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1. Introduction

As it is well-known, there are mappings and multifunctions which have ap-
proximate fixed points but have no fixed points. A study has been done about
approximate fixed points of several classes of mappings and many papers were
published in this area (see [5,9-12,18,22,30-32| and [42]).

The technique of a-i-contractive mappings introduced by Samet, Vetro and
Vetro in 2012 ( [43]). Later, some authors used it for some subjects in fixed
point theory (see [7,25,33] and [41]) or generalized it by using the method of
B-1y-contractive multifunctions (see [4,24,34]). By using and combining the
idea of these references and main idea of [3,29] and [44], we shall prove some
approximate fixed point results for proximinal valued S-contractive multifunc-
tions.

Let X beaset, T : X — 2% a multifunction and 3 : 2%X x2X — [0, c0) a map-
ping. We say that T is S-admissible whenever 5(A4, B) > 1 implies (Tz, Ty) >
1 for all z € A and y € B, where A and B are subsets of X. Denote by R the
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set of all continuous mappings g : [0,00)° — [0, 00) satisfying g(1,1,1,2,0) =
9(171315072) =hE€ (0,1), g(axl,axg,axg,ax4,ax5) < ag($17I2,$3,$4,$5)
for all nonnegative elements x1, xo, x3, 24,5 and a > 0, g(z1,x2, T3, 24,0) <

g(y17y27y37y470) and g($1,$2,$3,0,$4) < g(y17y27y3707y4) for all TiyYi €
[0,00) with x; < y; for i =1,...,4 (see [3]). We need the next result.

Proposition 1.1. ([3]) If g € R and u,v € [0,00) are such that
u < max{g(v, v, u, v+u,0), g(v,v,u, o, v+u), g(v, u, v, v+u, 0), g(v, u, v, 0,v+u)},
then u < hv.

Let (X,d) be a metric space, 8 : 2% x 2%X — [0,00) be a mapping and T
a multifunction on X with closed and bounded values. We say that T is a
generalized (S-contractive multifunction whenever there exists g € R such that

BTz, Ty)H(Tz,Ty) < g(d(z,y),d(z, Tz),d(y, Ty), d(z, Ty), d(y, Tx))
for all z,y € X, where H is the Hausdorff metric with respect to d, that is,
H(A, B) = max{supzcad(z, B), supyecpd(y, A)}

for all closed and bounded subsets A and B of X. We say that T has approxi-
mate fixed points whenever inf,cx d(z, Ta) = 0. Also, we say that T is lower
semi-continuous at zo € X whenever for each sequence {z,} with z,, — zo and
every y € Txg, there exists a sequence {y, } such that y,, — y and y,, € Tz, for
all n ( [13]). Let C be a nonempty subset of a metric space (X,d) and = € X.
We say that T is lower semi-continuous whenever T' is lower semi-continuous
at each element of X. An element yy € C' is said to be a best approximation of
x whenever d(z,yo) = d(z,C) = inf,ec d(x,y). The set C is called proximinal
whenever every z € X has at least one best approximation in C' ( [1]). Every
proximinal set is closed closed and bounded ( [1]). Denote by P(X) the set of
all proximinal subsets of X.

2. Main results
We are ready to state and prove our main results.

Theorem 2.1. Let (X, d) be a metric space, B : 2% x2X — [0, 00) be a mapping
and T : X — P(X) a B-admissible generalized (-contractive multifunction.
Suppose that there exist A C X and xg € A such that S(A,Txg) > 1. Then T
has approzimate fized points.

