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1. Introduction

As it is well-known, there are mappings and multifunctions which have ap-
proximate fixed points but have no fixed points. A study has been done about
approximate fixed points of several classes of mappings and many papers were
published in this area (see [5, 9–12,18,22,30–32] and [42]).

The technique of α-ψ-contractive mappings introduced by Samet, Vetro and
Vetro in 2012 ( [43]). Later, some authors used it for some subjects in fixed
point theory (see [7, 25, 33] and [41]) or generalized it by using the method of
β-ψ-contractive multifunctions (see [4, 24, 34]). By using and combining the
idea of these references and main idea of [3, 29] and [44], we shall prove some
approximate fixed point results for proximinal valued β-contractive multifunc-
tions.

LetX be a set, T : X → 2X a multifunction and β : 2X×2X → [0,∞) a map-
ping. We say that T is β-admissible whenever β(A,B) ≥ 1 implies β(Tx, Ty) ≥
1 for all x ∈ A and y ∈ B, where A and B are subsets of X. Denote by R the
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set of all continuous mappings g : [0,∞)5 → [0,∞) satisfying g(1, 1, 1, 2, 0) =
g(1, 1, 1, 0, 2) = h ∈ (0, 1), g(αx1, αx2, αx3, αx4, αx5) ≤ αg(x1, x2, x3, x4, x5)
for all nonnegative elements x1, x2, x3, x4, x5 and α ≥ 0, g(x1, x2, x3, x4, 0) <
g(y1, y2, y3, y4, 0) and g(x1, x2, x3, 0, x4) < g(y1, y2, y3, 0, y4) for all xi, yi ∈
[0,∞) with xi < yi for i = 1, ..., 4 (see [3]). We need the next result.

Proposition 1.1. ( [3]) If g ∈ R and u, v ∈ [0,∞) are such that

u ≤ max{g(v, v, u, v+u, o), g(v, v, u, o, v+u), g(v, u, v, v+u, o), g(v, u, v, o, v+u)},
then u ≤ hv.

Let (X, d) be a metric space, β : 2X × 2X → [0,∞) be a mapping and T
a multifunction on X with closed and bounded values. We say that T is a
generalized β-contractive multifunction whenever there exists g ∈ R such that

β(Tx, Ty)H(Tx, Ty) ≤ g(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))

for all x, y ∈ X, where H is the Hausdorff metric with respect to d, that is,

H(A,B) = max{supx∈Ad(x,B), supy∈Bd(y,A)}
for all closed and bounded subsets A and B of X. We say that T has approxi-
mate fixed points whenever infx∈X d(x, Tx) = 0. Also, we say that T is lower
semi-continuous at x0 ∈ X whenever for each sequence {xn} with xn → x0 and
every y ∈ Tx0, there exists a sequence {yn} such that yn → y and yn ∈ Txn for
all n ( [13]). Let C be a nonempty subset of a metric space (X, d) and x ∈ X.
We say that T is lower semi-continuous whenever T is lower semi-continuous
at each element of X. An element y0 ∈ C is said to be a best approximation of
x whenever d(x, y0) = d(x,C) = infy∈C d(x, y). The set C is called proximinal
whenever every x ∈ X has at least one best approximation in C ( [1]). Every
proximinal set is closed closed and bounded ( [1]). Denote by P (X) the set of
all proximinal subsets of X.

2. Main results

We are ready to state and prove our main results.

Theorem 2.1. Let (X, d) be a metric space, β : 2X×2X → [0,∞) be a mapping
and T : X → P (X) a β-admissible generalized β-contractive multifunction.
Suppose that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then T
has approximate fixed points.

