈ X1, t > 0).

If f : X1 → X2 is a mapping with f(0) = 0 such that

µ[f(x+ y)− f(x) + f(y)](t) ≥ h[x, y](t) (x, y ∈ X1, t > 0)

holds, then there exists a unique additive mapping A : X1 → X2 such that

µ[f(x)−A(x)](t) ≥ h[x, x]((α0 − 2)t) (x, y ∈ X1, t > 0).

Proof. Applying Theorem 3.1, for α = α0, φi(x, y) = x + y, i = 1, 2, we get
Ti(x) = 2x, β = 1

2 , α > β−1 and the proof is complete. □

4. Random stability of the equation (1.1): the second case

Theorem 4.1. Let X1 be a real linear space and (X2, µ, T ) a complete RN -
space. Assume that φ1, φ2 are two diagonal symmetric mappings on X1, X2,
respectively, such that φ2 is continuous, ∆2x := φ2(x, x) is an invertible map-
ping on X2 and there exists a β > 0 such that

(4.1) µ
[
∆2x−∆2y

]
(t) ≤ µ

[
x− y

]
(βt) (x, y ∈ X2, t > 0).

Let h : X1 ×X1 → D+ be a mapping for which there exists an α > β such that

(4.2) h
[
∆1x,∆1y

]
(t) ≥ h[x, y](αt) (x, y ∈ X1, t > 0),

where ∆1x := φ1(x, x). Suppose that f : X1 → X2 is a mapping satisfying
f(0) = 0 and (3.4). Then there is a unique mapping A : X1 → X2 satisfying
(3.5) and

(4.3) µ
[
A(x)− f(x)

]
(t) ≥ h

[
x, x

](α− β

αβ
t

)
.

Proof. Putting x = y in (3.3), we get

µ
[
f(∆1x)−∆2f(x)

]
(t) ≥ h

[
x, x

]
(t) (x ∈ X1, t > 0).

Since ∆2 is invertible on X2, (4.1) implies that

(4.4) µ
[
∆−1

2 x−∆−1
2 y

]
(t) ≥ µ

[
x− y

]( t

β

)
(x, y ∈ X2, t > 0).
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Let q0 := f and qn := ∆−n
2 f∆n

1 for n > 0. Then ∆2qn = qn−1∆1, and we show
by induction that

(4.5) µ
[
qn(x)− qn−1(x)

]
(t) ≥ h

[
x, x

](αn−1

βn
t

)

for all x ∈ X1, t > 0 and n ∈ N. Fix x ∈ X1 and t > 0. Using (4.4), we obtain
that

µ
[
q1(x)− q0(x)

]
(t) = µ

[
∆−1

2 f(∆1x)− f(x)
]
(t)

≥ µ
[
f(∆1x)−∆2f(x)

]( t

β

)
≥ h

[
x, x

]( t

β

)
.

Suppose that (4.5) holds for n. Then for n+ 1 we have

µ
[
qn+1(x)− qn(x)

]
(t) = µ

[
∆−1

2 qn(∆1x)− qn(x)
]
(t)

≥ µ
[
qn(∆1x)−∆2qn(x)

]( t

β

)
= µ

[
qn(∆1x)− qn−1(∆1x)

]( t

β

)
≥ h[∆1x,∆1x]

(
αn−1

βn+1
t

)
≥ h[x, x]

(
αn

βn+1
t

)
.

From (4.5) and the relation

qn(x)− f(x) = qn(x)− q0(x) =
n−1∑
k=0

qk+1(x)− qk(x) (x ∈ X1, t > 0),
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we obtain that

µ
[
qn+m(x)− qm(x)

](
t
n+m−1∑
k=m

βk+1

αk

)

= µ

[ n+m−1∑
k=m

qk+1(x)− qk(x)

](
t

n+m−1∑
k=m

βk+1

αk

)
≥ T

(
µ[qm+1(x)− qm(x)]

(
βm+1

αm
t

)
, · · · ,

µ[qn+m(x)− qn+m−1(x)]

(
βn+m+1

αn+m
t

))
≥ T

(
h
[
x, x

]
(t), · · · , h

[
x, x

]
(t)

)
= h

[
x, x

]
(t).

Hence

(4.6) µ
[
qn+m(x)−qm(x)

]
(t) ≥ h

[
x, x

]( t∑n+m−1
k=m

βk+1

αk

)
(x ∈ X1;m,n ≥ 0).

Since α > β,
∑n+m−1

k=m
βk+1

αk → 0 as m,n → +∞ and so

lim
m,n→+∞

h
[
x, x

]( t∑n+m−1
k=m

βk+1

αk

)
= 1.

Thus
lim

m,n→+∞
µ
[
qn+m(x)− qm(x)

]
= 1,

and for every x ∈ X1, the sequence {qn(x)} is a Cauchy sequence in (X2, µ, T ).
Since (X2, µ, T ) is a complete RN -space, this sequence converges to some point
A(x) ∈ X2. Fix x ∈ X1 and put m = 0 in (4.6). Then we obtain

µ
[
qn(x)− f(x)

]
(t) = µ

[
qn(x)− q0(x)

]
(t) ≥ h

[
x, x

]( t∑n−1
k=0

βk+1

αk

)
and so for every δ > 0, we have

µ[A(x)− f(x)](t+ δ) ≥ T

(
µ[A(x)− qn(x)](δ), µ[qn(x)− f(x)](t)

)
≥ T

(
µ[A(x)− qn(x)](δ), h[x, x]

(
t∑n−1

k=0
βk+1

αk

))
.