Proof. Choose A C X and z¢o € A such that 8(A,Txg) > 1. Since T is
proximinal valued, we can choose a sequence {z,} such that z,11 € Tz,
and d(z,,Tp+1) = d(xn,Tx,) for all n > 0. Since T is S-admissible and
B(A,Txo) > 1, it is easy to see that S(T'zp_1,Tz,) > 1 for all n > 0. Choose
g € R such that

BTz, Ty)H(Tx,Ty) < g(d(z,y),d(z, Tz),d(y, Ty), d(z, Ty), d(y, Tz))
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for all z,y € X. Fix 1 > r > h, where h = ¢g(1,1,1,2,0). Then, we have
d(x1,2) H(Txo,Tx1)

B(Txo, Tx1)H(Txo, Tx1)

g9(d(zg, 21),d(x1, Tx1),d(x0, Tx0), d(20, T21), d(21, TT0))

g(d(xo,x1),d(x1,x2), d(z0,21), d(z0, x1) + d(21, 22),0).

By using Proposition 1.1, we obtain d(z1,7z1) < hd(zo,z1) < rd(x0,x1).
On the other hand, we have

d(za,x3) H(Txzq,Tx2)

B(Txy, Taxo)H(Txy, Txs)

g(d(x1,x2),d(x2, Tx2),d(x1, T2x1),d(x1, Txe),d(x2, Tx1))
g(d(x1,xa),d(22, x3),d(x1,x2),d(x1,22) + d(22, 23),0).
Again by using Proposition 1.1, we get

VAN VAN VAN VA

VAN VAN VAN VAN

d(xo, x3) < hd(x1,22) < rd(x1,22) < r?d(xg, z1).
Continuing the same process, we conclude that
AT, Tnt1) < hd(xp—1,2,) < rd(Tp-1,2,) < r"d(x0,21)
for all n > 0. But, d(zp,Tx,) < d(zn, Tpe1) for all n > 0. This implies that

infoex d(xz,Tx) =0 and so T has an approximate fixed point. O

Corollary 2.2. Let (X,d) be a complete metric space, 3 : 2% x 2% — [0,00) a
mapping and T : X — P(X) a B-admissible lower semi-continuous generalized
B-contractive multifunction. Suppose that there exist A C X and xg € A such
that B(A,Txg) > 1. Then T has a fized point.

Proof. By using a similar argument as in the in proof of Theorem 2.1, we obtain
d(Xp, pi1) < hd(xp—1,2n) <rd(Tp_1,Tn) < r"d(x0,21).

Then for each natural numbers m and n with m < n, we have
m

ATy zn) < (F™ + ™ 4 4" Y d (20, 1) < % (xo, x1).

Hence, {z,} is a Cauchy sequence. Choose z* € X such that x,, — z*. Since
T is lower semi-continuous at z*, for each y € T'z* there exists a sequence {y,, }
such that y,, — y and y,, € Tz, for all n. Let n > 1 be given. Then, for each
u € Tx,, we have

d(x*, Tz") < d(z",y) < d(@", znt1) + d(Tnt1,u) + d(u, yn) + d(Yn, y)-
This implies that
d(z*,Tx") < d(@™, 2ng1) + d(@ng1, Tan) + d(Txn, Yn) + d(Yn, y)-

Since 41 € Tz, and y, € Txy,, d(z*, Tz*) < d(z*, zp11) + d(yn, y) for all n.
Hence, d(z*,T2*) = 0 and so z* € Tz*. O
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As one may know, Banach proved his contraction principle in 1922 ( [8]).
Also, Nadler extended the Banach contraction principle to set-valued map-
pings in 1969 ( [36]). In fact, he proved that if (X,d) is a complete met-
ric space and there exists k£ € (0,1) such that H(Tz,Ty) < kd(z,y) for all
x,y € X, then T has a fixed point. Let 8 : 2% x 2X — [0,00) be a map-
ping. We say that T is a S-contraction whenever there exists k € (0,1) such
that S(Tx,Ty)H(Tz,Ty) < kd(z,y) for all z,y € X. It is clear that each
Nadler type contractive multifunction is a S-contraction. The next example
shows that there exist S-contraction multifunctions which are not Nadler type
contractions.