Proof. Choose A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Since T is
proximinal valued, we can choose a sequence {xn} such that xn+1 ∈ Txn
and d(xn, xn+1) = d(xn, Txn) for all n ≥ 0. Since T is β-admissible and
β(A, Tx0) ≥ 1, it is easy to see that β(Txn−1, Txn) ≥ 1 for all n ≥ 0. Choose
g ∈ R such that

β(Tx, Ty)H(Tx, Ty) ≤ g(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))
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for all x, y ∈ X. Fix 1 > r > h, where h = g(1, 1, 1, 2, 0). Then, we have

d(x1, x2) ≤ H(Tx0, Tx1)

≤ β(Tx0, Tx1)H(Tx0, Tx1)

≤ g(d(x0, x1), d(x1, Tx1), d(x0, Tx0), d(x0, Tx1), d(x1, Tx0))

≤ g(d(x0, x1), d(x1, x2), d(x0, x1), d(x0, x1) + d(x1, x2), 0).

By using Proposition 1.1, we obtain d(x1, Tx1) ≤ hd(x0, x1) < rd(x0, x1).
On the other hand, we have

d(x2, x3) ≤ H(Tx1, Tx2)

≤ β(Tx1, Tx2)H(Tx1, Tx2)

≤ g(d(x1, x2), d(x2, Tx2), d(x1, Tx1), d(x1, Tx2), d(x2, Tx1))

≤ g(d(x1, x2), d(x2, x3), d(x1, x2), d(x1, x2) + d(x2, x3), 0).

Again by using Proposition 1.1, we get

d(x2, x3) ≤ hd(x1, x2) < rd(x1, x2) < r2d(x0, x1).

Continuing the same process, we conclude that

d(xn, xn+1) ≤ hd(xn−1, xn) < rd(xn−1, xn) < rnd(x0, x1)

for all n ≥ 0. But, d(xn, Txn) ≤ d(xn, xn+1) for all n ≥ 0. This implies that
infx∈X d(x, Tx) = 0 and so T has an approximate fixed point. □
Corollary 2.2. Let (X, d) be a complete metric space, β : 2X × 2X → [0,∞) a
mapping and T : X → P (X) a β-admissible lower semi-continuous generalized
β-contractive multifunction. Suppose that there exist A ⊂ X and x0 ∈ A such
that β(A, Tx0) ≥ 1. Then T has a fixed point.

Proof. By using a similar argument as in the in proof of Theorem 2.1, we obtain

d(xn, xn+1) ≤ hd(xn−1, xn) < rd(xn−1, xn) < rnd(x0, x1).

Then for each natural numbers m and n with m < n, we have

d(xm, xn) ≤ (rm + rm+1 + ...+ rn−1)d(x0, x1) <
rm

1− r
d(x0, x1).

Hence, {xn} is a Cauchy sequence. Choose x∗ ∈ X such that xn → x∗. Since
T is lower semi-continuous at x∗, for each y ∈ Tx∗ there exists a sequence {yn}
such that yn → y and yn ∈ Txn for all n. Let n ≥ 1 be given. Then, for each
u ∈ Txn we have

d(x∗, Tx∗) ≤ d(x∗, y) ≤ d(x∗, xn+1) + d(xn+1, u) + d(u, yn) + d(yn, y).

This implies that

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Txn) + d(Txn, yn) + d(yn, y).

Since xn+1 ∈ Txn and yn ∈ Txn, d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(yn, y) for all n.
Hence, d(x∗, Tx∗) = 0 and so x∗ ∈ Tx∗. □
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As one may know, Banach proved his contraction principle in 1922 ( [8]).
Also, Nadler extended the Banach contraction principle to set-valued map-
pings in 1969 ( [36]). In fact, he proved that if (X, d) is a complete met-
ric space and there exists k ∈ (0, 1) such that H(Tx, Ty) ≤ kd(x, y) for all
x, y ∈ X, then T has a fixed point. Let β : 2X × 2X → [0,∞) be a map-
ping. We say that T is a β-contraction whenever there exists k ∈ (0, 1) such
that β(Tx, Ty)H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X. It is clear that each
Nadler type contractive multifunction is a β-contraction. The next example
shows that there exist β-contraction multifunctions which are not Nadler type
contractions.