Taking the limit as n → +∞ and using the last relation, we get

µ[A(x)− f(x)](t+ δ) ≥ T

(
µ[0](δ), h[x, x]

(
t∑+∞

k=0
βk+1

αk

))
= h[x, x]

(
t∑+∞

k=0
βk+1

αk

)
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and so

µ[A(x)− f(x)](t+ δ) ≥ h[x, x](
α− β

αβ
t).

Since δ was arbitrary, by taking δ → 0 in the above relation, we obtain (4.3),
i.e.,

µ[A(x)− f(x)](t) ≥ h[x, x](
α− β

αβ
t) (x ∈ X1, t > 0).

Now we prove that A satisfies (3.4). The diagonal symmetric property of φi

for i = 1, 2 implies that

φi(∆ix,∆iy) = ∆iφi(x, y)

for all x, y ∈ Xi. Hence

µ[qn(φ1(x, y))− φ2(qn(x), qn(y))](t)

= µ[∆−n
2 f(∆n

1φ1(x, y))− φ2(qn(x), qn(y))](t)

≥ µ[f(∆n
1φ1(x, y))−∆n

2 (φ2(qn(x), qn(y))]

(
t

βn

)
≥ µ[f(φ1(∆

n
1x,∆

n
1y))− φ2(∆

n
2 qn(x),∆

n
2 qn(y))]

(
t

βn

)
≥ µ[f(φ1(∆

n
1x,∆

n
1y))− φ2(f(∆

n
1x), f(∆

n
1y))]

(
t

βn

)
≥ h[∆n

1x,∆
n
1y](

t

βn
) ≥ h[x, x]

(
αn

βn
t

)
Therefore,

(4.7) µ[qn(φ1(x, y))− φ2(qn(x), qn(y))](t) ≥ h[x, x]

((
α

β

)n

t

)
.

for all x, y ∈ X1 and all n ∈ N. Since α > β and

lim
n→+∞

h[x, x]((
α

β
)nt) = 1,

applying the continuity of φ2 and the fact that qn(x) → A(x) for all x ∈ X1 in
(4.7), we obtain

µ[A(φ1(x, y))− φ2(A(x), A(y))] = 1

for all x, y ∈ X1 and all t > 0. Hence A satisfies (3.4). Now we prove that A is
a unique mapping satisfying (3.4) and (4.3). Assume that there exists another
mapping A′ : X1 → X2 satisfying (3.4) and (4.3). Letting y = x in (3.4) for A
and A′, we get A(∆1x) = ∆2A(x), A′(∆1x) = ∆2A

′(x) and more generally

A(∆n
1x) = ∆n

2A(x) and A′(∆n
1x) = ∆n

2A
′(x),
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for all x ∈ X1 and n ∈ N. It follows from (4.2), (3.4) and (4.4) that

µ
[
A(x)−A′(x)

]
(t)

= µ
[
∆−n

2 ∆n
2A(x)−∆−n

2 ∆n
2A

′(x)
]
(t)

≥ µ
[
∆n

2A(x)−∆n
2A

′(x)
]( t

βn

)
= µ

[
A(∆n

1x)−A′(∆n
1x)

]( t

βn

)
≥ T

(
µ
[
A(∆n

1x)− f(∆n
1x)

]( t

2βn

)
, µ

[
f(∆n

1x)−A′(∆n
1x)

]( t

2βn

))
≥ T

(
h[∆n

1x,∆
n
1x]

(
(α− β)

2αβn+1
t

)
, h[∆n

1x,∆
n
1x]

(
(α− β)

2αβn+1
t

))
= h[∆n

1x,∆
n
1x]

(
(α− β)

2αβn+1
t

)
≥ h[x, x]

(
(α− β)αn

2αβn+1
t

)
.

Since

lim
n→+∞

(α− β)αn

2αβn+1
t = +∞,

we get

lim
n→+∞

h[x, x]

(
(α− β)αn

2αβn+1
t

)
= 1.

Therefore, it follows that µ
[
A(x)−A′(x)

]
(t) for all t > 0 and so A(x) = A′(x).

This completes the proof. □

Corollary 4.2. ( [6, Theorem 2.2]) Let X1 be a real linear space, (X2, µ, T ) an
RN -space, and h a mapping from X1 ×X1 to D+ such that, for some α0 > 2,

h[2x, 2y](α0t) ≥ h[x, y](t) (x, y ∈ X1, t > 0).

If f : X1 → X2 is a mapping with f(0) = 0 such that

µ[f(x+ y)− f(x) + f(y)](t) ≥ h[x, y](t) (x, y ∈ X1, t > 0)

holds, then there exists a unique additive mapping A : X1 → X2 such that

µ[f(x)−A(x)](t) ≥ h[x, x]((2− α0)t) (x, y ∈ X1, t > 0).

Proof. Applying Theorem 4.1, for α = 1
α0

, φi(x, y) = x+ y, i = 1, 2, we obtain

Ti(x) = 2x, i = 1, 2, β = 1
2 and α > β. Now the proof is complete. □
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