Example 2.1. Let X = R and d(z,y) = |z — y| for all x,y € X. Define
T on X defined by Tx = [x,4] whenever x < 4 and Tx = [4,z] whenever
x > 4. Let A € (0,1) be given. Put x = 4 and y = 4 + 2\. Then, we have
H(Tz,Ty) =2\ > Ad(z,y). Now, define B : 2% x 2% — [0,00) by B(A,B) = 1
whenever A C (—00,4] and B C [4,00) and B(A, B) =0 otherwise. Then, it is
easy to see that f(Tx, Ty)H(Tx, Ty) < 3d(x,y) for all x,y € X. Hence, T is
a (B-contraction while is not a Nadler type contraction.

Let (X,d) be a metric space, 3 : 2¥ x 2%X — [0,00) a mapping and T a
multifunction on X. We say that T is S-convergent whenever for each conver-
gent sequence {z,} with z, — z, there exists a natural number N such that
B(Txy, Tx) > 1 for alln > N.

Corollary 2.3. Let (X,d) be a metric space, 3 : 2% x 2% — [0,00) a mapping
and T : X — P(X) a f-admissible and B-contraction multifunction. Suppose
that there exist A C X and xg € A such that (A, Txo) > 1. Then T has
approzimate fized points. If (X,d) is a complete metric space and T is [3-
convergent, then T has a fixed point.

Proof. Choose k € (0,1) such that S(Txz,Ty)H(Tz,Ty) < kd(z,y) for all
z,y € X. Define g : [0,00)° — [0,00) by g(x1, 2,23, 74,75) = kxy. Then,
g € R and

B(Tx, Ty)H(Tx,Ty) < g(d(z,y),d(z, Tx),d(y, Ty),d(x, Ty), d(y, Tz))

for all z,y € X, that is, T is a generalized §-contractive multifunction. Now
by using Theorem 2.1, T has approximate fixed points. Now, we show that T’
is lower semi-continuous. Let =z € X, {z,} be a sequence with z,, — z and
y € Tx. Choose y,, € Tz, for all n > 1. We have to show that y,, — y. Since
T is (-convergent, there exists a natural number N such that 5(Tz,,Tz) > 1
for all n > N. Thus,

A(yn,y) < HTx,,Tx) < 8(Txn, Tx)H (T, Tx) < kd(x,, x)

for all n > N. Hence, y,, — y and so T is lower semi-continuous. If (X, d) is a
complete metric space, then by using Corollary 2.2, T has a fixed point. O
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In 1968, the notion of Kannan type contraction mappings introduced ( [28]).
Later, some authors extended the notion for multifunctions (see for example,
[14] and [21]). Let (X,d) be a metric space, 3 : 2% x 2% — [0,00) a mapping
and T a multifunction on X. We say that T is a Kannan type contraction

whenever there exists a € (0, 1) such that

H(Tz,Ty) < a(d(z, Tz) + d(y, Ty))

for all z,y € X. Also, we say that T is a f-Kannan multifunction whenever
there exists o € (0, ) such that

B(Tx, Ty)H(Tx, Ty) < a(d(z,Tz) +d(y, Ty))

for all z,y € X. The next example shows that there exist f-Kannan multi-
functions which are not Kannan type contraction.

Example 2.2. Let X =[0,3] and d(z,y) = |z — y| for all z,y € X. Define T
on X defined by Tz = [£,%] for allz € X. Let a € (0,%) be given. Put x =0
and y = 6a. Then, we have H(Tz,Ty) = 3a > a(d(z, Tz) + d(y, Ty)) = 4a2.
Now, define 3 : 2% x 2% —[0,00) by B(A, B) = % whenever A, B C [0, 1] and
B(A, B) =0 otherwise. Then, it is easy to see that

BT, Ty)H(Ta, Ty) < 4 (dla, T2) + d(y, T)

forall x,y € X. Hence, T is a B-Kannan multifunction while is not a Kannan
type contraction.

If we consider the map g : [0,00)% — [0,00) by g(x1, x2, 23, 24, T5) = axs +
axsz, then by using Theorem 2.1 and Corollary 2.2 it is easy to obtain next
result.