Example 2.1. Let X = R and d(x, y) = |x − y| for all x, y ∈ X. Define
T on X defined by Tx = [x, 4] whenever x ≤ 4 and Tx = [4, x] whenever
x > 4. Let λ ∈ (0, 1) be given. Put x = 4 and y = 4 + 2λ. Then, we have
H(Tx, Ty) = 2λ > λd(x, y). Now, define β : 2X ×2X → [0,∞) by β(A,B) = 1

4
whenever A ⊆ (−∞, 4] and B ⊆ [4,∞) and β(A,B) = 0 otherwise. Then, it is
easy to see that β(Tx, Ty)H(Tx, Ty) ≤ 1

2d(x, y) for all x, y ∈ X. Hence, T is
a β-contraction while is not a Nadler type contraction.

Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping and T a
multifunction on X. We say that T is β-convergent whenever for each conver-
gent sequence {xn} with xn → x, there exists a natural number N such that
β(Txn, Tx) ≥ 1 for all n ≥ N .

Corollary 2.3. Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping
and T : X → P (X) a β-admissible and β-contraction multifunction. Suppose
that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then T has
approximate fixed points. If (X, d) is a complete metric space and T is β-
convergent, then T has a fixed point.

Proof. Choose k ∈ (0, 1) such that β(Tx, Ty)H(Tx, Ty) ≤ kd(x, y) for all
x, y ∈ X. Define g : [0,∞)5 → [0,∞) by g(x1, x2, x3, x4, x5) = kx1. Then,
g ∈ R and

β(Tx, Ty)H(Tx, Ty) ≤ g(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))

for all x, y ∈ X, that is, T is a generalized β-contractive multifunction. Now
by using Theorem 2.1, T has approximate fixed points. Now, we show that T
is lower semi-continuous. Let x ∈ X, {xn} be a sequence with xn → x and
y ∈ Tx. Choose yn ∈ Txn for all n ≥ 1. We have to show that yn → y. Since
T is β-convergent, there exists a natural number N such that β(Txn, Tx) ≥ 1
for all n ≥ N . Thus,

d(yn, y) ≤ H(Txn, Tx) ≤ β(Txn, Tx)H(Txn, Tx) ≤ kd(xn, x)

for all n ≥ N . Hence, yn → y and so T is lower semi-continuous. If (X, d) is a
complete metric space, then by using Corollary 2.2, T has a fixed point. □
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In 1968, the notion of Kannan type contraction mappings introduced ( [28]).
Later, some authors extended the notion for multifunctions (see for example,
[14] and [21]). Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping
and T a multifunction on X. We say that T is a Kannan type contraction
whenever there exists α ∈ (0, 12 ) such that

H(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty))

for all x, y ∈ X. Also, we say that T is a β-Kannan multifunction whenever
there exists α ∈ (0, 12 ) such that

β(Tx, Ty)H(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty))

for all x, y ∈ X. The next example shows that there exist β-Kannan multi-
functions which are not Kannan type contraction.

Example 2.2. Let X = [0, 3] and d(x, y) = |x− y| for all x, y ∈ X. Define T
on X defined by Tx = [x3 ,

x
2 ] for all x ∈ X. Let α ∈ (0, 12 ) be given. Put x = 0

and y = 6α. Then, we have H(Tx, Ty) = 3α > α(d(x, Tx) + d(y, Ty)) = 4α2.
Now, define β : 2X × 2X → [0,∞) by β(A,B) = 1

4 whenever A,B ⊆ [0, 12 ] and
β(A,B) = 0 otherwise. Then, it is easy to see that

β(Tx, Ty)H(Tx, Ty) ≤ 1

4
(d(x, Tx) + d(y, Ty))

for all x, y ∈ X. Hence, T is a β-Kannan multifunction while is not a Kannan
type contraction.

If we consider the map g : [0,∞)5 → [0,∞) by g(x1, x2, x3, x4, x5) = αx2 +
αx3, then by using Theorem 2.1 and Corollary 2.2 it is easy to obtain next
result.

Corollary 2.4. Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping
and T : X → P (X) a β-admissible and β-Kannan multifunction. Suppose
that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then T has
approximate fixed points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fixed point.

In 1971, the notion of Reich type contraction mappings introduced ( [39]).
Later, the notion was extended for multifunctions ( [38]). Let (X, d) be a
metric space, β : 2X × 2X → [0,∞) a mapping and T a multifunction on X.
We say that T is a Reich type contraction whenever there exist nonnegative
real numbers α, β, γ with α+ λ+ γ < 1 such that

H(Tx, Ty) ≤ αd(x, y) + λd(x, Tx) + γd(y, Ty)

for all x, y ∈ X. Also, we say that T is a β-Reich multifunction whenever there
exists there exist nonnegative real numbers α, β, γ with α + λ + γ < 1 such
that β(Tx, Ty)H(Tx, Ty) ≤ αd(x, y) + λd(x, Tx) + γd(y, Ty) for all x, y ∈ X.
The next example shows that there exist β-Reich multifunctions which are not
Reich type contraction.
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Example 2.3. Let X = [0,∞) and d(x, y) = |x − y| for all x, y ∈ X. Define
T on X defined by Tx = [x3 , x] for all x ∈ X. Let α, β, γ ∈ [0,∞) with
α+ λ+ γ < 1 be given. Put x = 0 and y = 2. Then, we have

H(Tx, Ty) = 2 > αd(x, y) + λd(x, Tx) + γd(y, Ty).

Now, define β : 2X × 2X → [0,∞) by β(A,B) = α
2 for all subsets A and B.

Then, it is easy to see that

β(Tx, Ty)H(Tx, Ty) ≤ αd(x, y) + λd(x, Tx) + γd(y, Ty)

for all x, y ∈ X. Hence, T is a β-Reich multifunction while is not a Reich type
contraction.

If we consider the map g : [0,∞)5 → [0,∞) by g(x1, x2, x3, x4, x5) = αx1 +
λx2 + γx3, then by following the proof of Corollary 2.4, one can obtain next
result.

Corollary 2.5. Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a map-
ping and T : X → P (X) a β-admissible and β-Reich multifunction. Suppose
that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then T has
approximate fixed points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fixed point.

In 1972, the notion of Chatterjea type contraction mappings introduced
( [17]). Later, the notion extended for multifunctions ( [21]). Let (X, d) be
a metric space, β : 2X × 2X → [0,∞) a mapping and T a multifunction on
X. We say that T is a Chatterjea type contraction whenever there exists
α ∈ (0, 12 ) such that H(Tx, Ty) ≤ α(d(x, Ty)+d(y, Tx)) for all x, y ∈ X. Also,
we say that T is a β-Chatterjea multifunction whenever there exists α ∈ (0, 12 )
such that β(Tx, Ty)H(Tx, Ty) ≤ α(d(x, Ty) + d(y, Tx)) for all x, y ∈ X. The
next example shows that there exist β-Chatterjea multifunctions which are not
Chatterjea type contraction.

Example 2.4. Let X = [0, 4] and d(x, y) = |x− y| for all x, y ∈ X. Define T
on X defined by Tx = [x2 , x] for all x ∈ X. Let α ∈ (0, 12 ) be given. Put x = 0

and y = 2α. Then, we have H(Tx, Ty) = 2α > α(d(x, Ty) + d(y, Tx)) = 3α2.
Now, define β : 2X × 2X → [0,∞) by β(A,B) = 1

16 for all subsets A and B.
Then, it is easy to see that β(Tx, Ty)H(Tx, Ty) ≤ 1

4 (d(x, Ty) + d(y, Tx)) for
all x, y ∈ X. Hence, T is a β-Chatterjea multifunction while is not a Chatterjea
type contraction.

One can easily conclude the next result.