Corollary 2.4. Let (X,d) be a metric space, 3 : 2% x 2% — [0,00) a mapping
and T : X — P(X) a B-admissible and [-Kannan multifunction. Suppose
that there exist A C X and zo € A such that B(A,Txo) > 1. Then T has
approzimate fixed points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fized point.

In 1971, the notion of Reich type contraction mappings introduced ( [39]).
Later, the notion was extended for multifunctions ( [38]). Let (X,d) be a
metric space, 3 : 2% x 2%X — [0,00) a mapping and T a multifunction on X.
We say that T' is a Reich type contraction whenever there exist nonnegative
real numbers «, 3,y with o + A + v < 1 such that

H(Tx,Ty) < ad(z,y) + Md(z, Tx) + vd(y, Ty)

for all z,y € X. Also, we say that T is a 8-Reich multifunction whenever there
exists there exist nonnegative real numbers «, 3, with a + A + v < 1 such
that 8(Tx, Ty)H(Tz,Ty) < ad(z,y) + Ad(z, Tx) + ~d(y, Ty) for all z,y € X.
The next example shows that there exist S-Reich multifunctions which are not
Reich type contraction.
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Example 2.3. Let X = [0,00) and d(z,y) = |z — y| for all x,y € X. Define
T on X defined by Tx = [5,x] for all x € X. Let o, B,y € [0,00) with
a+A+v <1 be given. Put x =0 and y = 2. Then, we have

H(Tz,Ty) =2> ad(z,y) + Md(z, Tz) + vd(y, Ty).

Now, define B : 2% x 2X — [0,00) by B(A,B) = S for all subsets A and B.
Then, it is easy to see that

B(Tx, Ty)H(Tx,Ty) < ad(x,y) 4+ Ad(x, Tx) 4+ vd(y, Ty)

forallz,y € X. Hence, T is a B-Reich multifunction while is not a Reich type
contraction.

If we consider the map g : [0,00)° — [0,00) by g(z1, 22, 23,74, 25) = az; +
Ao 4+ yx3, then by following the proof of Corollary 2.4, one can obtain next
result.

Corollary 2.5. Let (X,d) be a metric space, 3 : 2% x 2% — [0,00) a map-
ping and T : X — P(X) a B-admissible and B-Reich multifunction. Suppose
that there exist A C X and xo € A such that B(A,Txo) > 1. Then T has
approximate fizved points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fized point.

In 1972, the notion of Chatterjea type contraction mappings introduced
( [17]). Later, the notion extended for multifunctions ( [21]). Let (X,d) be
a metric space, 8 : 2% x 2X — [0,00) a mapping and T a multifunction on
X. We say that T is a Chatterjea type contraction whenever there exists
o € (0,1) such that H(Tz,Ty) < a(d(z,Ty) +d(y, Tx)) for all z,y € X. Also,
we say that T is a 8-Chatterjea multifunction whenever there exists o € (0, %)
such that 8(Tz, Ty)H(Tx,Ty) < a(d(z,Ty) + d(y, Tx)) for all z,y € X. The
next example shows that there exist S-Chatterjea multifunctions which are not
Chatterjea type contraction.

Example 2.4. Let X =[0,4] and d(z,y) = |x — y| for all x,y € X. Define T
on X defined by Tz = [£, ] for all z € X. Let a € (0, %) be given. Put x =0
and y = 2a. Then, we have H(Tx, Ty) = 2a > a(d(z, Ty) + d(y, Tz)) = 3a>.
Now, define 3 : 2% x 2% — [0,00) by B(A, B) = % for all subsets A and B.
Then, it is easy to see that f(Tx, Ty)H (Tx,Ty) < %(d(w,Ty) +d(y,Tx)) for
allz,y € X. Hence, T is a 5-Chatterjea multifunction while is not a Chatterjea
type contraction.

One can easily conclude the next result.