Corollary 2.6. Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping
and T : X → P (X) a β-admissible and β-Chatterjea multifunction. Suppose
that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then T has
approximate fixed points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fixed point.
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In 1972, the notion of Zamfirescu type contraction mappings introduced
( [45]). Later, the notion extended for multifunctions ( [37]). Let (X, d) be a
metric space, β : 2X × 2X → [0,∞) a mapping and T a multifunction on X.
We say that T is a Zamfirescu type contraction whenever there exists k ∈ [0, 1)
such that H(Tx, Ty) ≤ kMT (x, y) for all x, y ∈ X, where

MT (x, y) = max{d(x, y), 1
2
[d(x, Ty) + d(y, Tx)],

1

2
[d(x, Tx) + d(y, Ty)]}.

Also, we say that T is a β-Zamfirescu multifunction whenever there exists
k ∈ [0, 1) such that β(Tx, Ty)H(Tx, Ty) ≤ kMT (x, y) for all x, y ∈ X. The
next example shows that there exist β-Zamfirescu multifunctions which are not
Zamfirescu type contraction.

Example 2.5. Let X = [0, 2] and d(x, y) = |x− y| for all x, y ∈ X. Define T
on X defined by Tx = [x3 , x] for all x ∈ X. Let k ∈ [0, 1) be given. Put x = 0

and y = 2k. Then, we have H(Tx, Ty) = 2k > kMT (x, y) = 2k2. Now, define
β : 2X × 2X → [0,∞) by β(A,B) = 1

6 for all subsets A and B. Then, it is easy
to see that β(Tx, Ty)H(Tx, Ty) ≤ 1

2MT (x, y) for all x, y ∈ X. Hence, T is a
β-Zamfirescu multifunction while is not a Zamfirescu type contraction.

Again, one can obtain next result.

Corollary 2.7. Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping
and T : X → P (X) a β-admissible and β-Zamfirescu multifunction. Suppose
that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then T has
approximate fixed points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fixed point.

In 1972, the notion of Ciric type contraction mappings introduced ( [15]).
Later, the notion extended for multifunctions ( [19]). Let (X, d) be a metric
space, β : 2X × 2X → [0,∞) a mapping and T a multifunction on X. We say
that T is a Ciric type contraction whenever there exists λ ∈ (0, 1) such that
H(Tx, Ty) ≤ λNT (x, y) for all x, y ∈ X, where

NT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2
[d(x, Ty) + d(y, Tx)]}.

We say that T is a β-Ciric multifunction whenever there exists λ ∈ (0, 1) such
that β(Tx, Ty)H(Tx, Ty) ≤ λNT (x, y) for all x, y ∈ X. The next example
shows that there exist β-Ciric multifunctions which are not Ciric type contrac-
tion.

Example 2.6. Let X = R and d(x, y) = |x− y| for all x, y ∈ X. Define T on
X defined by Tx = [x4 , x] for all x ∈ X. Let λ ∈ (0, 1) be given. Put x = 0 and
y = λ

2 . Then, we have H(Tx, Ty) = λ
2 > λNT (x, y) = λd(x, y) = λ2

2 . Now,
define β : 2X × 2X → [0,∞) by β(A,B) = 1

6 for all subsets A and B. Then, it
is easy to see that β(Tx, Ty)H(Tx, Ty) ≤ 1

2NT (x, y) for all x, y ∈ X. Hence,
T is a β-Ciric multifunction while is not a Ciric type contraction.



Some approximate fixed point results for proximinal 1168

The reader can get a similar result to Corollary 2.7 for β-Ciric multifunctions.
In 1974, the notion of quasi-contractive mappings introduced by Ciric ( [16]).
Later, the notion extended for multifunctions (see for example [6, 23, 26, 27]
and [40]). Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping and
T a multifunction on X. We say that T is a quasi-contraction whenever there
exists λ ∈ (0, 1) such that

H(Tx, Ty) ≤ λmax{d(x, y), d(y, Ty), d(x, Tx), d(x, Ty), d(y, Tx)}
for all x, y ∈ X. We say that T is a β-quasi-contraction whenever there exists
λ ∈ (0, 1) such that

β(Tx, Ty)H(Tx, Ty) ≤ λmax{d(x, y), d(y, Ty), d(x, Tx), d(x, Ty), d(y, Tx)}
for all x, y ∈ X. The next example shows that there exist β-quasi-contractions
which are not quasi-contraction.