Corollary 2.6. Let (X,d) be a metric space, B : 2% x 2% — [0,00) a mapping
and T : X — P(X) a B-admissible and §-Chatterjea multifunction. Suppose
that there exist A C X and xo € A such that (A, Txo) > 1. Then T has
approzimate fized points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fized point.
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In 1972, the notion of Zamfirescu type contraction mappings introduced
( [45]). Later, the notion extended for multifunctions ( [37]). Let (X,d) be a
metric space, 8 : 2% x 2%X — [0,00) a mapping and 7' a multifunction on X.
We say that T is a Zamfirescu type contraction whenever there exists k € [0, 1)
such that H(Tx,Ty) < kMr(x,y) for all z,y € X, where
51, Ty) + dly, T, 3 d(r, To) + dly, Ty)]).
Also, we say that T is a [-Zamfirescu multifunction whenever there exists
k € [0,1) such that 8(Tz, Ty)H(Tx,Ty) < kMy(z,y) for all z,y € X. The
next example shows that there exist S-Zamfirescu multifunctions which are not
Zamfirescu type contraction.

Example 2.5. Let X =[0,2] and d(x,y) = |z — y| for all z,y € X. Define T
on X defined by Tx = [5,z] for allz € X. Let k € [0,1) be given. Put x =0
and y = 2k. Then, we have H(Tx, Ty) = 2k > kMr(x,y) = 2k*. Now, define
B:2%X x2%X —[0,00) by B(A, B) = % for all subsets A and B. Then, it is easy
to see that B(Tx, Ty)H(Tx,Ty) < Mg (z,y) for all x,y € X. Hence, T is a
B-Zamfirescu multifunction while is not a Zamfirescu type contraction.

MT(I’ y) = max{d(x, y)

Again, one can obtain next result.

Corollary 2.7. Let (X,d) be a metric space, (3 : 2% x 2% — [0,00) a mapping
and T : X — P(X) a B-admissible and B-Zamfirescu multifunction. Suppose
that there exist A C X and zg € A such that B(A,Txo) > 1. Then T has
approximate fixed points. If (X, d) is a complete metric space and T is lower
semi-continuous, then T has a fized point.

In 1972, the notion of Ciric type contraction mappings introduced ( [15]).
Later, the notion extended for multifunctions ( [19]). Let (X, d) be a metric
space, 3 : 2% x 2% — [0,00) a mapping and T a multifunction on X. We say
that T is a Ciric type contraction whenever there exists A € (0,1) such that
H(Tz,Ty) < ANt (z,y) for all z,y € X, where

Ni(a,y) = ma{d(z, ), d(z, Tx), dly, Ty), 3 [d(w, Ty) + dy, Ta)]).

We say that T is a S-Ciric multifunction whenever there exists A € (0,1) such
that 8(Tx, Ty)H(Tx,Ty) < ANr(z,y) for all z,y € X. The next example
shows that there exist 8-Ciric multifunctions which are not Ciric type contrac-
tion.

Example 2.6. Let X =R and d(z,y) = |z —y| for all x,y € X. Define T on

X defined by Tx = [, 2] for all x € X. Let A € (0,1) be given. Put x =0 and

y = % Then, we have H(Tx,Ty) = % > ANp(z,y) = Md(z,y) = %2 Now,
define 3 : 2% x 2% — [0,00) by B(A, B) = % for all subsets A and B. Then, it
is easy to see that f(Tx, Ty)H(Tz,Ty) < %NT(w,y) for all x,y € X. Hence,

T is a B-Ciric multifunction while is not a Ciric type contraction.
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The reader can get a similar result to Corollary 2.7 for 8-Ciric multifunctions.
In 1974, the notion of quasi-contractive mappings introduced by Ciric ( [16]).
Later, the notion extended for multifunctions (see for example [6,23, 26, 27]
and [40]). Let (X, d) be a metric space, 3 : 2% x 2% — [0,00) a mapping and
T a multifunction on X. We say that T is a quasi-contraction whenever there
exists A € (0,1) such that

H(Tz,Ty) < Amax{d(x,y),d(y, Ty),d(x, Tz),d(z, Ty),d(y, Tz)}
for all z,y € X. We say that T is a S-quasi-contraction whenever there exists
A € (0,1) such that
BTz, Ty)H (T, Ty) < Amax{d(z,y),d(y,Ty),d(z, Tz),d(z,Ty),d(y,Tx)}
for all z,y € X. The next example shows that there exist S-quasi-contractions

which are not quasi-contraction.