Example 2.7. Let X = [0, 5] and d(x, y) = |x− y| for all x, y ∈ X. Define T
on X defined by Tx = [x2 , x] for all x ∈ X. Let λ ∈ (0, 1) be given. Put x = 0
and y = λ. Then, we have

H(Tx, Ty) = λ > λmax{d(x, y), d(y, Ty), d(x, Tx), d(x, Ty), d(y, Tx)} = λ2.

Now, define β : 2X × 2X → [0,∞) by β(A,B) = 1
5 for all subsets A and B.

Then, it is easy to see that

β(Tx, Ty)H(Tx, Ty) ≤ 1

2
max{d(x, y), d(y, Ty), d(x, Tx), d(x, Ty), d(y, Tx)}

for all x, y ∈ X. Hence, T is a β-quasi-contraction while is not a quasi-
contraction.

If we consider the map g : [0,∞)5 → [0,∞) by g(x1, x2, x3, x4, x5) =
λmax{x1, x2, x3, x4, x5}, then by following the proof of Corollary 2.4, one can
obtain the next result.

Corollary 2.8. Let (X, d) be a metric space, β : 2X × 2X → [0,∞) a mapping
and T : X → P (X) a β-quasi-contraction and β-admissible multifunction.
Suppose that there exist A ⊂ X and x0 ∈ A such that β(A, Tx0) ≥ 1. Then
T has approximate fixed points. If (X, d) is a complete metric space and T is
lower semi-continuous, then T has a fixed point.

In 2008, Suzuki introduced a new type of mappings and a generalization of
the Banach contraction principle in which the completeness can be also char-
acterized by the existence of fixed points of these mappings ( [44]). Consider
the non-increasing function θ : [0, 1) → ( 12 , 1] by θ(r) = 1 whenever r ≤

√
5−1
2 ,

θ(r) = 1−r
r2 whenever

√
5−1
2 < r ≤ 1√

2
and θ(r) = 1

1+r whenever 1√
2
< r < 1.

Let (X, d) be a metric space, r ∈ [0, 1) and T be a mapping on X such that
θ(r)d(x, Tx) ≤ d(x, y) impliesd(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X. Suzuki
proved that T has a unique fixed point ( [44]). Later, some authors tried to
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generalize the results of Suzuki for mappings and multifunctions (see for ex-
ample, [29, 35] and [20]). In 2011, Aleomraninejad, et. al. collected these type
results in a result ( [2]). By using the main idea of [2], we give our last result
about fixed point of β-generalized Suzuki type proximinal valued multifunc-
tions.

Theorem 2.9. Let (X, d) be a complete metric space, α a constant in (0, 1),
β : 2X × 2X → [0,∞) a mapping and g ∈ R with α(h + 1) ≤ 1, where h =
g(1, 1, 1, 2, 0). Suppose that T is a β-admissible and β-convergent proximinal
valued multifunction on X such that αd(x, Tx) ≤ d(x, y) implies

β(Tx, Ty)H(Tx, Ty) ≤ g(d(x, y), d(y, Ty), d(x, Tx), d(x, Ty), d(y, Tx))

for all x, y ∈ X. Assume that there exits a subset A of X and x0 ∈ A such that
β(A, Tx0) ≥ 1. Then T has a fixed point.

Proof. Choose the subset A of X and x0 ∈ A such that β(A, Tx0) ≥ 1. Since
T is proximinal valued, for each n ≥ 0 there exists xn+1 ∈ Txn such that
d(xn, xn+1) = d(xn, Txn). Since T is β-admissible and β(A, Tx0) ≥ 1, it is
easy to see that β(Txn−1, Txn) ≥ 1 for all n ≥ 1. Fix 1 > r > h. Since
αd(x0, Tx0) < d(x0, x1), by using the assumption we have

d(x1, Tx1) ≤ H(Tx0, Tx1)

≤ β(Tx0, Tx1)H(Tx0, Tx1)

≤ g(d(x0, x1), d(x1, Tx1), d(x0, Tx0), d(x0, Tx1), d(x1, Tx0))

≤ g(d(x0, x1), d(x1, Tx1), d(x0, x1), d(x0, x1) + d(x1, Tx1), 0).