Example 2.7. Let X =[0,5] and d(z,y) = |x — y| for all x,y € X. Define T
on X defined by Tx = [5,x] for all z € X. Let A € (0,1) be given. Put x =0
and y = X. Then, we have

H(Tz,Ty) = A > Amax{d(z,y),d(y, Ty), d(z,Tz),d(z, Ty),d(y, Tx)} = 2.

Now, define 3 : 2% x 2% — [0,00) by B(A,B) = % for all subsets A and B.
Then, it is easy to see that

B(Tx, Ty)H(Tz,Ty) < % max{d(z,y),d(y, Ty),d(x, Tz),d(z, Ty),d(y, Tx)}

for all x,y € X. Hence, T is a P-quasi-contraction while is not a quasi-
contraction.

If we consider the map g : [0,00)° — [0,00) by g(z1, 72, 73,74, 75) =
Amax{xy, T2, 3, T4, 25}, then by following the proof of Corollary 2.4, one can
obtain the next result.

Corollary 2.8. Let (X,d) be a metric space, 3 : 2% x 2% — [0,00) a mapping
and T : X — P(X) a B-quasi-contraction and (-admissible multifunction.
Suppose that there exist A C X and o € A such that (A, Txo) > 1. Then
T has approximate fized points. If (X, d) is a complete metric space and T is
lower semi-continuous, then T has a fized point.

In 2008, Suzuki introduced a new type of mappings and a generalization of
the Banach contraction principle in which the completeness can be also char-
acterized by the existence of fixed points of these mappings ( [44]). Consider

the non-increasing function 6 : [0,1) — (3,1] by 6(r) = 1 whenever r < %,
0(r) = 15° whenever ‘/52’1 <r< % and 0(r) = 115 whenever % <r<l.

Let (X,d) be a metric space, r € [0,1) and T be a mapping on X such that
O(r)d(z,Tz) < d(x,y) impliesd(Tz,Ty) < rd(z,y) for all z,y € X. Suzuki
proved that T has a unique fixed point ( [44]). Later, some authors tried to
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generalize the results of Suzuki for mappings and multifunctions (see for ex-
ample, [29,35] and [20]). In 2011, Aleomraninejad, et. al. collected these type
results in a result ( [2]). By using the main idea of [2]|, we give our last result
about fixed point of S-generalized Suzuki type proximinal valued multifunc-
tions.

Theorem 2.9. Let (X,d) be a complete metric space, o a constant in (0,1),
B:2% x 2% — [0,00) a mapping and g € R with a(h + 1) < 1, where h =
9(1,1,1,2,0). Suppose that T is a B-admissible and (-convergent proziminal
valued multifunction on X such that ad(x, Tx) < d(z,y) implies

BTz, Ty)H(Tx, Ty) < g(d(z,y),d(y, Ty), d(z,Tx),d(x, Ty),d(y, Tz))

for all x,y € X. Assume that there exits a subset A of X and xg € A such that
B(A,Txg) > 1. Then T has a fized point.

Proof. Choose the subset A of X and zy € A such that 5(A,Txg) > 1. Since
T is proximinal valued, for each n > 0 there exists x,+; € Tz, such that
d(p, Tpt1) = d(xp,Txy,). Since T is f-admissible and B(A, Txg) > 1, it is
easy to see that 8(Tx,_1,Tx,) > 1 for all n > 1. Fix 1 > r > h. Since
ad(zo, Txo) < d(xg,x1), by using the assumption we have

d(thiL'l) H(TﬁL’o,T!Cl)
B(Txo, Tx1)H (Txo, Tx1)
g(d(xo,x1),d(x1,T21),d(x0, Tx0), d(20, T21), d(21, T20))
g(d(l’o,ml),d(xl,T.’IJl)7d($0,$1),d($07.’£1) +d(.’L’17T1'1)70).