By using Proposition 1.1, we get d(x1, Tx1) ≤ hd(x0, x1) < rd(x0, x1). By
continuing this process, it is easy to see that d(xn+1, xn) < rnd(x0, x1) and
d(xn+1, Txn+1) ≤ hd(xn+1, xn) for all n ≥ 0. If xm = xm+1 for some m ≥ 1,
then xm is a fixed point of T . Suppose that xn ̸= xn+1 for all n ≥ 1. Choose
x ∈ X such that xn → x. We claim that either αd(xn, Txn) ≤ d(xn, x) or
αd(xn+1, Txn+1) ≤ d(xn+1, x) hold for all n. If αd(xn, Txn) > d(xn, x) and
αd(xn+1, Txn+1) > d(xn+1, x) for some n ≥ 1, then

d(xn+1, xn) ≤ d(xn+1, x) + d(x, xn)

< αd(xn+1, Txn+1) + αd(xn, Txn)

≤ αhd(xn, xn+1) + αd(xn, xn+1)

and so α(h+ 1) > 1 which is a contradiction. Thus, either

β(Txn, Tx)H(Txn, Tx) ≤ g(d(xn, x), d(x, Tx), d(xn, Txn), d(xn, Tx), d(x, Txn))

or
β(Txn+1, Tx)H(Txn+1, Tx)

≤ g(d(xn+1, x), d(x, Tx), d(xn+1, Txn+1), d(xn+1, Tx), d(x, Txn+1))



Some approximate fixed point results for proximinal 1170

hold for all n. Hence, either there exists an infinite subset I ⊆ N such that
β(Txn, Tx)H(Txn, Tx) ≤ g(d(xn, x), d(x, Tx), d(xn, Txn), d(xn, Tx), d(x, Txn))

for all n ∈ I, or there exists an infinite subset J ⊆ N such that

β(Txn+1, Tx)H(Txn+1, Tx)

≤ g(d(xn+1, x), d(x, Tx), d(xn+1, Txn+1), d(xn+1, Tx), d(x, Txn+1))

for all n ∈ J . Since T is β-convergent, in the first case we obtain
d(x, Tx)

≤ d(x, Txn) +H(Txn, Tx)

≤ d(x, Txn) + β(Txn, Tx)H(Txn, Tx)

≤ d(x, xn+1) + g(d(xn, x), d(x, Tx), d(xn, Txn), d(xn, Tx), d(x, Txn))

≤ d(x, xn+1) + g(d(xn, x), d(x, Tx), d(xn, xn+1), d(xn, x) + d(x, Tx), d(x, xn+1))

for sufficiently large n ∈ I. Since g is continuous, we get

d(x, Tx) ≤ g(0, d(x, Tx), 0, 0 + d(x, Tx), 0)

and so by using Proposition 1.1, we conclude that d(x, Tx) = 0. Since T is
β-convergent, in the second case we obtain
d(x, Tx)

≤ d(x, Txn+1) +H(Txn+1, Tx)

≤ d(x, Txn+1) + β(Txn+1, Tx)H(Txn+1, Tx)

≤ d(x, xn+2) + g(d(xn+1, x), d(x, Tx), d(xn+1, Txn+1), d(xn+1, Tx), d(x, Txn+1))

d(x, xn+2) + g(d(xn+1, x), d(x, Tx), d(xn+1, xn+2), d(xn+1x) + d(x, Tx), d(x, xn+2))

for sufficiently large n ∈ J . Since g is continuous, we get

d(x, Tx) ≤ g(0, d(x, Tx), 0, 0 + d(x, Tx), 0)

and so by using Proposition 1.1, we obtain d(x, Tx) = 0. Thus, x ∈ Tx and so
T has a fixed point. □
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