VAN VAN VAR VAN

By using Proposition 1.1, we get d(z1,Tz1) < hd(zg,z1) < rd(zg,x1). By
continuing this process, it is easy to see that d(x,i1,z,) < r"d(zg,x1) and
d(xns1, Txny1) < hd(Tper,y) for all n > 0. If 2, = x4 for some m > 1,
then x,, is a fixed point of T'. Suppose that x,, # x,4+1 for all n > 1. Choose
x € X such that x, — x. We claim that either ad(z,,Tz,) < d(x,,z) or
ad(zpi1, TTpy1) < d(xpg1,2) hold for all n. If ad(x,,Tz,) > d(z,,z) and
ad(Zpt1, TTnt1) > d(xpy1, ) for some n > 1, then

d<xn+laxn) S d(l‘n+1,$) +d(.’13,$n)
< ad(xpir, Trns1) + ad(xy, Tx,)
ahd(zy, Tpy1) + ad(Tn, Tni1)

IN

and so a(h + 1) > 1 which is a contradiction. Thus, either
B(Txn, Tx)H(Txn, Tx) < g(d(xn,z),d(z, Tx),d(xn, T2n), d(xn, Tz), d(z, Txy))

or
B(Txpy1,Tx)H(Txpy1,Tx)

< g(d($n+1u (E), d({E, T{L‘), d(xn+17 Txn+1)7 d(anrh T.’E), d(.’IJ, Tanrl))
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hold for all n. Hence, either there exists an infinite subset I C N such that
B(Txn, Tx)H(Txn, Tx) < g(d(xn,x),d(x, T2), d(xn, TTyn), d(Tn, Tx),d(z, Txy))
for all n € I, or there exists an infinite subset J C N such that
B(Txpi1, Tx)H(Txp i1, Tx)
< gld(xpir,z),d(z, Tx), d(Xni1, Tni1), d(@nt1, T2), d(x, Txpi1))
for all n € J. Since T is S-convergent, in the first case we obtain

d(z,Tx)

IN

d(x,Txn) + H(Txyn, Tx)
d(z, Txn) + B(Txn, Tx)H(Txyn, Tx)
d(z, Znt1) + g(d(zn, z),d(z, Tx), d(xn, Txr), d(z8, T2), d(z, Txy))
d(z,2nt1) + g(d(zn, z),d(x, Tx), d(xn, Tnt1), d(@n, ) + d(z, Tz), d(z, Tni1))
for sufficiently large n € I. Since g is continuous, we get
d(z,Tz) < g(0,d(z,Tx),0,0 + d(z, Tx),0)

and so by using Proposition 1.1, we conclude that d(z,Tz) = 0. Since T is
[B-convergent, in the second case we obtain
d(z, Tx)

< d(z,Txnt1) + HTxnt+1,Tx)
d(z, Txnt1) + B(Txnt1, Tx)H(Txpnt1, Tx)
d(x, Tny2) + g(d(zns1, ), d(x, Tx), d(@nt1, TTnt1), d(@nt1, T), d(x, TTrn11))
d(z, Tnt2) + g(d(Tnt1, ), d(z, Tx), d(Tnt1, Tnt2), d(Tnt12) + d(z, Tx), d(T, Tny2))

IN AN IA

<
<

for sufficiently large n € J. Since g is continuous, we get
d(z,Tz) < ¢(0,d(z,Tx),0,0 + d(z,Tx),0)

and so by using Proposition 1.1, we obtain d(z,Tx) = 0. Thus, € Tz and so
T has a fixed point. O
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